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In order to improve the recognition rate for lower extremity motion patterns, this study designs a recognition method for such
patterns, which integrates electromyography (EMG) and inertial measurement unit (IMU) signals in three posture modes,
including walking on the ground, squatting, and extending seated legs, to address the difficulty with obtaining high signal-to-
noise ratio EMG and IMU signals synchronously. Besides, this study proposes a synchronous analysis method for EMG and
IMU dual-mode information to correct antipower frequency interference accelerometer signals. The collected signals are
preprocessed to extract eigenvalues. And by using the kernel principal component analysis (KPCA), the information on these
eigenvalues is fused. Finally, according to the characteristics of the data, a Bayesian-optimized XGBOOST algorithm is
designed. Lower-limb movement patterns are classified with the feature vector put into the optimization algorithm.
Multiperson experimental results show that the average recognition accuracy for different poses can reach 94.42%, the average
F1 value 95.33%, and the average return value 95.68%, proving that the model proposed can be used to identify human
motion intentions and its generalization ability can detect individual differences in human bodies.

1. Introduction

1.1. Overview. With the rapid development of computer
technology as well as the continuous improvement of peo-
ple’s lives, great changes have taken place in the diet struc-
tures and work styles of people, with increasingly more of
them becoming accustomed to sedentary jobs. As people
age, these lifestyles may increase the risk of getting diseases
such as hypertension, cerebrovascular troubles, and stroke
[1], most of which can cause sequelae, such as motor dys-
function [2].

In the United States, for example, 18 out of 10,000 peo-
ple are stroke patients, 25% of the patients have to rely on
wheelchairs to assist their walking, and 60% of the patients
encounter greatly reduced muscle endurance and lowered
walking speed three months after the onset of related dis-
eases [3]. Stroke, traumatic brain injury, spinal cord injury
[4], and other sequelae bring physical pains and mental tor-
ments to patients. Moreover, treatment costs also impose a

great burden on governments and patients’ families. In
addition, when general patients are troubled with muscle
weakness after the onset of related diseases, auxiliary person-
nel need to consume more physical strength to assist them
during the training process. This forms a major test of
patients’ strength and endurance, which makes the tradi-
tional artificial rehabilitation method for patients difficult
to sustain, thereby reducing the intensity of training and
delaying the recovery of patients.

Assistive rehabilitation robots can maximize patients’
limb functions, activity scopes, and independence, while
minimizing secondary complications [5], thus becoming
one of the important ways for patients to undergo training
and treatment and widely recognized by experts in related
fields [6].

1.2. Significance of This Study. Clinically, lower extremity
rehabilitation equipment is widely used in the recovery of
patients with lower extremity amputations caused by nerve
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injury and other diseases or accidents while providing safe
and reliable gait rehabilitation support for patients with
walking dysfunction [7]. With such treatments, patients
can complete a large batch of repetitive physiological gait
training through mechanical lower limbs and reestablish
correct movement patterns so that they can participate in
daily activities like normal people, thus improving their life
quality [8].

When used for patients with walking dysfunction, the
lower-limb intelligent rehabilitation equipment must deter-
mine wearers’ movement intentions accurately, quickly,
and stably. Although decoding wearers’ electroencephalo-
gram (EEG) information can help identify the motion inten-
tion of the lower limbs of humans, some problems exist,
such as difficulty in information extraction, frequent inter-
ferences, and low accuracy of multijoint action recognition.
As a kind of neural signal, EMG has the property of being
generated ahead of limb movement [9, 10]; therefore, by
measuring the EMG of human bodies, the degree of muscle
fatigue [11] and the functional state of humans can be mea-
sured [12].

Accordingly, this study uses EMG signals and IMU sig-
nals as the identification source of lower-limb action inten-
tion, to adopt multisource signal synchronous acquisition
technology to collect the subjects’ EMG and lower-limb iner-
tial information, for high-performance collection of human
motion information as well as application of neural signals
and inertial sensor information in the control over intelli-
gent lower-limb rehabilitation equipment.

1.3. Contributions of This Study. Key contributions of this
study are stated as follows.

(1) Data Acquisition. Motion intention data were col-
lected with EMG and IMU sensors from 10 subjects
(age: 24 ± 2 years old and age range: 22~26 years old;
male/female: 6/4; height: 170~185 cm; and weight:
50~92 kg). Through an initial assessment of data
quality, available data collection time, and potential
participant fatigue, each subject recorded an average
of 8 or 9 trials (range: 8-10). The final dataset con-
sists of 95 horizontal walking trials, 85 squat trials,
and 95 sitting-leg extension trials.

