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The automatic identification of Attention Deficit Hyperactivity Disorder (ADHD) is essential for developing ADHD diagnosis
tools that assist healthcare professionals. Recently, there has been a lot of interest in ADHD detection from EEG signals
because it seemed to be a rapid method for identifying and treating this disorder. This paper proposes a technique for
detecting ADHD from EEG signals with the nonlinear features extracted using tunable Q-wavelet transform (TQWT). The 16
channels of EEG signal data are decomposed into the optimal amount of time-frequency sub-bands using the TQWT filter
banks. The unique feature vectors are evaluated using Katz and Higuchi nonlinear fractal dimension methods at each
decomposed levels. An Artificial Neural Network classifier with a 10-fold cross-validation method is found to be an effective
classifier for discriminating ADHD and normal subjects. Different performance metrics reveal that the proposed technique
could effectively classify the ADHD and normal subjects with the highest accuracy. The statistical analysis showed that the
Katz and Higuchi nonlinear feature estimation methods provide potential features that can be classified with high accuracy,
sensitivity, and specificity and is suitable for automatic detection of ADHD. The proposed system is capable of accurately
distinguishing between ADHD and non-ADHD subjects with a maximum accuracy of 100%.

1. Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is one of
the prevailing neuropsychiatric disorders among children,

and it frequently persists into adulthood [1, 2]. The word-
wide study shows that, about 5-12% of prevalence of ADHD
is observed among school-going children, and more mani-
festation is experienced among male children [3–5]. This
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disorder has the subtypes such as predominantly inattentive,
predominantly hyperactive-impulsive, and the combined
type with the primary symptoms of inattention, impulsivity,
and hyperactivity [6–8]. Early detection and identification of
this disorder and treating in an early stage will be extremely
beneficial to children, parents, and especially community
health. Currently, clinical interviews, observations, and rat-
ings from multiple sources such as parents and teachers
are used to examine and diagnose ADHD [9–11]. The tradi-
tional clinical evaluation procedures are time consuming
and are subject to ambiguity. Therefore, there is a great need
for objective clinical diagnostic methods from the biological
signals that reflect the behaviors of ADHD and its subtypes.

Electroencephalography (EEG) is the record of the elec-
trical activities of a human brain, which can reveal a great
deal about physiology and pathology. EEG signals have been
employed in the diagnosis of several neurological illnesses by
extracting unique features and classifying them with differ-
ent classifiers in automated detection systems. Neurophysio-
logical disorders such as alcoholism [12], dementia [13, 14],
epileptic seizure [15], schizophrenia [16, 17], Parkinson’s
disease [18, 19], and depressive disorder [20, 21] are some
of the areas where EEG signals are employed in automatic
detection. The EEG signals of ADHD children are different
from that normal child in terms of complex randomness,
amplitude, and frequency. Researchers have employed sev-
eral feature extraction techniques and classifiers to analyse
EEG signals in the identification of ADHD [22–25].
Researchers have experimented several machine learning
algorithms and nonlinear feature extraction approaches such
as entropy estimators and classifiers such as support vec-
tor machine (SVM), multilayer perceptron, and k-nearest
neighbor (KNN) [26–29] to detect ADHD using EEG data.
These techniques suffer from higher computational complex-
ity and lower classification accuracy.

A quantifiable brain reaction that happens as a direct
result of a sensory, cognitive, or motor event is known as
an event-related potential (ERP). Mueller et al. used ERP
features to analyse 75 ADHD and 75 normal children and
have classified ADHD and normal subjects with a classifica-
tion accuracy of 91% [30]. Different authors worked on the
ERP and extracted probable features that can help detect
ADHD, and classification is done with a multilayer neural
network and categorized with an accuracy close to 96.7%.
[27, 31–33]. While some authors investigated the application
of complex deep learning algorithms to diagnose ADHD
from EEG signals, others explored more efficient machine
learning methodologies. For most of the ADHD detection,
the authors extracted nonlinear features and classified with
standard classifiers such as support vector machine (SVM),
multilayer perceptron, and KNN [26, 28, 29, 34]. A deep
convolutional neural networks and deep learning networks
were experimented to diagnose ADHD in adults and
children [35–37].

