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A model for detecting weak pulse signals in chaotic noise was proposed. Firstly, based on the short-term predictability of chaotic
signals, according to Takens’s theorem, the phase space of observed signal was reconstructed. Then, an improved brain emotional
learning (BEL) model combined with PSO-AGA was proposed to predict chaotic signals, and the one-step prediction error was
obtained. In order to optimize the parameters of the BEL model, an algorithm named PSO-AGA combined with particle
swarm optimization and adaptive genetic algorithm was adopted to achieve the balance of global search and local search
capabilities. Finally, the hypothesis testing method was used to detect whether there existed the pulse signal from the one-step
prediction error. The experiments simulated the Lorenz system and the magnetic storm loop current system. In the Lorenz
system, the MAD of BEL-PSO-AGA, BP-NN-PSO-AGA, and Wavelet-NN-PSO-AGA were 0.0022, 0.0142, and 0.0076; the
MSE were 8:95 × 10−6, 0.00034, and 0.00016; the RMSE were 0.0029, 0.0187, and 0.0128; the running times were 410 s, 792 s,
and 721 s; the ACC were 0.999, 0.972, and 0.997; the F1 were 0.984, 0.423, and 0.878. It could be seen that the BEL model had
better performance, shorter running time and higher values of the ACC and F1, indicated that the BEL model ran faster and
had a better predictive effect. The MAD of BEL-PSO-AGA, BEL-WOA, BEL-AGA, and BEL-PSO were 0.0022, 0.0065, 0.0135,
and 0.0071; the MSE were 8:95 × 10−6, 0.00013, 0.00029, and 0.00014; the RMSE were 0.0029, 0.0115, 0.0173, and 0.0119; the
ACC were 0.999, 0.992, 0.990, and 0.997; the F1 were 0.984, 0.733, 0.451, and 0.878. This indicated that the PSO-AGA also
had better performance and higher prediction accuracy. In the magnetic storm loop current system, the experimental results
were similar to the Lorenz experiment, which also indicated that the BEL-PSO-AGA model was better. To sum up, the
detection results of simulations showed that the proposed model and algorithm could effectively detect weak pulse signals from
the chaotic noise.

1. Introduction

A weak signal is a signal with low signal-to-noise ratio (SNR)
that is overwhelmed by noises and is difficult to be detected
by traditional methods. “Weak” is relative to the strength of
the noise [1]. Chaos refers to a random or random-like
phenomenon that appears in a deterministic system, which
has two remarkable characteristics, the unpredictability for
a long time and the predictability in a short term [2]. Due
to its irregularity and long-term unpredictability, signal
detection in chaotic noise has always been a difficult point
in signal detection. With the development of scientific
technology and the continuous maturity of chaos theory,
the detection of weak signals in chaotic noise has gradually

become a hot issue in signal detection. Researchers have
proposed methods such as neural network, least squares
support vector machine, and Duffing oscillator to extract
weak signals in chaotic noise [3–5].

Pulse signal is a kind of common signal, often used in
communication and fault diagnosis and other fields [6].
Improving the detection ability of pulse signal is of great
practical significance [7]. The detection of weak pulse signal
in chaotic noise has become a hot spot in the field of signal
processing. Early detection methods include Boxcar Integra-
tor and phase-locked amplifier, strongly coupled Duffing
oscillator subsystem, Birkhoff-Shaw oscillator subsystem,
and modern cross-spectrum estimation [8–11]. However,
most of these methods have some defects such as low
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sensitivity, low adaptability, and slow operating speed. In
order to improve the detection performance, some scholars
have applied Jordan neural network, Elman neural net-
work, empirical likelihood ratio method, support vector
machine, local linear and Kalman filter hybrid algorithm,
and double local linear model to detect pulse signal in
chaotic noise [12–17].

It can be found from the above researches that the
detection performances depends on the prediction effect of
chaotic signal. The higher prediction accuracy of chaotic sig-
nal, the better detection effect of target signal. Therefore, it is
crucial to improve the prediction accuracy of chaotic signal
for the detection of weak pulse signals. In recent years, many
methods such as fractional maximum correlation entropy
algorithm, GRNN neural network, hybrid neural network
and attention mechanism, extreme learning machine, robust
extreme learning machine, support vector machine, and
deep learning have been applied to the prediction model of
chaotic time series, which improved the prediction accuracy
of chaotic time series [18–24]. Mei et al. [25] applied the
method based on brain emotion learning (BEL) model and
adaptive genetic algorithm (AGA) to chaotic time series
prediction, which achieved great prediction accuracy. Yang
[26] applied the method proposed by [25] to detect the pulse
signal, but the detection performance was poor due to the
convergence instability of GA. What we do technically in
this paper is to improve the detection performance of pulse
signal in chaotic noise. The BEl model is improved, and
the PSO-AGA is proposed to optimize the parameters of
the BEL model. The algorithm inherits the characteristics
of fast search speed and high efficiency of particle swarm
optimization; meanwhile, it has the characteristics of strong
global search ability of GA and introduces dynamic cross-
over and mutation parameters to make the optimization
effect better.