(2) Data Processing and Dual-Mode Signal Feature
Extraction. This method improves the quality of
EMG signals through second-order analog-digital
hybrid antialiasing filtering to optimize the design
of front-end acquisition circuits and EMG elec-
trodes. Reliable acceleration signals are obtained by
calibrating the IMU signals. A unified clock is used
to control each acquisition module to ensure the
synchronization of multichannel signals. Eigenvalues
are extracted after the collected signals are prepro-
cessed with the kernel principal component analysis
(KPCA) implemented to fuse such eigenvalues.

(3) Pattern Recognition Algorithm. The extracted data are
substituted into the Bayesian-optimized XGBOOST
algorithm for classification. A multiperson test finds

that the average precision can reach 94.42%, the aver-
age recall 95.68%, and the average F1 score 95.33%,
demonstrating that the generalization ability of the
model would not be affected by individual differences
between human bodies.

1.4. Organization of This Paper. The rest of the sections are
structured as follows: Section 2 is for a literature review on
gait data analyses with EMG and IMU sensors. Section 3
describes the data collection and preprocessing of raw data
in this study. Section 4 demonstrates the optimization algo-
rithm steps. Section 5 introduces the experimental design
and procedure. Section 6 offers conclusions and analyses
and provides some comparisons with others’ experiments.
The last section summarizes this study and proposes future
research directions.

2. Review of Related Works

High-performance assisted rehabilitation robots can help
reintegrate patients into society while improving their qual-
ity of life. Only by correctly identifying the motion patterns
of the lower limbs of patients can an effective control strat-
egy be developed. Therefore, the research on the recognition
of motion patterns of the lower limbs has become one of the
hot topics in the field of intelligent prosthetics [5, 6].

Recognition methods for sensor-based lower extremity
motion patterns are favored by researchers because of their
high sensitivity and freedom from environmental factors.
In the research on lower limbs’ gait recognition, to obtain
sufficient human motion information, it is necessary to build
up a multisensor information acquisition system. Multi-
channel EMG and acceleration signals are widely used in
the recognition of human movement patterns. By using
Kinect sensors and IMU, Bijalwan et al. [13] explored in
detail the biomechanical properties of the pelvic, hip, knee,
and ankle joint motions during normal walking, and this
research is much useful for prosthetic and exoskeleton
design. To find the characteristics of the lower-limb move-
ments, Semwal et al. [14], Jain et al. [15], and others used
IMU sensors for gait recognition, and their results can be
used for gait parameter estimation, health monitoring sys-
tems, automatic feature extraction, and gait event detection.
By placing four flexible piezoelectric sensors on the knees
and hips, Cha et al. [16] delivered a gait recognition rate of
over 93%. Huang et al. [17] combined plantar pressure sig-
nals and 9-channel EMG signals to classify the stance phase
and swing phase of gaits at an accuracy of over 90%, thus
correctly identifying the transition of gait phases.

At present, the commonly used sensor information for
recognition of lower-limb motion patterns mainly includes
EMG signals, plantar pressure signals, joint angle signals,
and IMU signals [18, 19]. The sensors that can collect accel-
eration signals have the advantages of cheap price, small size,
low power consumption, and rich motion information. To
acquire EMG signals, sensors can be simply fixed on the cor-
responding muscles, so the signal acquisition is convenient
and flexible. IMU signals can reflect large-scale human
motion information, while EMG signals can showcase
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refined muscle activity information [20, 21]. Therefore, it is
reasonable to combine the two kinds of signals. To improve
the recognition accuracy and overcome the difficulty in
detecting lower limbs’ posture changes in complex environ-
ments, this study tries to identify lower limbs’ asynchronous
patterns by acquiring both EMG and IMU signals.

3. Signal Preprocessing and Feature
Extraction Methods

3.1. Dual-Mode Signal Noise Characteristic Analysis and
Signal Analysis Method. According to the characteristics of
EMG noise, a variety of measures have been taken to
improve the signal-to-noise ratio of EMG signals. Based on
the analysis of the noise model of the IMU signals, an accel-
erometer signal calibration algorithm based on ellipsoid fit-
ting is developed to improve the quality of IMU signals
[22], while simultaneous analysis of dual-mode information
is carried out to explore the characteristics of EMG and IMU
signals.

3.1.1. EMG Signal Noise Model and SNR Improvement
Method. The main interferences in EMG detection include
electrode impedance change, motion interference, and
power frequency interference. This study adopts a series of
methods to enhance the EMG noise ratio, such as antialias-
ing filtering, active shielding, and special flexible metal dry
electrodes, with the specific measures shown in Table 1.

