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The lockdown and the strict regulation measures implemented by Chinese government due to the outbreak of the COVID-19
pandemic not only decelerated the spread of the virus but also brought a positive effect on the nationwide atmospheric quality.
In this study, we extended our previous research on remotely sensed estimation of PM2.5 concentrations in Yangtze River
Delta region (i.e., YRD) of China from 2019 to the strict regulation period of 2020 (i.e., 24 Jan, 2020-31 Aug, 2020). Unlike the
method using aerosol optical depth (AOD) developed in previous studies, we validated the possibility of moderate resolution
imaging spectroradiometer (MODIS) top-of-atmosphere (TOA) reflectance (i.e., MODIS TOA) at 21 bands in estimating the
PM2.5 concentrations in YRD region. Two random forests (i.e., TOA-sig RF and TOA-all RF) incorporated with different
MODIS TOA datasets were developed, and the results showed that the TOA-sig RF model performed better with R2 of 0.81
(RMSE = 8:07 μg/m3) than TOA-all RF model with R2 of 0.79 (RMSE = 9:13 μg/m3). The monthly averaged PM2.5 exhibited
the highest value of 50.81 μg/m3 in YRD region in January 2020 and sharply decreased from February to August 2020. The
annual mean PM2.5 concentrations derived by TOA-sig RF model were 47.74, 32.14, and 21.04 μg/m3 in winter, spring, and
summer in YRD during the strict regulation period of 2020, respectively, showing much lower values than those in 2019. Our
research demonstrated that the PM2.5 concentrations could be effectively estimated by using MODIS TOA reflectance at 21
bands and the random forest.

1. Introduction

Air pollution, especially the fine particulate matter (i.e.,
PM2.5) pollution, has aroused strong attention of the public
in Asian countries since the last two decades [1, 2]. Accord-
ing to the World Health Organization (WHO), the two big-
gest developing countries, i.e., India and China, have
witnessed their air quality worsening and have now ranked
the most polluted countries in the world [3–5]. To better
control the air pollution, Chinese government has estab-
lished a large network with over 1500 monitoring stations
distributed in urban and suburban areas to observe the
dynamic change of the PM2.5 concentrations [6, 7].

Although these monitoring stations provide accurate and
continuous daily data for the public, it is still difficult to
obtain the wide range of PM2.5 concentrations because of
the sparse distribution characteristics of the monitoring net-
work [8, 9]. The advantaged remote sensing technology has
now become the most widely used method to achieve the
worldwide ground-level PM2.5 concentrations [10–13].

Most of the previous studies retrieved the aerosol optical
depth (AOD) from satellite remote sensing imageries (e.g.,
moderate resolution imaging spectroradiometer (MODIS)
and ozone monitoring instrument (OMI)) to estimate the
PM2.5 concentrations [4, 9, 14–18]. These AOD products
with resolution of 1-17.6 km could reveal the overall
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distribution of PM2.5 concentrations within an area. How-
ever, since the AOD reflects the integral of the extinction
coefficient of the total atmospheric column, the AOD-
PM2.5 relationship is thus highly affected by the meteorolog-
ical parameters, such as the planetary boundary layer height
(PBLH) and relative humidity (RH). Previous studies have
proved that the vertical-and-humidity corrected AOD illus-
trated much higher correlation with ground-level PM2.5 con-
centrations [13, 19, 20]. Second, most of the current used
AOD products derived by using dark target algorithm would
cause the missingness of AOD values in the areas with high
reflectance (e.g., the desert and the building areas) [21]. There-
fore, filling the AOD gaps is a necessity before data modeling.
Several methods including merging different types of AOD
products andmachine learning algorithms have been employed
to obtain the full coverage of AOD. For example, He andHuang
[22] combined two different types of MODIS AOD products
(i.e., 3 km dark target AOD and 10km deep blue AOD) to
improve the daily coverage of AOD in China. Zhao et al. [23]
developed a random forest using 15 meteorological parameters
to fill the gaps of AOD missingness in Beijing-Tianjin-Hebei,
and their result showed that the random forest could be effec-
tively used for obtaining the 100% coverage of AOD.