The rest of this paper is organized as follows. In Section
2, as the signal detection problem in chaotic noise has been
abstracted as a hypothesis testing problem, the phase space
is reconstructed. An improved BEL model is established to
predict the reconstructed observation signal, and the pulse
signal detection model is proposed from the one-step predic-
tion error. In Section 3, the PSO-AGA is established and
used to optimize the parameters of BEL. Then, the problem
of signal detection is explained. The simulations are shown
in Section 4, which validates the applicability of the pro-
posed model and algorithm. Finally, Section 5 gives conclud-

ing remarks. The idea diagram of this paper is shown in
Figure 1.

The innovation points of this article are discussed
below.

(1) The signals in the afferent sensory cortex, orbito-
frontal cortex, and amygdala are activated, and the
hyperbolic tangent function is used as the activation
function

(2) On the basis of AGA algorithm, the PSO algorithm is
added. Using the characteristics of PSO with fast
convergence and high efficiency, then use the advan-
tages of GA global search for population screening
and improve the diversity of population

(3) In order to verify the effectiveness of the proposed
BEL-PSO-AGA model, the BEL model is compared
with the BP neural network and wavelet neural net-
work to determine the advantages of fast running
and high precision. Then, on the basis of the BEL
model and compared with WOA, AGA, and PSO
optimization algorithms, it is found that the BEL-
PSO-AGA has the best prediction effect

2. Detection of Weak Pulse Signal in
Chaotic Noise

2.1. The Problem of Signal Detection in Chaotic Noise. The
signal detection problem in chaotic noise can be abstracted
as a hypothesis testing problem as follows:

H0 : y tð Þ = c tð Þ +N tð Þ,
H1 : y tð Þ = c tð Þ +N tð Þ + s tð Þ,

(
ð1Þ

where H0 denotes null hypothesis and H1 denotes the
alternative hypothesis, which means that there is no tar-
get signal in the observation and there is a target signal
in the observation respectively. yðtÞ, cðtÞ, sðtÞ,NðtÞ denote
observation signal, chaotic noise, target signal (impulse
signal), and white noise, respectively. The target signal
sðtÞ is independent of chaotic noise cðtÞ and white noise
NðtÞ.

As the target signal is submerged in the chaotic noise, the
target signal could not be detected directly from the
observed signal. If the chaotic signal could be isolated from

Observation
signal

Phase space
reconstruction

The BEL model
for prediction

Get the one-step
prediction error

Detect the
pulse signal

PSO-AGA for
parameter

optimization

Figure 1: Flow chart of signal detection in chaotic noise.
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the observed signal, the above hypothesis test (1) should be
transformed into

H∗
0 : y tð Þ − c tð Þ =N tð Þ,

H∗
1 : y tð Þ − c tð Þ =N tð Þ + s tð Þ:

(
ð2Þ

Thus, the next work is to separate the chaotic noise cðtÞ
from the observed signal yðtÞ. Fortunately, according to
Takens’s theorem [27], the chaotic signals can be predicted
by phase space reconstruction.

2.2. Phase Space Reconstruction. For the observed signal, a m
dimensional phase space of the original system can be con-
structed by introducing the embedding dimension m and
the delay time τ. The reconstructed phase space is expressed
as YðtÞ = ðyðtÞ, yðt − τÞ, yðt − 2τÞ,⋯, yðt − ðm − 1ÞτÞÞ′, where
t > ðm − 1Þτ. According to Takens’s theorem [27], the map-
ping of a phase point to the reconstructed space is an
embedding and can be expressed as f : Rm ⟶ R, such that
yðt + 1Þ = f ðYðtÞÞ. If the mapping f has been found and
the appropriate embedding dimension m and delay time τ
are selected, the next point yðt + 1Þ should be predicted.

According to Mei et al. [25], a BEL model has a good
prediction effect in chaotic time series. Therefore, an
improved BEL model is constructed to predict the recon-
structed observation signals.

2.3. Improved BEL Model. Emotion is an advanced function
of the brain that ensures the organism’s adaptation and
survival. Emotional neuroscience research shows that the
brain mechanism of emotion is mainly prefrontal cortex
and limbic system. The core part of the limbic system is
composed of amygdala and hippocampus, used for emo-
tional learning and memory. After the sensory stimulation
reaches the thalamus, it can be directly sent to the amygdala
through the lower channel or sent to the sensory cortex
first through the upper channel, where the sensory stimu-
lation is processed carefully, and then the signal is sent to
the amygdala [28].

Inspired by neurobiological studies, Balkenius and
MorÉn [29] proposed a neural network-based emotional

learning model of the brain, which consists of thalamus,
sensory cortex, orbitofrontal cortex, and amygdala. Based
on the model in [29], Mei et al. [25] proposed a BEL model
combined with AGA to predict the chaotic signal. The BEL
model proposed by Mei et al. is a neural network with two
hidden layers, i.e., orbitofrontal cortex and amygdala. In
order to improve the accuracy of the prediction of BEL
model, an improved BEL model with three hidden layers,
i.e., sensory cortex, orbitofrontal cortex, and amygdala, is
proposed in this paper. The improved BEL model’s network
structure is shown in Figure 2.

In Figure 2, SI = ½S1, S2,⋯, Sn�, represents the input sig-
nal received in the thalamus, where n denotes the dimension
of the input signal. The input signal SI was transmitted from
thalamus to sensory cortex while the maximum value of
input signal Smax = max ðSIÞ was transmitted from thalamus
to amygdala directly.