(1) Antialiasing Filter. The second-order analog-digital
hybrid antialiasing filter is composed of a first-
order analog filter and a second-order digital filter.
The cutoff frequency of the analog filter is Kf s/2,
and the digital filter is responsible for removing the
noise between f s/2 and Kf s/2. The sampling fre-
quency of EMG signals is 1 kHz, and the oversam-
pling ratio is K = 128. Therefore, the antialiasing
analog low-pass filter’s cutoff frequency is

Kf s
2

=
128 × 1 kHz

2
= 64 kHz: ð1Þ

(2) Optimization of Front-End Amplifier Circuits. An
amplifying circuit is used to augment the weak elec-
trical signal, guided by the patch electrode with a
gain of 50, and the amplified signals can reach hun-
dreds of millivolts. To improve anti-interference
effects, differential inputs are used through two elec-
trodes; in addition, a potentiometer is used for R3,
which is convenient for gain adjustment. The circuit
diagram is shown in Figure 1.

3.1.2. IMU Signal Noise Model and Calibration Algorithm.
Human motion signals are collected with the IMU, which
may have three main errors: noise (white noise and random
walk noise), scale factor error, and axis deviation. The noise
model of the accelerometer can be expressed as

a0 = T ×K × aS + b + n
� �

, ð2Þ

where superscript 0 represents the orthogonal reference
coordinate system, S represents the nonorthogonal coordi-
nate system, T represents the transformation matrix of the
axis deviation, K represents the scale factor, a represents
the true value, n represents the Gaussian white noise, which
is mainly caused by external noises from A/D conversion,
and b represents the random walk noise, which is compre-
hensively affected by the internal structures of sensors and
temperatures. The scale error comes from the errors appear-
ing when a digital quantity is converted into a physical
quantity of acceleration. Axial misalignment would result
from the conversion of the measurement from a nonortho-
gonal coordinate system (the actual coordinate system of
an accelerometer) to an orthogonal one (the world coordi-
nate system).

When a piece of muscle is deformed and mechanical
vibration occurs, the signal from the accelerometer attached
to the muscle changes, which is expressed as a muscle signal,
and its solution is directly affected by the error and calibra-
tion accuracy of the accelerometer itself. Given that the vec-
tor and vertex of accelerometer signals fall on an
approximate ellipsoid at rest attitude, the accelerometer cal-
ibration is generally made based on the least squares fitting
(Gauss-Newton algorithm), to fit spherical data for ellipsoid
fitting.

X − Cj jM X − Cj jT = 1 + CMCT , ð3Þ

where X = ½xyz� represents the accelerometer coordinate
point, C = ½cxcycz� represents the ellipsoid center coordinate,
M represents the transformation matrix, and r represents the
ellipsoid axis length. And the formula for M is as follows:

M =
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3.2. Dual-Mode Synchronization Analysis Method for
Information from EMG and IMU. The purpose of feature
fusion is to retain the useful information in the original fea-
ture vectors as much as possible while eliminating redun-
dant information. When extracting the eigenvalues of the
EMG and IMU signals, it is found that their distribution in
the eigenspace is nonlinear; as a result, the traditional linear
fusion method is not applicable. As a kernel version of
principal component analysis (PCA), kernel principal com-
ponent analysis (KPCA) can map feature vectors to high-
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dimensional feature spaces through a preselected nonlinear
mapping function and then PCA can be further adopted.
The method would calculate the principal component, thus
not only maintaining the advantages of PCA but also solv-
ing the problem of nonlinear dimensionality reduction.
Since the scales of eigenvalues extracted from different sig-
nals vary greatly, the eigenvalues need to be normalized
before fusion, as shown in

xnew =
x − μ

σ
, ð5Þ

where xnew indicates the normalized eigenvalue and μ and
σ indicate the mean and variance of the data. Equation
(5) can normalize the eigenvectors to a dataset with mean
0 and variance 1. The feature vectors are fused according
to the KPCA method as introduced by Deng et al. [23].

4. Bayesian-Optimized XGBOOST Algorithm

4.1. Steps of XGBOOST Algorithm. In this study, an
XGBOOST algorithm built based on Bayesian optimization

is used to process the input data. As one of the very effective
machine learning algorithms, XGBOOST [24] algorithm has
a core principle: take the second-order Taylor expansion of
the objective function and then use the second-order deriv-
ative of the function to train tree models. In addition, the
complexity of tree models is incorporated into the optimiza-
tion objective as a regular term to improve the efficiency of
the learning model [25].