Considering the above-mentioned disadvantages of
AOD products, some efforts have been made to estimate
the PM2.5 by using the top-of-atmosphere (TOA) reflectance
directly from the remote sensing imageries [14, 17] For
example, Shen et al. [6] developed a convolutional neural
network (CNN) using satellite TOA reflectance at blue,
red, and NIR band from MODIS product (hereinafter
referred as MODIS TOA) and meteorological fields to pre-
dict PM2.5 in Wuhan region of China. The derived results
indicated that the CNN incorporated with TOA reflectance
could explain 87% of the PM2.5 variability. Yang et al. [7]
further examined the possibility of MODIS TOA reflectance
at the same three bands in PM2.5 prediction in Yangtze River
Delta (i.e., YRD) region of China, and they obtained a site-
based cross-validation R2 of 0.87. These works demonstrated
that the PM2.5 concentrations could also be derived by using
satellite TOA reflectance. However, the correlation of
MODIS TOA reflectance at other bands with PM2.5 concen-
trations has not ever been validated, and whether these data-
sets could be used for PM2.5 prediction is still unknown.

The outbreak of the COVID-19 pandemic started at the
end of 2019 has triggered an unprecedented slowdown in
global economic growth [24–26]. To better control the
spread of COVID virus, the lockdown with strict regulation
measures was implemented by Chinese government, which
not only decelerated the spread of the virus but also brought
a positive effect on the nationwide atmospheric quality
[27–29]. Therefore, in this paper, we explored the correla-
tion of MODIS TOA reflectance at 22 bands with PM2.5 con-
centrations in YRD region from 2019 to the strict regulation
period of 2020 (i.e., 24 Jan, 2020-31 Aug, 2020). Since the
machine learning algorithms (e.g., convolutional neural net-
work and random forest) have been demonstrated as useful
methods with high predictability, we developed two random
forests incorporating with MODIS TOA reflectance at differ-
ent bands to derive the PM2.5 in YRD region in this study.

As far as we are concerned, this is the first study that devel-
oped random forests using MODIS TOA reflectance at 22
bands to obtain the PM2.5 concentrations.

2. Materials and Methods

2.1. Study Area. The eastern coastal region with an area of
219000 square meters, i.e., the Yangtze River Delta region
(i.e., YRD) of China, was defined as our study case
(Figure 1). The study area covers 25 cities and is character-
ized by subtropical monsoon climate with wet and high tem-
perature in summer and relatively dry and cold in winter. As
one of the largest urban agglomerations in China, the YRD
region has witnessed the economy accelerating rapidly dur-
ing the last 20 years and has now become the most devel-
oped region in China. Unfortunately, the air quality of
YRD region has been gradually deteriorating since a large
amount of the exhausted gas from vehicles and industrial
factories has been emitted into the air, and the annual con-
centrations of the primary air pollutant, i.e., PM2.5, reached
65μg/m3 for the last five years.

2.2. Data

2.2.1. MODIS TOA Reflectance. The MODIS Level-1B prod-
uct with resolution of 1 km from 2019 to the strict regulation
period of 2020 (i.e., 24 Jan, 2020-31 Aug, 2020) was down-
loaded in this study (https://ladsweb.modaps.eosdis.nasa
.gov/). All of the MODIS imageries were reprojected to the
World Geodetic System 1984 (WGS84) in IDL. As there
are only 22 bands (i.e., b1-b22) for MODIS Level-1B product
with 1 km resolution, we finally extracted the MODIS TOA
reflectance at 22 bands for data modeling.

2.2.2. Ground-Level PM2.5 Observations. The hourly PM2.5
observations from 2019 to the strict regulation period of
2020 were collected from the web site of China Environmen-
tal Monitoring Center. There are 158 monitoring stations in
the entire study area (Figure 1). The PM2.5 values recorded
as NaN (i.e., not a number) were discarded before data
integration.

2.2.3. Auxiliary Parameters. The meteorological data was
obtained from Goddard Earth Observing System Data Assim-
ilation System GEOS-5 Forward Processing (GEOS-5 FP) in
this study. GEOS-5 FP has finer native horizontal resolution
(0:25° lat × 0:3125° lon) and temporal resolution (hourly data
and 3 hourly data) than older GEOS-5.2.0 version. Ten
parameters from different fields were included in this study
(Table S1), and all of the meteorological parameters were
interpolated into 1 × 1km grid cell by utilizing bilinear
interpolation algorithm for data modeling in IDL.