For each input signal Si, the sensory cortex will con-
duct a preliminary learning Mi, which would be transmit-
ted to the amygdala and the orbitofrontal cortex. In the
orbitofrontal cortex, the input sensory signal Mi was con-
verted to Oi, i.e.,

Oi =Mi ·wi, i = 1, 2,⋯, n, ð3Þ

where wi represents the weights between nodes of the
orbitofrontal cortex. Then, the internal output Eo of orbi-
tofrontal cortex is expressed as

Eo = 〠
n

i=1
Mi ·wi + bo, ð4Þ

where bo is the bias received by the orbitofrontal cortex.
As for the signal Smax from the thalamus and the signal

Mi from the sensory cortex, there are also corresponding
nodes Ai, i = 1, 2,⋯, n + 1 in the amygdala, which can be
expressed as

Ai =Mi · vi, i = 1, 2,⋯, n,

An+1 = Smax · vn+1,

(
ð5Þ
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Figure 2: Network structure diagram of the improved BEL model.
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where vi denotes the weight between nodes in the amygdala
and Smax denotes the signal from the thalamus. Then, the
internal output Ea of amygdala is

Ea = 〠
n

i=1
Mi · vi + Smax · vn+1 + ba, ð6Þ

where ba is the bias received by the amygdala.
The orbitofrontal cortex assists the amygdala in learning

and inhibits its output. Therefore, under the mutual learning
between the orbitofrontal cortex and amygdala, the final
output of the brain emotional learning model is E, repre-
sented in

E = Ea − Eo: ð7Þ

To sum up, the improved BEL is a neural network model
between sensory cortex, orbitofrontal cortex, and amygdala.
There are some parameters including weights wi, vi and
biases b0, ba that need to be optimized. In the below, PSO-
AGA will be introduced into the model to optimize the
weights and biases.

3. PSO-AGA

The AGA has a large space of improvement in search ability,
while the convergence speed is slow. The PSO algorithm has
certain memory function, while it is easy to fall into local
optimum. Combining AGA with PSO, it will not only
improve the convergence speed but also enhances the global

search ability [30]. The particle can be searched in a larger
space, instead of being limited to the previous optimal posi-
tion, which will improve the flexibility of the algorithm and
enhance the optimization ability. The flow chart of BEL
model and PSO-AGA is shown in Figure 3.

In the PSO-AGA algorithm, firstly, the genetic param-
eters are initialized, such as maximum and minimum
crossover probability, maximum and minimum mutation
probability, and iteration times. Secondly, the population
and chromosomes are initialized; then, the PSO algorithm
is used to update the population, and the AGA algorithm
is used to further update the population. Then, the optimal
chromosomes are preserved into the next generation until
the maximum number of iterations is reached. Finally, the
optimal chromosomes, namely, the optimal weight and
threshold value, are substituted into the BEL model to output
the final prediction results.

3.1. Adaptive Genetic Algorithm (AGA). The genetic algo-
rithm (GA) is a common intelligent optimization algorithm,
which draws on the random search method of natural selec-
tion mechanism in biological world and can be applied in
various fields. It has higher global performance and a more
mature convergence analysis method [31]. However, the
general genetic algorithms have some defects such as the
crossover and mutation probability are fixed, converged
slowly, and too subjective. In order to improve the flexibility
and performance of GA, an adaptive genetic algorithm
(AGA) is proposed in which the adaptive crossover and
mutation probability are designed. The operation of AGA
is shown below.

BEL

PSO

AGA

Population initial

Calculate the fitness function
value

Selection, crossover,
mutation operation

Update particle (gene-
segment) velocity

Update the population

Update to get the optimal
value

Elite retention strategy

Continue to
iterate ?

Y

Begin Building the
BEL network

Optimizing network
parameters

Calculate the output
of the network End

N

Update particle (gene-
segment) position

Figure 3: Flow chart of improved BEL model and PSO-AGA.
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3.1.1. Chromosomal Coding. The weights wi, vi and biases
b0, ba of BEL model in Figure 2 are taken as gene sequences
on chromosomes. Since the weights and biases are real num-
bers, the method of real number coding is adopted which
would improve the coding efficiency. The coding format of
chromosome (CH) is presented in

CH = w1,⋯,wn, bo, v1,⋯, vn+1, ba½ �, ð8Þ

where w1,⋯,wn is the weights between nodes in the orbito-
frontal cortex, bo is the receiving bias in the orbitofrontal
cortex, v1,⋯, vðn+1Þ is the weights between nodes in the
amygdala, ba is the bias received in the amygdala, and n
denotes the input signal dimension. The number of genes
per chromosome is 2n + 3.

3.1.2. Fitness Function. A fitness function is used to guide the
search process. The design of fitness function is related to
the convergence speed and prediction accuracy of the
algorithm. In general, the fitness function is converted from
the objective function. In this paper, the smaller the predic-
tion error of BEL model, the better the adjustment of chro-
mosome parameters. Therefore, the fitness function Fð·Þ is
defined as follows:

F CHð Þ = 1
m
〠
m

k=1
ŷk − ykð Þ2, ð9Þ

where m denotes the number of sample points, ŷk denotes
the output value of BEL model, and yk denotes the actual
value. According to the expression of FðCHÞ in (9),
the chromosome that minimizes the fitness function is
optimal.