In the XGBOOST algorithm, the first step is to solve the
objective function objðtÞ in the splitting tree model for pos-
tures of lower limbs. The objective function in the t -th iter-
ation can be expressed as

obj tð Þ = 〠
n

i=1
gi f t xið Þ + 1

2
hi f

2
t xið Þ

� �
+Ωf tð Þ

= 〠
n

i=1
giwq xið Þ +

1
2
hiw

2
q xið Þ

� �
+ γT +

1
2
λ〠

T

j=1
w2

j

= 〠
T

j=1
〠
i∈I j

gi

 !
wj +

1
2

〠
i∈I j

hi + λ

 !
w2

j

" #
+ γT ,

ð6Þ

Table 1: Major interferences in EMG detection and the countermeasures taken in this study.

Type of interference Source of interference Countermeasures of this study

Electrode impedance Skin oil and sweat
Antialiasing filtering and front-end amplifier

circuit optimization

Motion disturbance Contact impedance change, electrode displacement, etc.
Designing flexible electrodes for improved

attachments

Electromagnetic
interference

50Hz power frequency and surrounding electromagnetic
environment interference

Battery power, circuit board wiring isolation, etc.
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Figure 1: The preoptimized amplification system for data acquisition.

4 Journal of Sensors



where f ðxÞ indicates one of the trees, γ indicates the weight
of the number of leaves, Ωf ðtÞ indicates the complexity of
the trees, T indicates the number of leaf nodes, λ indicates
the complexity of a leaf, w2

j indicates the norm of the leaf
node L2, j indicates the number of leaf nodes, and q indicates
the structure of a tree. gi and hi are defined as follows:

gi = ∂ŷ t−1ð Þl yi, ŷ
t−1ð Þ

� �
,

hi = ∂2ŷ t−1ð Þl yi, ŷ
t−1ð Þ

� �
,

8><
>: ð7Þ

where the true value is yi, and the predicted value is ŷi∑
T
j=1,

representing all the training samples that have been grouped
based on the leaf nodes. I j = fijqðxiÞ = jg represents the lead
node sample set that contains all samples from the j -th lead
node.

obj tð Þ = 〠
T

j=1
Gjwj +

1
2

Hj + λ
� �

w2
j

� �
+ γT , ð8Þ

where Gj =∑i∈I jgi represents the sum of the first-order par-

tial derivatives of the samples contained in the j -th leaf node
(a constant) and Hj =∑i∈I jhi represents the sum of their

second-order partial derivatives of them.
Similar to the information gain and Gini index used in

the random forest, the XGBOOST algorithm calculates the
gain Θ of the selected parameter when attempting to create
a segment for an existing leaf:

Θ =
1
2

G2
L

HL + λ
+

G2
R

HR + λ
−

GL +GRð Þ2
HL +HR + λ

" #
− γ, ð9Þ

where the subscripts L and R represent the left and right sub-
trees, respectively, G2

L/ðHL + λÞ shows the information score
of the left subtree, G2

R/ðHR + λÞ shows that of the right one,
and ðGL +GRÞ2/ðHL +HR + λÞ indicates the information
score when no segmentation is created.

By taking the derivative of Equation (8) concerning wj

and setting the derivative to zero, it is possible to obtain
the output score of the lead node wj

∗ and the minimum loss
of the posture tree structure S as follows:

w∗
j = −

Gj

Hj + λ
, ð10Þ

S = −
1
2
〠
T

i=1

G2
j

H j + λ
+ γT: ð11Þ

Figure 2 shows the steps involved in creating a splitting
tree for postures in complex systems.

4.2. Optimization. In any machine learning algorithm, the
hyperparameters must be initialized before any learning process
is launched because few algorithms are hyperparameter-
independent. Besides, the prediction accuracy of the XGBOOST
machine learning algorithm is deeply affected by several
hyperparameters, including the amount and depth of trees.
Therefore, suitable adjustments to these hyperparameters are
crucial for enhancing the accuracy of learning models. How-
ever, hyperparameter optimization is a process that entails
choosing a set of optimal hyperparameters; therefore, the gra-
dient descent algorithm used to optimize general parameters
cannot be applied directly in this process.