The MODIS monthly vegetation index (MVI) product
(spatial resolution: 1 km) was used in this study (https://
ladsweb.modaps.eosdis.nasa.gov/). We also downloaded the
major roadways (shape file) from Baidu StreetMap and then
calculated the road density (1 × 1 km) in ArcGIS for data
modeling. Finally, the MODIS TOA reflectance at 22 bands
and other auxiliary parameters assigned for each PM2.5
monitoring site were extracted for model development.
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2.3. Model Development and Validation. Previous studies
have demonstrated that the MODIS TOA reflectance at
three bands (i.e., blue, red, and NIR band) could be
employed for PM2.5 estimation in different regions [6, 7].
Despite of these three bands, our research found that the
MODIS TOA reflectance at other bands also exhibited sig-
nificant correlation with PM2.5 concentrations. However,
there is no such a study that has clarified whether MODIS
TOA reflectance at other bands could be used as the proxy
for PM2.5 estimation. Therefore, the purpose of this paper
was to examine the possibility of MODIS TOA reflectance
at 22 bands in deriving PM2.5 concentrations in YRD region.
Here, we developed two ensembled random forests that inte-
grated with MODIS TOA reflectance at different bands to
estimate the PM2.5 concentrations in YRD region. Three
steps were included in the process of model development
in this study, and Figure 2 gives the flow chart of the model
development.

(1) First, the significance of MODIS TOA reflectance at
each band with daily PM2.5 concentrations was
tested, and the nonsignificantly correlated bands
were removed before modeling. On this basis, the
selected bands along with other parameters were
employed as the model inputs in the random forest
(hereinafter referred as TOA-sig RF model)

(2) Second, we trained the random forest by using
MODIS TOA reflectance at 22 bands without signif-
icance test (hereinafter referred as TOA-all RF
model), since the random forest is applicable even
with highly correlated variables [30]. The impor-
tance of each variable could be achieved via the
importance index (i.e., the increase of mean square
errors, IncMSE) (hereinafter referred as TOA-all
RF model)

(3) Finally, to assess the model accuracy, the tenfold
cross-validation approach (10-fold CV) was carried
out in this study. We first randomly split the dataset
into 10 parts, where 9 parts were used for model
training, and the remaining was used for prediction.
We repeated this process for 10 times, and the aver-
aged result was used as the final accuracy. The coef-
ficient of determination (R2) and the root mean
square error (RMSE) were also used to evaluate the
correlation of the estimated and observed PM2.5
concentrations

3. Results

3.1. Descriptive Statistics. There are a total of 34 independent
variables for model construction, and the autocorrelation
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Figure 1: The study area.
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test between two of them was first carried out. The results
showed that the MODIS TOA reflectance presented stronger
correlation between visible bands than near infrared and
middle infrared bands. It should be noted that the MODIS
TOA reflectance at band 22 (i.e., b22) exhibited much less
available values than other bands; the b22 data was thus dis-
carded to improve the stability of the random forest model
in this study.

The daily PM2.5 ranged from 1.00μg/m3 in summer to
407μg/m3 in winter for the entire study period. Specifically,
the seasonal mean PM2.5 concentration of 2019 was
63.11μg/m3 in winter, while the value sharply decreased to
35.08μg/m3 in 2020. The same trend was also found in
spring from 2019 (~50.10μg/m3) to the strict regulation
period of 2020 (~32.48μg/m3).

3.2. Modeling and Validation. In this paper, we extended our
previous research for PM2.5 estimation in YRD region from

2019 to the strict regulation period of 2020. We first exam-
ined the correlation of MODIS TOA reflectance at 21 bands
and PM2.5 concentrations, and the results showed that the
MODIS TOA reflectance at 14 bands (i.e., b1~b4, b6~b7,
b9, b11~b12, b16~b17, and b19~b21) was significantly cor-
related with PM2.5 concentrations, as their P values were
all less than 0.01 (Table 1).

The MODIS TOA reflectance at the bands which showed
significant correlation with PM2.5 concentrations was used
for training the random forest (i.e., TOA-sig RF). The
TOA-all RF model was also trained by using MODIS TOA
reflectance at all bands. Figure 3 gives the performance of
the TOA-sig RF model and TOA-all RF model, and we
achieved an overall R2 of 0.81 and 0.79 for the TOA-sig RF
and TOA-all RF model, respectively. The RMSE values were
8.07μg/m3 and 9.13μg/m3 for the TOA-sig RF and TOA-all
RF model, respectively, indicating that the TOA-sig RF
model performed better than TOA-all RF model. The
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Figure 2: The flow chart of the model development.
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cross-validation results showed that the TOA-sig RF model
achieved slightly higher CV R2 (~0.80) than TOA-all RF
model (~0.78). The CV RMSE of the TOA-sig RF model
was 8.24μg/m3, i.e., much lower than that of TOA-all RF
model (~9.20μg/m3).