Literature reveals that wavelet transform techniques
have higher computational efficiency, and they have the
added benefit of being able to distinguish tiny details in a
signal. Ahmadlou and Adeli [38] employed a wavelet-
synchronization pattern recognition methodology with

RBF neural network classifier, to detect ADHD with a
maximum accuracy of 95.6%. Sadatnezhad et al. [31] used
fractal dimension, AR model, and EEG band power to diag-
nose ADHD children and achieved a maximum classifica-
tion of 86.4%. Allahverdy et al. [39] analysed EEG data
with the nonlinear features extracted using fractal dimension
methods and distinguished ADHD subjects with a classifica-
tion accuracy of 86%. Ahmadlou and Adeli et al. employed
the synchronization likelihood (SL) and fuzzy synchroniza-
tion likelihood (FSL) frameworks to assess functional con-
nectivity and achieving classification accuracies of 87.5%
and 95.6%, respectively, for a synchronization pattern in
the theta and delta frequency bands [38, 40]. These wavelets
transform methods could not achieve the maximum classifi-
cation accuracy as they could not dynamically adjust the Q
value and had lower reconstruction capabilities. To classify
ADHD versus normal subjects, these studies largely used
artificial intelligence approaches. Based on the literature,
different authors expressed that classification accuracy has
to be further improved and the computational complexity
has to be reduced. Moreover, challenges prevail in identify-
ing the better feature extraction technique and applying
the best classifier algorithm for achieving maximum classifi-
cation accuracy in ADHD diagnostic methods.

To address these difficulties, the authors have experi-
mented an efficient algorithm using tunable Q-wavelet
transform (TQWT) with Katz and Higuchi fractional
dimension method, that is lighter in computational com-
plexity and with an ANN classifier that provides a maximum
classification accuracy. Children with ADHD are identified
by the experts and their EEG signals recorded under eyes-
open and eyes-closed states are used for this analysis. Poten-
tial features are derived from Katz and Higuchi fractal
dimensions, which are estimated from the segmented EEG
signal subbands. The features extracted through the frac-
tional dimension techniques are classified using the ANN
classifier which is a proven effective classifier. The results
show that the suggested method is effective in classifying
ADHD and normal subjects EEG signals. The main contri-
butions list can be summarized as follows:

(i) The combination of TQWT with Katz and Higuchi
fractional dimension method is proven to be an
efficient feature extraction method for ADHD
detection

(ii) The potential features extracted with the Katz and
Higuchi fractional dimension techniques with an
ANN classifier brought out with a maximum classi-
fication accuracy of 100%

(iii) As the proposed system is lighter in computation
with maximum classification accuracy, it can be a
resourceful technique for clinical detection of
ADHD from the EEG signals

This work is composed of four major sections. Section 2
presents the Materials and Methods, which include data
acquisition and feature extraction methods. Section 3 pro-
poses the Results and Discussion, which includes the
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analysis of various classifier algorithms, performance met-
rics, and discussion on comparing similar works. Finally,
the Conclusion and future works are presented in Section 4.

2. Materials and Methods

2.1. Data Acquisition. The EEG data set for the proposed
approach is created with 5 subjects of ADHD and 5 subjects
of normal, in each category under eyes-closed and eyes-open
resting state. The EEG signals were recorded from the chil-
dren age group 7 to 12, after getting parental consent and
the children’s consent [25]. Using the unipolar setup, the
EEG signals of the individuals are measured using the
10–20 electrode placement system. Individual scalps are
carefully prepared with a contact impedance of less than
5KΩ for EEG signal measurement. With a sample rate
of 256Hz, each EEG signal consisting of 6400 sampling
points was recorded using a 16-electrode unipolar mon-
tage. Each signal was captured for 300 seconds with a
24-bit resolution. Signals which acquired are divided into
25 seconds in the eyes-closed resting state and eyes-open
resting state in both ADHD and normal subjects. The
EEG signals of ADHD and normal subjects are presented
in Figure 1.