As a Bayes-based method, Bayesian optimization is pur-
posed to search the global extremum of functions (especially
the high-dimensional nonlinear nonconvex functions) [26].
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Figure 2: Flowchart for a posture-splitting tree.
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There are two core steps involved in Bayesian optimiza-
tion: the prior function (PF) and the acquisition function
(AC). The former primarily adopts Gaussian process regres-
sion, while the latter incorporates multiple methods, such as
EI, PI, and UCB. Furthermore, the balance between exploita-
tion and exploration can also be realized by AC. There are
three types of acquisition functions: upper confidence bound
(UCB), probability of improvement (PI), and expected
improvement (EI). This study adopts the PI (probability of
improvement) acquisition function as follows:

PI xð Þ = P f xð Þ ≥ f x+ð Þ + vð Þ =Φ
μ xð Þ − f x+ð Þ − v

σ xð Þ
	 


: ð12Þ

The hyperparameter μ is used to tune the balance
between exploration and exploitation. μ = 0 indicates a ten-
dency to converge at f ðx+Þ, Φð⋅Þ represents the cumulative
distribution function of the standard normal, and f ðx+Þ rep-
resents the current maximum. x is the observation point,
while σ is the standard deviation of all observation points.
The Bayesian-optimized process is shown in Figure 3.

Bayesian optimization uses certain constantly updated
probabilistic models to “set” promising hyperparameters by
inferring past results. By referring to previous estimates,
Bayesian methods can save a lot of wasted efforts when try-
ing the next set of hyperparameters. The combination of
Bayesian optimization and XGBOOST can effectively reduce

algorithm overfitting and computation workload, and the
efficiency of the model algorithm can also be greatly boosted
by optimizing the parameters. The model can quickly and
accurately identify complex posture changes in lower limbs
to achieve the expected purpose. The experimental process
and verification are shown below.

5. Experiments and Pattern
Recognition Analyses

5.1. System Design and Implementation. This system
includes two hardware modules: EMG and IMU signal
acquisition, which are two software modules of the lower
computer STM32 control program and the upper computer
PYTHON program. The control chip used in this system is
STM8L151F3, the EMG acquisition chip is ADS1292R, and
the IMU acquisition chip is BWT901CL, with an intelligent
high-integration Bluetooth inertial measurement unit at the
sampling frequency of 200Hz. Interpolation is made to
complement the IMU signal sampling frequency.

The freedom in the movement of the human lower limbs
includes thighs’ flexion and extension, external rotation and
internal rotation, abduction and adduction, calves’ flexion
and extension, feet’s flexion and extension, and valgus and
varus. Biomechanical simulation and experimental studies
have shown that the power consumption in the sagittal plane
of the human body is higher than in the frontal plane and
the horizontal plane [27] so three-dimensional motions of
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Figure 3: Flowchart of Bayesian optimization.

6 Journal of Sensors



human bodies can be simplified to a relatively simple plane
motion. The five-bar model is often adopted to examine
the kinematics and dynamics of walking gaits, with the
advantage that it is not needed to consider its lateral gait sta-
bility in the frontal plane. In the model, the influence of
humans’ heads and arms on the movement process is
ignored, and the upper body of humans is simplified as a
rigid rod. In addition, each leg is simplified as two rigid rods
connected by hinge joints perpendicular to the sagittal plane,
while the feet are attached to the calves, under an assump-
tion that the model only contacts the ground through the
ends of the calf rigid rods during walking. This human
lower-limb model is shown in Figure 4.

The coordinate system involved is defined at the heel of
the supporting leg. In particular, e0x is parallel to the instep,
from the ankle joint to the toe; and e0y is perpendicular to
the instep. And this system also determines the positions
of human bodies in the plane, but cannot characterize
human bodies’ postures. Meanwhile, other local coordinate
systems are used to determine human bodies’ postures.
The x-axis of all local coordinate systems is perpendicular
to the link and points directly in front of the motion. The
relative angle between the two adjacent rods is the relative
angle of the joint, represented by θ1 ~ θ4: specifically, θ1
indicates the knee joint angle of the supporting leg; θ2 indi-
cates the hip joint angle of the supporting foot; θ3 indicates
the knee joint angle of the swing leg, and θ4 indicates the
hip joint angle of the swing leg joint angle.

In this study, the right leg of the tester is selected for
experiments. After tests and comparisons of the leg muscles,
the gastrocnemius and rectus femoris are finally selected as

the signal source, and the two sets of EMG sensors (with
one set including two detection electrode pads and a refer-
ence electrode pad) are arranged in corresponding positions.
A three-axis accelerometer is fixed on the tester’s biceps
femoris to capture and record raw motion data in the x, y,
and z axes. The equipment layout is shown in Figure 5.