3.1.3. Select Operation. In the selection operation, the rou-
lette method is used to select better individuals to partic-
ipate in the selection of the next generation. The
probability of each chromosome being selected should
be proportional to its individual fitness value; that is,
those with large individual fitness values are more likely
to be retained. Suppose the fitness value of the ith chro-
mosome is f i and the probability of individual selection
is pi. f i and pi are expressed as follows:

f i =
1

F CHið Þ , ð10Þ

pi =
f i

∑M
i=1 f i

, ð11Þ

where M represents the number of population and FðCHiÞ
denotes the fitness value of the ith chromosome. According
to the formula (11), pi denotes the proportion of the ith indi-
vidual fitness value in the sum of all individual fitness values.
The greater the individual fitness value, the greater the prob-
ability of individual selection.

3.1.4. Crossover Operation. In this paper, the adaptive cross-
over probability is adopted to increase the flexibility of the

algorithm. The calculation formula of crossover probability
pc is defined as follows:

pc =
pc max −

pc min f − f avg
� �

fmax − f avg
, f ≥ f avg,

pc max, f < f avg,

8>><>>: ð12Þ

where pc max and pc min are the maximum and minimum
crossing probabilities set artificially, f max and f avg denote
the maximum and average values of the fitness function of
the population, and f denotes the parent of current chromo-
some whose value of fitness is higher.

In crossover operation, the combination of multipoint
crossover and arithmetic crossover is adopted. At first, the
paternal chromosomes selected randomly are divided into
multiple gene segments. Then, the arithmetic crossover is
performed on each segment as follows:

cgs1 = rgs1 + 1 − rð Þgs2,cgs2 = rgs2 + 1 − rð Þgs1,

(
ð13Þ

where gs1 and gs2 represent the according gene segments of
the two parents, cgs1 and cgs2 represent the according gene
segments of the two children, and r ∈ ½0, 1� denotes a ran-
dom number.

3.1.5. Mutation Operation. In the mutation operation, the
adaptive variation probability pm is adopted, which is
expressed as follows:

pm =
pm max −

pm min f̂ − f avg
� �

fmax − f avg
, f̂ ≥ f avg,

pm max, f̂ < f avg,

8>>><>>>: ð14Þ

where pm max and pm min denote the maximum and mini-
mum variation probabilities set artificially, fmax and f avg
denote the maximum and the average fitness values of the
population, and f̂ indicates the fitness value of the individual
who currently needs to mutate.

In the mutation operation, the uniform mutation strat-
egy is adopted [32]. Every gene of chromosome has an equal
chance to mutate. If the jth gene of the ith chromosome aij
was selected for mutation, the gene aij would be updated
as follows:

âij =
aij + amax − aij

� �
f gð Þ, r ≥ 0:5,

aij − aij − amin
� �

f gð Þ, r < 0:5,

(
ð15Þ

where f ðgÞ = r′ð1 − g/GmaxÞ, amax and amin are the upper
and lower bounds of gene aij, respectively, r, r′ ∈ ½0, 1� are
random numbers, g is the current iteration number, and
Gmax is the maximum iteration number. With the increasing
of iteration times, the range of individual variation will
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become smaller, which is beneficial to retain the optimal
individuals.

3.1.6. Elite Retention Strategy. If the fitness value of the opti-
mal individual in the current population was greater than
that of the optimal individual in the next generation, the
optimal individual in the next generation should be replaced
by the optimal individual in the current population. This
strategy, which called elite retention strategy, could effec-
tively prevent the loss or destruction of the optimal individ-
uals and would be a basic guarantee for the population
convergence to the optimal solution [33].

AGA can improve the diversity of the population and
has a large space of improvement in search ability, while
the convergence speed is slow. In this paper, particle swarm
optimization (PSO) is used to improve the convergence per-
formance of AGA.

3.2. Particle Swarm Optimization (PSO). Particle swarm
optimization (PSO) is inspired and evolved from the process
of birds searching for food. The characteristics of each parti-
cle in PSO algorithm are represented by fitness, position,
and speed. The fitness determines the quality of the particle
[34]. Suppose the dimension of the search space is d, the size
of the population is k, and the position and the speed of the
ith particle are xi = ðxi1, xi2,⋯, xidÞ and vi = ðvi1, vi2,⋯, vidÞ,
respectively, where i = 1, 2,⋯, k. In each iteration, the updat-
ing formula of velocity and position is expressed as follows:

vt+1i =wvti + c1r1 pti − xti
� �

+ c2r2 ptg − xti
� �

,

xt+1i = xti + vt+1i ,
ð16Þ

where pi = ðpi1, pi2,⋯, pidÞ denotes the optimal position of
the ith particle searched in the iterative process, pg = ðpg1,
pg2,⋯, pgdÞ denotes the optimal position searched by the
whole particle swarm in the iterative process, superscript t

denotes the current iteration number, vti and xti denote the
velocity and position of the particle, respectively, at the t-th
iteration, c1 and c2 denote learning factors, r1, r2 ∈ ½0, 1�
denote random numbers, and w denotes the inertial weight.