The acquired signals are preprocessed using MATLAB
(MatLabR2018a) to determine the needed range of signals

from each channel. Visual inspection and computerized
review are carried out with the aid of specialists and a range
of signals that are not acceptable for analysis and further
processing are removed. A bandpass filter with cutoff fre-
quencies of 1Hz and 60Hz is used to reduce signal noise
and to eliminate other artefacts and noise during eye blink-
ing. The power frequency noise is suppressed using a 50Hz
notch filter. Experiments are conducted on a laptop with
4GB of RAM, a 3.2GHz CPU, and intel core processor.
MATLAB 2018a is used to execute the simulations, and
the statistical data are recorded for analysing various perfor-
mance measures. The functional blocks of the proposed
methodology for classifying ADHD and normal subjects
using the TQWT algorithm is presented in Figure 2.

In this proposed methodology, the EEG signals of both
ADHD and normal categories are decomposed into 15 levels
of subbands by using TQWT technique. The unique fractal
dimension features such as katz and higuchi features are
extracted from the decomposed subbands reflecting the
ADHD and normal behavior. These features are fed as input
to the different classifiers such as linear discriminant, logistic
regression, support vector machine, artificial neural net-
works, and ensemble techniques are experimented to com-
pare the performance of each classifier. The best classifier
algorithm with higher classification accuracy is evaluated
for choosing the better combination to perform the feature
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Figure 1: Single-channel EEG signals for ADHD and normal subjects in eyes-closed and eyes-open condition.
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extraction and classification. The performance of the pro-
posed methodology is verified with different performance
metrics for ensuring its best performances.

2.2. Tunable Q-Factor Wavelet Transform (TQWT). The
ratio of the centre frequency to the bandwidth of the filters
employed in the transform is known as the Q-factor of a
wavelet transform. TQWT has the property of fast decom-
position and perfect reconstruction which makes it suitable
for application in many biomedical signal processing prob-
lems. TQWT’s efficient decomposition and perfect recon-
struction properties make it well-suited to a wide range of
biological signal processing applications [41]. The TQWT
is a wavelet transform that is analogous to the rational-
dilation wavelet transform and has been used to investigate
EEG signals [12, 42, 43]. The TQWT provides perfect recon-
struction of the signal and the energy of the signal is divided
into subbands by the TQWT coefficients. It is done with a
discrete wavelet transform that performs a double-channel
multirate filter bank with low and high-pass filters. With
an adjustable Q-factor and a powerful transform for oscilla-
tory signal analysis, this approach is suited for the discrete-
time signal analysis [42]. TQWT’s fundamental parameters
are its Q-factor (Q), redundancy (r), and the number of
levels of decomposition (j) which allow it to analyse signals
with a diversity of oscillatory characteristics [44]. TQWT fil-
ters are straightforward to reconstruct and implement since
they are built up of nonrational transfer functions utilising a
Fast Fourier Transform (FFT) with an adjustable Q-factor.
In our proposed work, the Q-value factors are modified
between 1 and 10, and the classification results are analysed
to find the best Q-factor value. The TQWT approach applied
to this work is depicted in Figure 3.

Figure 3 shows the different stages of decomposition
applied with the TQWT analysis and synthesis filter banks

[45]. An EEG signal is divided into j levels by iteratively
applying two-channel filter banks on the signal. At each level
of decomposition, the input signal x½n� with sampling fre-
quency f s is decomposed into a high-pass subband signal
x1½n� and a low-pass subband signal x0½n�, with sampling fre-
quencies of αf s and βf s, respectively. Here α and β refer
scaling factors for the filter banks. Selesnick [42] elaborated
a comprehensive description of scaling parameters and pro-
posed that the scaling parameters must fulfil the following
criteria to limit redundancy while ensuring perfect recon-
struction.