During the motion control test, the reference time is sent
to the IMU and the EMG sensor through a unified host
computer. Each instrument attaches a time stamp to the
independently collected data according to the calibrated uni-
form time so that the time of all instruments can be synchro-
nized. The schematic diagram of the system is shown in
Figure 6.

5.2. Test Environment. Carried out in the Key Laboratory of
Modern Measurement and Control Technology of the Min-
istry of Education, this research experiment collects human
motion data from several subjects without any neuromuscu-
loskeletal abnormalities (age: 24 ± 2 years old and age range:
22~26 years old; male/female: 6/4; height: 170~185 cm; and
weight: 50~92 kg). There are no significant differences in
age, sex ratio, height, and weight among the subjects
(P > 0:05), all of whom voluntarily participate in this test
by signing the informed consent agreements.

5.3. Test Plan. Before data collection, to reduce interference,
the muscles related to this study are wiped with alcohol to
remove the dander on skin surfaces; and the testers are
required not to do strenuous exercise within 24 hours. First,
their muscles relax naturally and then they do ten sets of
gaits, ten actions of squatting, and ten actions of bending
and extending of legs in sitting positions. Tester A’s IMU
part is selected to collect signals, as shown in Figure 7.

The raw EMG data of Tester A and the enlarged data
graph after processing are shown in Figure 8.

An average of 8 or 9 trials (range 8-10) are recorded per
subject through initial assessments of data quality, available
data collection time, and potential fatigues of participants.
The final dataset consists of 95 horizontal walking trials, 85
squatting trials, and 95 sitting leg extension trials.

5.4. Design and Verification of the Model. The programming
language for data processing in this study is Python 3.6. All
calculations are performed on a desktop computer with a
graphics processor of GPU GTX 1650 and 8GB of memory
in the Windows 10 operating system.

The experiment uses supervised learning to train the
Bayes-optimized XGBOOST algorithm. Based on the data
extracted from the aforementioned tests, a sample dataset
is established to train the algorithm. In this study, the sets
for training, validation, and test are randomly divided at a
ratio of 8 : 1 : 1. To evaluate the performance of the algorithm
in detail, this study examines its accuracy rate, precision rate,
return value, and F1 value.

Precision = TP
TP + FP

, ð13Þ

O2O3O4

e4y e2y
e3y

e2x

e3x

e4x

e5x

e5y
e1y

e1x

e0x

e0y q1

O1

O0

O5

θ1

θ4

Figure 4: Establishment of the human coordinate system.
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Accuracy =
TP + TN

TP + TN + FP + FN
, ð14Þ

Recall = TP
TP + FN

, ð15Þ

F1 =
2 × precision × recall
precision + recall

, ð16Þ

where P and N represent “positive” and “negative,” respec-
tively. FP (false positive) represents the number of negative

samples that were originally predicted to be positive; TN
(true negative) represents the number of negative samples
that were originally predicted to be negative; TP (true posi-
tive) represents the number of positive samples that were
originally predicted to be positive; and FN (false negative)
represents the number of positive samples that were originally
predicted to be negative. In addition, TP + FP = P′ represents
the total amount of samples that were originally predicted to
be positive; similarly, FN + TN represents the total amount
of samples that were originally predicted to be negative, TP
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Figure 6: System design and implementation method.
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+ FN represents the total amount of positive samples, and
FP + TN represents the total amount of negative samples.

6. Results

6.1. Results of Intention Recognition for Human Motions in
XGBOOST Algorithm. The motion signals of Subject A are
randomly selected as a reference. The XGBOOST algorithm
is jointly used for IMU and EMG to measure the indicators
shown in Table 2.

It can be seen from Table 2 that the scores of each indi-
cator identified by EMG alone are not high, but the scores
identified by IMU can reach more than 95%. When EMG
and IMU are used together to identify the indicators, the
evaluation indicators can go up to more than 98%. This
proves that the method of EMG signal and the IMU jointly
recognizing changes in human bodies’ postures is suitable
for this experiment.

A random forest and two hidden layers are introduced,
and an MLP neural network model with a regularization
parameter of 0.1 is compared with the XGBOOST model.
To make the experiment go smoothly, the Sklearn library
is used to run the MLP and decision tree algorithms. Mean-
while, XGBOOST operates with an XGBOOST package. The
EMG signals and IMU integrated signals are inputted into
each algorithm, with the accuracy rate, precision rate, return
value, and F1 value taken as performance analysis indicators
to select the optimal algorithm.

As seen in Table 3, the indicators of XGBOOST deliver
the best scores of the three algorithms in this experiment.
The confusion matrix of each algorithm is shown in
Table 4, where bt means gaits, dq means squatting, and qs
means sitting legs’ flexion and extension.