We also validated the predictive power of the TOA-sig RF
and TOA-all RF model in four seasons of 2019 and three sea-
sons during the strict regulation period of 2020 (Table 2). The
model fitting and validation results all indicated that the TOA-
sig RFmodel showed higher predictability of PM2.5 concentra-
tions than TOA-all RF model. Specifically, the PM2.5 concen-
trations derived by TOA-all RF model exhibited the fitted-R2

of 0.83, 0.77, and 0.75 for winter, spring, and summer, respec-
tively, in 2020. The RMSE values were 10.96 and 9.80μg/m3 in
winter and spring, respectively, which presented much higher
values than summer (~8.23μg/m3). The TOA-sig RF model
achieved better performance than TOA-all RF model, as the
derived R2 (RMSE) values were 0.84 (~10.10μg/m3), 0.78
(~9.54μg/m3), and 0.77 (~8.00μg/m3) for winter, spring,
and summer, respectively, in 2020.

3.3. PM2.5 Prediction in YRD Region. Given that the TOA-sig
RF model presented better performance than TOA-all RF
model, the annual/seasonal-mean PM2.5 with full coverage
was derived by using TOA-sig RF model. Figure 4 gives
the spatial distribution of the average PM2.5 from 2019 to
the strict regulation period of 2020. The overall PM2.5 con-
centrations of these two years exhibited the same trend,
showing higher values in north YRD and lower values in
south YRD. We also found that the average PM2.5 concen-
trations in the strict regulation period of 2020 was much
lower than that in 2019. The seasonal mean PM2.5 derived
from TOA-sig RF model exhibited higher values in each sea-
son of 2019 than those of 2020 (Figure 5). Specifically, the
average PM2.5 concentrations ranged from 21 to 86μg/m3

in the winter of 2020, which however decreased sharply to
17-46μg/m3 in the spring of 2020. The seasonal mean
PM2.5 concentrations were only 14-26μg/m

3 in the summer
of 2020. This is because a large amount of the industrial and

vehicle waste gas has been directly emitted into the air until
the outbreak of COVID-19, which would increase the con-
centrations of the air pollutants. The lockdown with strict
regulation measures implemented by Chinese government
in 2020 not only decelerated the spread of the virus but also
brought a positive effect on the nationwide atmospheric
quality, as the PM2.5 concentrations decreased sharply from
February to August.

4. Discussion

In this study, we examined the random forest in deriving
PM2.5 in YRD region of China using MODIS TOA reflec-
tance at 22 bands. Some benefits of our method are clarified
as follows. First, the MODIS TOA reflectance instead of
MODIS AOD was used as the input variable of the random
forest. The MODIS AOD products retrieved by using dark
target or deep blue algorithm yield AOD missingness in dif-
ferent types of the land (e.g., forests and buildings) [23, 31,
32]. Although various methods have been employed to fill
the gaps of AOD values, the intermediate process of using
AOD always increases the uncertainty of the model. Addition-
ally, even the full-covered AOD products filled by various
methods showed unstable correlation with PM2.5 concentra-
tions. Therefore, some efforts have been made for PM2.5 pre-
diction by skipping the AOD retrieval process [6, 7]. These
researches held the truth that the PM2.5 concentrations could
be successfully predicted by using satellite TOA reflectance
at blue, red, and NIR band. However, whether the MODIS
TOA reflectance at other bands could be used for estimating
PM2.5 concentrations is still unknown. Thus, in this paper,
we validated the possibility of MODIS TOA reflectance at
other bands in obtaining PM2.5 concentrations, and the results
showed that other bands (e.g., band12 and band9) in addition
to the bands used for AOD retrieval also exhibited significant
correlation with PM2.5 concentrations.

Second, the MODIS TOA reflectance shared the same
spatial resolution (~1 km) with the multiangle implementa-
tion of atmospheric correction (MAIAC) AOD, but the

Table 1: The correlation of MODIS TOA reflectance at 21 bands and PM2.5 concentrations.

Band P value Significance Band P value Significance

b1 0.00125086 ∗∗ b2 6.69e-14 ∗∗∗

b3 <2e-16 ∗∗∗ b4 2.68e-11 ∗∗∗

b5 0.712676 b6 0.003185 ∗∗

b7 1.64e-07 ∗∗∗ b8 0.850289

b9 2.05e-08 ∗∗∗ b10 0.905708

b11 0.000706 ∗∗∗ b12 6.42e-05 ∗∗∗

b13 0.894487 b14 0.661284

b15 0.136413 b16 0.007171 ∗∗

b17 0.000984 ∗∗∗ b18 0.931324

b19 0.000307 ∗∗∗ b20 0.000181 ∗∗∗

b21 0.000251 ∗∗∗
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retrieval process of MAIAC AOD is much more complex
compared with the TOA reflectance directly from the satel-
lite remote sensing imageries. We demonstrated the stability
of remote sensing and machine learning method in PM2.5

estimation in different periods in this study. Two random
forests using different datasets were developed, and the
results showed that the overall determined coefficients (R2)
of the entire study period and the separated years for these
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Figure 3: The result of the model fitting and model validation.