0 < β ≤ 1,

0 < α < 1,

α + β = 1:

ð1Þ

The characteristic equation of TQWT can be represented
as follows:

H0 ωð Þ =
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − cos ω

p
for ωj j ≤ π: ð4Þ

Data acquisition from
EEG signals

EEG signals
segmented 

into 25 seconds

Signal processing techniques

TQWT Tunable Q-factor
wavelet transform

Feature
extraction

Accuracy

Sensitivity

Specificity

Gmean

Matthew’s correlation
coefficient (MCC)

Negative
predictive value

(NPV)

Positive
predictive value

(PPV)

Classifier evaluation

ADHD

Normal

i

Figure 2: Functional blocks of the proposed methodology.
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The bands of H0ðωÞ and H1ðωÞ are constructed using
transition function θðωÞ, which is derived from the Daube-
chies filter with two vanishing moments. To accomplish the
perfect reconstruction criteria, the low-pass filter H0ðωÞ
and high-pass filter H1ðωÞ can be assessed using the relation
given in equation (2).

H0 ωð Þj j2 + H1 ωð Þj j2 = 1: ð5Þ

The decomposed EEG signals can be reconstructed
with the use of a synthesis filter. The relationship between
TQWT input parameters and scaling parameters α and β is
related by;

r =
β

1 − α
, ð6Þ

Q =
2 − β

β
: ð7Þ

The criterion of dominant frequency is used to select
the appropriate value of decomposition levels (j). Accord-
ing to the dominant frequency criterion, the number of
decomposition levels is kept in such a way that the
decomposed subbands have the greatest correlation with
substantial EEG frequency ranges.

In this paper, the following feature vectors are evaluated
and analysed:

(a) Q-factor. The value of Q in TQWT determines the
oscillatory behaviour of the signals. EEG signals, in
particular, are highly oscillatory in nature and have
a high Q-value. The theoretical definition of the
Q-factor is expressed as Q = ð2 − βÞ/β and α = 1 −
ðβ/rÞ . Based on the values of Q and r, the values of
α and β are computed. The value of the Q-factor
can be chosen based on the input signal behaviour
because it reflects the oscillatory behaviour of the
wavelet. If the proposed Q-value is compatible with
the input signal’s features, it can accurately extract
useful information from the EEG signal.

(b) The maximum number of levels jmax. The scaling
parameters α and β, the number of samples (N) in

the input signal are used to calculate jmax, The max-
imum levels of decomposition,

jmax =
log βN/8ð Þ
log 1/αð Þ ð8Þ

(c) Oversampling rate/redundancy parameter (r). The
resonance is controlled by the redundancy factor r,
which allows the wavelet to be focused in time with-
out affecting its shape. The oversampling rate is
defined as r in this case r = β/ð1 − αÞ: When analys-
ing biological signals, the specific number r = 3 has
been previously recommended [46]. As a result,
throughout this research, the redundancy parameter
r is chosen as 3

The wavelet transforms technique shall be applied to sig-
nals with little or no oscillatory characteristic with a low Q-
factor. Most wavelet transforms, except for the continuous
wavelet transform, are unable to adjust their Q-factor. This
difficulty is solved by TQWT, which allows the Q-factor to
be regulated. Moreover, TQWT has been widely employed
to investigate a variety of physiological signals [47–49].
Due to the rational transfer functions, the filters are compu-
tationally efficient and hence provide direct representation
in the frequency domain. As TQWT is a powerful tool for
analysing oscillatory physiological signals with lesser com-
putational complexity, the authors felt to apply this tech-
nique for the proposed work.

2.3. Feature Extraction. The EEG signals are complex and
highly nonlinear in nature. Because of the nonlinear and
intricate behaviour, nonlinear methods are appropriate tools
for analysing brain dynamics and behaviours from the EEG
signals. The Higuchi and Katz fractional dimension based
feature extraction methods are more predominantly used
for EEG signal analysis [50, 51]. In our work, the Higuchi
and Katz nonlinear feature extraction techniques are used
to identify the potential features that can help discriminate
ADHD and normal subjects.