In the confusion matrix, each column represents a pre-
dicted category, the total amount of each column represents
the quantity of data predicted to belong to a specific cate-
gory, and the value in each column represents the quantity
of real data predicted to belong to a specific category. On
the other hand, each row represents the true attribution cat-
egory of the data; and the total quantity of data in each row
represents the number of data instances for that category. It
can be seen from the XGBOOST confusion matrix that it
can accurately identify human gaits; however, a small part
of squatting movements and sitting legs’ flexion and exten-
sion movements are incorrectly predicted, because the
changes in these two movements are relatively similar to
each other. But the recognition accuracy is significantly
higher than random forests and MLP neural network
models.

The prediction accuracy and robustness of the estab-
lished model are systematically compared with two compar-
ative machine learning methods under 10-fold cross-
validation. Figure 9 shows the scoring accuracy curve of
the machine learning algorithm model under 10-fold cross-
validation, and the results indicate that the average accuracy
of the XGBOOST model is greater than that of the other two
algorithm models, demonstrating that the recognition per-
formance of the XGBOOST-based model in the training
set is better than that of other models.

6.2. Results of Recognition of Humans’ Motion Intention by
Bayesian-Optimized XGBOOST Algorithm. Figure 10 com-
pares the accuracy rate of the algorithm after Bayesian opti-
mization for recognition of different gestures with that of the
unoptimized algorithm.

It can be seen from the above experiments that the
XGBOOST algorithm adopted in this study delivers the
highest F1 value, which takes into account the results of
the accuracy and return value and can prove that the
selected algorithm is more effective. In addition, the selected
algorithm has the lowest classification error rate in the con-
fusion matrix, indicating that the XGBOOST algorithm has
the best robustness in recognizing different posture changes.
The XGBOOST algorithm also has the highest accuracy after
Bayesian hyperparameter optimization, with its recognition
rate for different actions of a single person reaching 99%.
In terms of the accuracy rate, precision rate, return value,
F1 value, and confusion matrix, the Bayes-optimized
XGBOOST algorithm can be better applied in the recogni-
tion of complex motion signals of human lower limbs col-
lected by the combination of single-person EMG sensors
and IMU.

6.3. Experimental Results for All Subjects. Given individual
differences in human beings, individual experiments cannot
prove that the selected algorithm and the collection system
designed in this study are suitable for a wider population.
Therefore, 10 more people with different physical indicators
are selected to conduct an experimental test. The data of the
qualified subjects are brought into the algorithm to predict
the average indicators, as shown in Figure 11.

As shown in Figure 11, although the combined recogni-
tion accuracy of EMG and IMU signals in the XGBOOST
algorithm is 87.95%, it is a significant improvement com-
pared with 80.96% for IMU and 74.51% for EMG. However,
the accuracy rate of the unoptimized algorithm is less than
90%, and it cannot be well adapted to different individuals,

Table 2: Indicators for equipment identification and evaluation.

Precision
(%)

Accuracy
(%)

Recall
(%)

F1 score
(%)

EMG 79.26 81.54 79.26 79.26

IMU 95.64 95.82 95.64 95.64

EMG
+IMU

98.36 98.39 98.36 98.36

Table 3: Identification and evaluation indicators for various
algorithms.

Precision
(%)

Accuracy
(%)

Recall
(%)

F1 score
(%)

Random
forest

94.00 95.12 94.00 94.00

MLP 94.93 96.00 94.00 94.93

XGBOOST 98.36 98.39 98.36 98.36
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so it cannot satisfy this experiment. After Bayesian-opti-
mized, the accuracy rate of the XGBOOST algorithm reaches
94.42%, much greater than that of the unoptimized algo-
rithm, which is 87.95%. Table 5 showcases the identification
and evaluation indicators of various optimization algorithms
in multiperson experiments.

Generalization ability refers to the predictive ability of a
model for unknown data. The higher the generalization abil-
ity of a model, the stronger its recognition performance for
different experimental objects and different posture changes.
This ability can be comprehensively evaluated by the accuracy
rate, precision rate, return value, and F1 value. As shown in
Table 5, for accuracy rate, Bayes-XGBOOST is 13.26% higher
than Bayes-MLP and 7.3% higher than Bayes-random forest.
For accuracy, Bayes-XGBOOST is 9.81% higher than Bayes-
MLP and 6.35% higher than Bayes-random forest. For the
return value, Bayes-XGBOOST is 12.47% higher than
Bayes-MLP and 8.56% higher than Bayes-random forest.
For the F1 value, Bayes-XGBOOST is 14.15% higher than
Bayes-MLP and 7.94% higher than Bayes-random forest.
These metrics indicate that the Bayes-XGBOOST algorithm
has the best generalization ability, which can deal with
changes brought by individual differences and achieve the
expected effect.