Particle swarm optimization is also used to optimize the
parameters, which can improve the prediction ability and
performance of the model [35]. However, particle swarm
optimization is easy to fall into the problem of local optimi-
zation, so combining the AGA algorithm can expand the
particle search space, increase the diversity of the popula-
tion, and make the model performance better and the pre-
diction accuracy higher.

3.3. Detection of the Target Signals. As the phase space was
reconstructed, the BEL model is established and the PSO-
AGA is used to optimize the parameters of the BEL model.
The optimized BEL model would effectively approximate
the mapping f : cðtÞ ≈ gðYðt − 1ÞÞ which have been men-
tioned in the Section 2.2. The final output of the BEL model
is the single-step prediction value gðYðt − 1ÞÞ. Then, the
one-step prediction error eðtÞ is obtained as follows:

e tð Þ = y tð Þ − g Y t − 1ð Þð Þ: ð17Þ

The one-step prediction error is used to determine
whether there is a pulse signal. Substituting equation (17)
into equation (2), the result is as follows:

H∗
0 : e tð Þ =N tð Þ,

H∗
1 : e tð Þ =N tð Þ + s tð Þ:

(
ð18Þ

When the null hypothesis in equation (18) is true, it
means that the one-step prediction error only contains white
noise. When the alternative hypothesis is true, it means that
the one-step prediction error contains not only white noise
but also weak signal. In order to prove the existence of
impulse signals objectively, the z-test method is adopted.
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Figure 4: Chaotic signal with white noise.
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In statistics, it is usually assumed that the distribution of
errors is normally distributed. According to the equation
(18), because NðtÞ is white noise, we assume further that
NðtÞ ~Nðμ, σ2Þ. The detection of pulse signal for each
the observation signal can be abstracted as hypothesis test-
ing problem below.

H0 : μ = 0,

H1 : μ ≠ 0:

(
ð19Þ

Construct statistic z = ðeðtÞ − EeðtÞÞ/SeðtÞ
ffiffiffi
n

p
, for a given

0 < α < 1, P = Pðjzj ≥ zα/2Þ is obtained, when P < α, the null
hypothesis is rejected, and it can be considered that the
observed signal contains the weak signals. Two simulation
experiments are used to test the applicability of the model
and algorithm.

4. Simulations

In the experiment, Intel CPU Core I5-10210U processor,
main frequency 2.11GHz, 16GB memory, 64-bit Windows10
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Figure 6: Convergence situation of PSO-AGA.
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Figure 5: The observed signal containing pulse signal sðtÞ:
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Figure 7: The prediction performance of BEL model. (a) Purely chaotic signal prediction performance of the BEL model. (b) The
observation signal with pulse signal prediction performance of the BEL model.

operating system, and Python programming environment
are adopted.

In order to verify the feasibility and effectiveness of PSO-
AGA, the prediction accuracy of the BEL model, and the
pulse signal detection performance, two simulation experi-
ments are carried out. In experiment 1, the Lorenz system
is used to generate the chaotic noise signal, while geomag-
netic storm loop current Index (Dst) is used in experiment 2.

4.1. Index of Performance Evaluation. In this paper, the
mean absolute error (MAD), mean square error (MSE),
and root mean square error (RMSE) are used to measure
the prediction effect of the BEL model. SNR is used to mea-
sure the strength of the pulse signal. The accuracy rate
(ACC) and the value of F1 are used to measure the detection

performance of the pulse signal detection. The formula is
expressed as follows:

MAD= 1
n
〠
n

t=1
ŷ tð Þ − y tð Þj j,

MSE =
1
n
〠
n

t=1
ŷ tð Þ − y tð Þð Þ2,

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

t=1
ŷ tð Þ − y tð Þð Þ2

s
,

SNR = 10 log10
σ2s

σ2
c + σ2

N

� �
,
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ACC =
TP + TN

TP + FP + TN + FN
,

F1 =
2 × P × R
P + R

,
ð20Þ

where

σ2s =
1
n
〠
n

t=1
s tð Þ −�s tð Þð Þ2,

σ2c =
1
n
〠
n

t=1
c tð Þ −�c tð Þð Þ2:

ð21Þ

�sðtÞ and �cðtÞ are the mean values of sðtÞ and cðtÞ, respec-
tively. σ2

N is the variance of white noise NðtÞ. ŷðtÞ is the pre-
dicted value, while yðtÞ is the true value of the observed
signal sequence. n is the number of samples. FP, FN, TN,
and TP, which come from machine learning, denote the false
positive, false negative, true negative, and true positive,
respectively. P is accuracy rate and R is recall rate.

4.2. Data Processing and Parameter Setting. Before the simu-
lation experiment, it is necessary to explain the setting of the
pulse signal and processing of observed signal and white
noise.

4.2.1. Setting of Pulse Signals. As the frequency of the general
periodic pulse signal is consistent, the regularity of the signal
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Figure 8: Correlation coefficient between predicted value and actual value. (a) Correlation coefficient of chaotic signal. (b) Correlation
coefficient of the observation signal containing pulse signal.
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is too strong. In each simulation experiment, the pulse signal
will be generated in a random manner. Therefore, 40 pulse
signals are generated as follows. sðtÞ = q · s0ðtÞ, where s0ðtÞ
is expressed as follows:

s0 tð Þ =
1, t ∈ T ,

0, else,

(
ð22Þ

where T = ft1, t2,⋯, t40g, t1, t2,⋯, t40 are 40 random
integers. In experiment 1, 40 pulse signals are generated with
q = 2:5, while 40 pulse signals are generated with q = 8 in
experiment 2. The white noise with a mean value of 0 and
a variance of 0.1 is used in both experiments.