Table 2: The performance of two RF models in different seasons.

Year Seasons
TOA-all RF TOA-sig RF

R2 RMSE (μg/m3) R2 RMSE (μg/m3)

2019

Winter 0.82 13.16 0.84 12.14

Spring 0.78 10.64 0.79 10.42

Summer 0.75 8.25 0.79 7.89

Autumn 0.80 8.99 0.81 8.23

2020

Winter 0.83 10.96 0.84 10.10

Spring 0.77 9.80 0.78 9.54

Summer 0.75 8.23 0.77 8.00
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two models were all nearly 0.8. The high predictability of the
random forest was also validated in other study areas [30,
33]. The result also showed that the lockdown with strict
regulation measures implemented by Chinese government
has brought a positive effect on the nationwide atmospheric

quality, as the average PM2.5 concentrations during the strict
regulation period illustrated much lower values than that of
2019.

In this paper, we validated the importance of PBLH in
explaining the PM2.5 variability in YRD region, which was
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Figure 4: The average PM2.5 concentrations derived from TOA-sig RF model.
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consistent with the findings of our previous research [7]. We
validated a total of 30 meteorological parameters in explain-
ing the PM2.5 variability, and the results showed that only 10
parameters exhibited a relatively high correlation with PM2.5
concentrations in YRD region. Except for the PBLH, the RH
and the wind speed also ranked the top five important
parameters, indicating that the PM2.5 concentrations were
more affected by meteorological fields than other land use
variables. Among the MODIS TOA reflectance at 21 bands,
b9 (438~448nm) and b12 (545~556nm) exhibited much
higher correlation with PM2.5 concentrations than other
bands in YRD region. It is reasonable that the MODIS
TOA reflectance at b1, b3, and b7 exhibited lower correla-
tion with PM2.5 concentrations than b9 and b12, as the
AOD products retrieved by using these three bands (i.e.,
b1, b3, and b7) were also not significantly correlated with
PM2.5 concentrations in most study areas [11, 34]. The
derived PM2.5 concentrations indicated that our model using
MODIS TOA reflectance at 21 bands could be applied for
PM2.5 estimation in YRD region and other regions with sim-
ilar climatic and topographic condition. However, some lim-

itations should also be noted. First, there are 36 bands in
MODIS level-1B product, and we only examined the rela-
tionship of MODIS TOA reflectance at 21 bands and
PM2.5 concentrations. Therefore, whether the MODIS TOA
reflectance at other 14 bands could be used for PM2.5 estima-
tion still needs to be further validated. Second, there are still
some other parameters that affect PM2.5 concentrations,
such as the distribution of industrial pollution resources;
therefore, future research will focus on how these parameters
influence PM2.5 concentrations over the entire study area [9].

5. Conclusion

Our research is unique that we validated the possibility of
MODIS TOA reflectance at 21 bands, rather than AOD
products and the TOA reflectance at three bands which were
used for AOD retrieval, in PM2.5 prediction in YRD region
from 2019 to the strict regulation period of 2020. The results
of the two random forests using different datasets showed
that the TOA-sig RF model exhibited higher predictability
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Figure 5: The spatial distribution of seasonal mean PM2.5 concentrations in YRD region.
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of PM2.5 concentrations than TOA-all RF model. The
annual mean PM2.5 concentrations derived by TOA-sig RF
model presented a reasonable spatial distribution in YRD
region, showing higher values in north YRD and relatively
low values in south YRD. Our results demonstrated that
the MODIS TOA reflectance at 21 bands could also be suc-
cessfully used for estimating PM2.5 concentrations with rela-
tively high accuracy.

Data Availability

The data that supports the findings of this study are available
from the first author (email: 2611@mju.edu.cn) at Minjiang
University.

Additional Points

Highlights. (i) The possibility of using satellite TOA reflec-
tance at 22 bands for PM2.5 estimation in YRD was vali-
dated. (ii) The TOA-sig RF model explained 81% of the
variability in PM2.5 concentrations. (iii) The comparative
spatial distribution of PM2.5 concentrations pre- and post-
COVID outbreak in YRD was illustrated.
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