6.4. Comparison with Other Experimental Results. Table 6
shows the results obtained from comparison with other
research. For a fair comparison, researchers that can meet
two requirements are selected: they used EMG and IMU

fusion signal recognition, and they collected motion signals
under similar experimental conditions.

Bangaru proposed an ANN-based method for automatic
recognition of construction workers’ activities, which shows
the ability to identify several scaffold activities at a weighted
accuracy of 0.94, compared to the precision of 94.42% in this
study. Wang et al. and Hao et al. only provided a single
result, so a comparison with them is not clear. As shown
in Table 3, the method proposed by this study achieves
higher accuracy than other methods, and the recall rate
and precision of this method are also higher, demonstrating
that the method of this study is more capable of human
motion intents’ detection.

7. Discussion

This study is aimed at boosting the recognition rate for the
lower limbs’ motion patterns while identifying the impact
of different sensors on classification accuracy and generaliza-
tion. Analyses of the model demonstrate that, due to com-
plex human body postures, the multimodal motion
recognition that relies only on a single signal, such as IMU
or EMG, would deliver a high misjudgment rate; especially,
the EMG is in extreme ambiguity. The recognition of human
motion intentions is very controversial, so it is an effective
way to recognize human motion intention by integrating
multisource signals.

The daily movements of the lower limbs of the human
body are very complex [5, 6]. In this study, three behaviors
with the highest frequency in rehabilitation therapy are
selected for experiments. However, other lower-limb move-
ments need to be further verified. In addition, for the sake
of safety, the experiments in this study are completed with
healthy people. Whether the experimental results so
obtained are still applicable to patients with motor impair-
ments requires further experimental verification.

This study can be further extended to such cases as lower
extremity postoperative rehabilitation, prosthetic intent rec-
ognition, clinical human health monitoring, and gait-based
human detection. As a future research direction, the fusion
between EMG and IMU signals in recognition of human
motion intents is an economical, reliable, and sustainable
solution. This recognition is of great significance for analyz-
ing human gait laws, repairing motion abnormalities, diag-
nosing kinematic diseases, and improving human-centered
rehabilitation equipment and prosthetics. Although this
study puts forward only a preliminary model, the results
obtained are encouraging.

Table 4: Confusion matrix of various algorithms.

True label

bt 1278 3 0

True label

bt 1881 11 0

True label

bt 1185 130 0

dq 0 762 12 dq 135 1018 3 dq 0 751 3

qs 0 35 961 qs 90 0 1439 qs 0 50 932

bt dq qs bt dq qs bt dq qs

Predicted label Predicted label Predicted label

XGBOOST MLP Random forest
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Figure 9: Cross-matrix comparison for each algorithm.
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8. Conclusions

To improve the recognition rate for humans’ lower extrem-
ity motion, this study designs a pattern recognition method
for such motions by integrating EMG signals and IMU sig-

nals, while using a Bayes-optimized XGBOOST algorithm
to recognize human motion intentions. The experimental
results based on the changes in human body postures dem-
onstrate that the method proposed in this study can realize
the measurement of the equipment attached to the lower
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Figure 11: Comparison of trials for all subjects.

Table 5: The average accuracy of identification and evaluation of various optimization algorithms in multiperson experiments.

Average precision (%) Average accuracy (%) Average recall (%) Average F1 score (%)

Bayes-random forest 87.12 88.00 87.12 87.39

Bayes-MLP 81.16 84.54 83.21 81.18

Bayes-XGBOOST 94.42 94.35 95.68 95.33

Table 6: Comparative analysis with other algorithms.

Proposal Average precision Average recall Average F1 score

Bangaru et al. [28] 93.68% 95.00% 94.00%

Su et al. [29] 92.33% 90.17% 90.50%

Wang et al. [30] 86.07% — —

Hao et al. [31] 94.32% — —

Ours 94.42% 95.68% 95.33%
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limbs and effectively identify changes in human body pos-
tures. In the multiperson experiment, the average accuracy
of recognition of different gestures reaches 94.42%, the aver-
age F1 value reaches 95.33%, and the average return value
reaches 95.68% proving the generalization ability of the
model would not be affected by individual differences among
human bodies.
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