4.2.2. Processing of Observed Signal. Before building the BEL
model, the observed signal need to be standardized. The
maximum and minimum normalization method is adopted,
which is expressed as follows:

x̂t =
xt − xmin
xmax − xmin

,  t = 1, 2,⋯,N , ð23Þ

where xt and x̂t denote the time series of observed signal and
the time series normalized, respectively, xmin and xmax
denote the minimum and maximum value of xt , respec-
tively, and N denotes the length of time series.

In order to measure the performance of the BEL model,
the optimal output of the model will be inversely normal-
ized. The inverse normalization method is expressed as
follows:

ŷt = zt zmax − zminð Þ + zmin, t = 1, 2,⋯,N , ð24Þ

where zt and ŷt denote the output of the BEL model and
the data inversely normalized, respectively, and zmin and
zmax represents the minimum and maximum value of the
output zt .

4.2.3. Parameter Setting. In this paper, the embedding
dimension m = 4 and delay time τ = 1 are determined by
the method of saturated correlation dimension and mutual
information function [36]. According to the phase space
reconstruction method, the observed signal is reconstructed
to a 4-dimensional vector which could be expressed as
½yðtÞ, yðt − 1Þ, yðt − 2Þ, yðt − 3Þ�T . Thus, the input data of
BEL model is a 4-dimensional vector. There are 9 weights,
and 2 biases need to be optimized. The initial values of
weights range from 0 to 1 and initial values of the biases
range from -1 to 1.

In PSO-AGA, the population size, maximum iteration
number, and length of chromosome (particle) are set to be
1000, 100, and 11, respectively. The learning factors are set
to be c1 = c2 = 2. The maximum and minimum crossover
probabilities are set as pc max = 0:8 and pc min = 0:5, and the
maximum and minimum mutation probabilities are set as
pm max = 0:1 and pm min = 0:001. PSO-AGA is carried out
according parameters set above. The output data is proc-

essed by inverse normalization, and the predicted value is
finally obtained.

4.3. Experiment 1: Test Pulse Signal in the Lorenz System. In
experiment 1, the chaotic noise signal is generated from the
Lorenz system. The equation of this model is expressed as
follows:

dx
dt

= σ y − xð Þ,
dy
dt

= −xz + rx − y,

dz
dt

= xy − bz,

8>>>>>>><>>>>>>>:
ð25Þ

where σ = 10, b = 8/3, r = 28, and x, y, z denote the time
function. The initial points are x = 1, y = 1, and z = 1, and
the step length of the integral is t = 0:01s. The four-order
Runge-Kutta integral method is applied, and a simulated
time series of x with 10000 data is obtained. In order to
reduce the influence of transition, get rid of the first and
the last 3000 data points and only keep the middle 4000
data, i.e., fcðtÞ, t = 1, 2,⋯4000g.
4.3.1. Prediction Result of BEL Model in the Lorenz System.
In experiment 1, the observation signal yðtÞ is composed of
cðtÞ,NðtÞ and sðtÞ, i.e., yðtÞ = cðtÞ +NðtÞ + sðtÞ. The chaotic

Table 2: Comparison results of different models.

Model MAD MSE RMSE
Time
(s)

ACC F1

BP-NN 0.0142 0.00034 0.0187 792 0.972 0.423

Wavelet-NN 0.0076 0.00016 0.0128 721 0.997 0.878

BEL 0.0022 8:95 × 10−6 0.0029 410 0.999 0.984

Table 3: Comparison results of different optimization algorithms.

Algorithm MAD MSE RMSE Time (s) ACC F1

WOA 0.0065 0.00013 0.0115 218 0.992 0.733

AGA 0.0135 0.00029 0.0173 302 0.990 0.451

PSO 0.0071 0.00014 0.0119 198 0.997 0.878

PSO-AGA 0.0022 8:95 × 10−6 0.0029 410 0.999 0.984

Table 1: Detection results of pulse signals.

q SNR (dB) ACC F1

3.0 -67.501 1.000 1.000

2.5 -71.147 0.999 0.984

2.0 -75.610 0.999 0.984

1.5 -81.364 0.995 0.947

1.0 -89.473 0.990 0.139

0.5 -103.33 0.990 0.000
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noise signal with white noise is shown in Figure 4, while the
observed signal yðtÞ which contain pulse signal sðtÞ is shown
in Figure 5.

Figures 4 and 5 show that the two signals are very
similar. It is hard to differentiate directly. It seems that the
influence of weak pulse signal in chaotic noise is very weak
and has been submerged in chaotic noise. So the weak pulse
signal cannot be detected directly, where SNR is -71.147 dB.

The BEL model is used to get the one-step prediction of
observed signal. The PSO-AGA is used to optimize the
parameters of BEL model. The performance and conver-
gence situation of PSO-AGA determines the performance
of BEL model. Figures 6 and 7 show the convergence
situation of PSO-AGA and the performance of BEL model,
respectively.

In Figure 6, it is shown that the convergence speed of
PSO-AGA is fast in both experiments which means the pro-
posed PSO-AGA is stable and effective. Figures 7(a) and 7(b)
show the absolute one-step prediction error of the observa-
tion signal without and with pulse signal, respectively. The
one-step prediction error of the observation signal without
pulse signal is very small in Figures 7 (a). Comparing the
two absolute errors, there is an obviously larger error value
that appears in Figures 7(b), indicating the possible existence
of pulse signals. The correlation coefficient of the predicted
value and actual value is shown in Figure 8.

Comparing Figures 8(a) and 8(b), it can be seen that
there are obviously some points deviating from the straight
line in Figures 8(b), which indicates that there must be some
pulse signals. The method of hypothesis testing will be used
to detect the pulse signal form prediction error below.

4.3.2. Detection of Pulse Signal in the Lorenz System.
Figures 7(b) and 8(b) show that there must be some pulse
signals in the observation signal, which is subjective and
inaccurate. As shown in Figure 7(a), it is reasonable to sup-

pose that μ = 0 when there is no pulse signal in the observa-
tion signal. According to the Section 3.3, the z-test is applied.
The variance σ2 of prediction error eðtÞ must be given in
advance in the z-test. In this paper, the sample variance is
used to instead of σ2. For each point of the prediction error
eðtÞ, there is a z-test for pulse signal. It is 4000 times test in
total, and there are 40 pulse signals. The ACC and F1 are
used to measure the performance of the test. Given signifi-
cance level as α = 0:1, the detection performance of test with
different q, i.e., q = 3,2:5,2, 1:5,1, 0:5, are shown in Table 1.

In Table 1 that SNR keeps decreasing with the decreasing
of q. Overall, the BEL model and PSO-AGA have ideal detec-
tion performance when q ≥ 2. However, as the SNR keeps
decreasing, although the accuracy rate is very high, the value
of F1 keeps decreasing. When the SNR ≤ −89:473 dB, the
detection ability is very poor. This is because the pulse sig-
nal is too weak; it has been completely submerged in the
chaotic noise.

4.3.3. Compared with Different Models. In order to verify the
effectiveness of the BEL, under the PSO-AGA algorithm, the
performance of the BEL model is analyzed by comparing the
traditional neural network model, such as BP neural net-
work and wavelet neural network. The comparison results
are shown in Table 2.

It can be seen from the results in Table 2 that the MAD,
MSE, and RMSE of the BEL model are 0.0022, 8:95 × 10−6,
and 0.0029, which are the smallest. At the same significance
level α = 0:1, the ACC and F1 values are the highest. Most
importantly, the BEL model has shorter computation time
than the traditional neural network model. In general, the
BEL model has obvious advantages in prediction accuracy,
running speed, and stability.

4.3.4. Compared with Different Optimization Algorithms.
After comparing the different models, on the basis of the
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Figure 9: ROC curves of different optimization algorithms.
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BEL model, it is compared with different optimization algo-
rithms. The comparison results are shown in Table 3 and in
Figure 9.

It can be seen from the results in Table 3, on the basis of
BEL model, comparing with other optimization algorithms.
Although the running time of the PSO-AGA algorithm is
longer than other algorithms, the MAD, MSE, and RMSE
of PSO-AGA are the smallest. Moreover, at the same SNR
and the same significance level α = 0:1, the ACC and F1 of
PSO-AGA are superior to other optimization algorithms.
Figure 9 shows that the ROC curves of different optimiza-
tion algorithms. It is observed that the BEL-PSO-AGA has
the largest area covered by ROC curve and the value of
AUC is 0.999. The AUC values of the other three optimiza-
tion algorithms are 0.998, 0.987, and 0.996, respectively.

Therefore, it seems that the proposed BEL-PSO-AGA model
has good fitting ability and better model performance in the
Lorenz system.
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Figure 10: The observation signal and one-step prediction error in Dst. (a) The purely magnetic storm loop current Dst signal. (b) The
observation signal contains pulse signal. (c) Absolute one-step prediction error of purely magnetic storm loop current Dst signal.
(d) Absolute one-step prediction error of the observation signal with pulse signal.

Table 4: Detection results of pulse signals.

q SNR (dB) ACC F1

9 -53.509 0.978 0.933

8 -55.864 0.958 0.931

7 -58.535 0.941 0.651

6 -61.618 0.952 0.720

5 -65.264 0.966 0.823

4 -69.727 0.934 0.627
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4.4. Experiment 2: Test Pulse Signal in Dst. Geomagnetic
storm loop current Index (Dst) is a geomagnetic index that
indicates the intensity of a geomagnetic storm. A geomag-
netic storm is a violent movement of the earth’s magneto-
sphere lasting from ten to dozens of hours, which is
complex and changeable. According to the level of magnetic
storm, it can be divided into weak storm, medium storm,
strong storm, and great storm, among which the strong
storm and great storm will form serious disaster weather
[37]. Therefore, signal detection in the harsh environment
of magnetic storms is of great significance which would
avoid disaster. Signal detection in Dst has played an impor-
tant role in the research of signal processing.

The Dst indices collected in this paper are from the
World Geomagnetic Data Center [38]. 2000 Dst indices
occurred in 2020 are selected as chaotic noise, which is a typ-
ical chaotic time series with a time interval of 1 hour. The
pulse signals are generated as in Section 4.2 with q = 8.

4.4.1. Prediction Results of BEL Model in Dst. The purely
magnetic storm loop current Dst signal cðtÞ is shown in
Figure 10(a), while the observation signal yðtÞ which
contains pulse signal sðtÞ is shown in Figure 10(b).
Figures 10(c) and 10(d) show the absolute one-step predic-
tion error of purely magnetic storm loop current Dst signal
and the observation signal with pulse signal, respectively.

Figures 10(a) and 10(b) show that the two signals are
very similar. It is hard to differentiate directly. It seems that
the influence of weak pulse signal in chaotic noise is very
weak and has been submerged in chaotic noise, where SNR
= −55:864dB.

In Figure 6, it is shown that the convergence speed of
PSO-AGA is fast in experiment 2. Figures 10(c) and 10(d)
show the absolute one-step prediction error of the observa-
tion signal without and with pulse signal, respectively. Com-
paring with the two errors in Figure 10, both of them
fluctuate within a small range near zero. The error in
Figure 10(d) seems a little greater than that in Figure 10(c).
Comparing with the prediction error in Figures 7(b) and
10(d), it is more difficult to determine whether the pulse sig-

nal exist in Dst. The hypothesis testing will be used to detect
the pulse signal as in the Lorenz system.

4.4.2. Detection of Pulse Signal in Dst. The detection of pulse
signal for each detected error could be abstracted as hypoth-
esis testing problem (18) just as experiment 1. The sample
variance is used to instead of the variance of the population.
There are 2000 times tests in total, and there are 40 pulse
signal. The ACC and F1 are used to measure the perfor-
mance of the test. Given the significance level as α = 0:4,
the detection performance of test with different q, i.e., q =
9, 8, 7, 6, 5, 4, are shown in Table 4.

In Table 4, when SNR ≥ −55:864dB, the values of ACC
and F1 are very high, which indicates that the model has
the strong signal detection ability. However, when SNR ≤
−55:864dB, the values of ACC and F1 are relatively low,
which indicates the detection ability of the model is also
gradually weakened and which indicates that in the com-
plex magnetic storm loop current system, the pulse signal
is submerged and the signal is difficult to be detected.

4.4.3. Compared with Different Models. Same as the
detection of pulse signals in experiment 1, under the same
environment and PSO-AGA optimization algorithm, the
comparison results with the traditional neural network
models are as follows:

It can be seen from the results in Table 5, the MAD,
MSE, and RMSE of BEL model are the smallest. Not only
the computation time is less than that of the traditional neu-
ral network models, but also the value of F1 is higher. There-
fore, the BEL model is better in all aspects.

4.4.4. Compared with Different Optimization Algorithms.
Under the same experimental conditions, BEL-WOA, BEL-
AGA, BEL-PSO, and the proposed BEL-PSO-AGA model
are used to detect the pulse signal in Dst. The comparison
results are shown in Table 6 and in Figure 11.

In Table 6, comparing with other algorithms, the MAD,
MSE, and RMSE values of PSO-AGA are the smallest, which
indicates that the proposed PSO-AGA has high prediction
accuracy and stability. Moreover, the ACC and F1 of the

Table 5: Comparison results of different models.

Model MAD MSE RMSE Time (s) ACC F1

BP-NN 0.0265 0.00145 0.0382 561 0.981 0.889

Wavelet-NN 0.0271 0.00151 0.0387 493 0.979 0.817

BEL 0.0242 0.00104 0.0323 374 0.958 0.931

Table 6: Comparison results of different optimization algorithms.

Algorithm MAD MSE RMSE Time (s) ACC F1

WOA 0.0244 0.00118 0.0343 124 0.956 0.889

AGA 0.0292 0.00171 0.0413 211 0.952 0.816

PSO 0.0259 0.00141 0.0375 116 0.957 0.911

PSO-AGA 0.0242 0.00104 0.0323 374 0.958 0.931
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PSO-AGA algorithm are superior to other algorithms.
Figure 11 shows the ROC curves of different optimization
algorithms. As you can see from the picture, the BEL-PSO-
AGA has the largest area covered by ROC curve and the
value of AUC is 0.819. The AUC values of the other three
optimization algorithm models are 0.807, 0.804, and 0.806,
respectively. Thus, there are good reasons to believe that
the BEL-PSO-AGA could detect the pulse signal from the
complex environment of magnetic storm ring current.

5. Conclusions

Combining the characteristics of BEL model, AGA, and PSO
algorithm, a new method for detecting weak pulse signals in
chaotic noise is proposed. Comparing with other models, the
BEL model has faster convergence speed, shorter running
time, and higher accuracy than traditional neural network.
The PSO-AGA improves the detection accuracy; stability
as PSO-AGA could achieve the balance between global
search and local search ability. Comparing with other opti-
mization algorithms, the PSO-AGA has better performance
and prediction accuracy. The experimental results show that
the BEL model and PSO-AGA have wide application values
and could effectively detect weak pulse signal from chaotic
noise.
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