2.3.1. Higuchi Fractal Dimension. A fractal dimension is a
tool for determining nonperiodic and irregular time series.
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Figure 3: Flow diagram of TQWT analysis and synthesis filter banks.
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The Higuchi fractional dimension has its high accuracy and
efficiency in determining fractal dimensions based on curve
length measurements. The time series of the EEG signal is
segmented into k number of samples, and the mean length
of the series/curve is measured using the segment of k sam-
ples [52, 53]. The FD Higuchi estimation can be obtained by
following four steps for a finite set of time series, i.e., Sð~nÞ ;
f~n = 1, 2,⋯Ng ;N is the number of points on the curve:

Stage 1. Generate k number of new time series, for values
of k ranging from 1 to kmax, calculate Skm from given time
series data.

Skm = S mð Þ, S m + kð Þ, S m + 2kð Þ,⋯, S m + int
N −m

k

� �
:k

� ���
:

ð9Þ

In this, the discrete time interval between sample points
is represented by k, and the initial time value is represented
by m ðm = 1, 2, 3,⋯::, kÞ:

Stage 2. The length LmðkÞ is calculated for each of the
constructed time series Skm.

Lm kð Þ = 〠
int N−m/kð Þ

i=1
S m + i:kð Þj

 "

− S m + i − 1ð Þ:kjð Þ: N − 1
int N −m/kð Þ:k

!#
:k−1:

ð10Þ

Here the curve length is given by LmðkÞ and ðN − 1Þ ∗
ðint ðN −m/kÞ:kÞ−1 is the normalization factor.
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Figure 4: Classification accuracy comparison for different classifiers (a) eyes-closed condition (b) eyes-open condition.
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Stage 3. The average length LavgðkÞ of the curve is calcu-
lated by the following equation for each interval of k:

Lavg kð Þ = 1
k
〠
k

m=1
Lm kð Þ ð11Þ

For all values of k ranging from 1 to kmax, average length
calculation is repeated.

Stage 4. The length of the total average curve, LavgðkÞ is
proportional to k−D, where D is the Higuchi fractal dimen-
sion (HFD). The slope of the least-squares linear best fit
is the estimation of the fractal dimension in the curve of
ln ðLavgðkÞÞ versus ln ð1/kÞ in the curve [52]. The param-
eter time interval k determined the HFD value. In this
analysis, we employed k in a certain range of values, which
resulted in a specific HFD value.

2.3.2. Katz’s Fractal Dimension. In the Katz fractional
dimension method [54], the ratio of the curve’s total length
to the line for the maximum Euclidean distance from the
starting point line. In general, the planar curve’s fractal
dimension, FDkatz , is determined by the given equation,

FDkatz =
log Lð Þ
log dð Þ , ð12Þ

where L denotes the overall length of the curve, or the sum
of distances between successive points, and d denotes the
diameter, which is calculated as the distance between the
first and farthest point on the sequence and given as,

L = 〠
N

i=1
wi+1 −wik k, ð13Þ

d =max wi −w1k k: ð14Þ

Here, the Euclidean distance is denoted by “k:k}: The
fractal dimension (FD) compares the number of units that
make up a curve to the smallest number of units required
to generate a structure with the same spatial area. The mea-

surement units used to compute FDs have an impact on the
results. The average step or average distance between succes-
sive points, “a” is created as a general unit or yardstick in
Katz’s approach [50, 55]. According to Katz’s approach,
the fractal dimension ðFDkatzÞ, is expressed as:

FDkatz =
log L/að Þ
log d/að Þ =

log Nð Þ
log d/Lð Þ + log Nð Þ ð15Þ

where, Katz proposed normalize L is the length of the mid-
dle stage and d is the average distance between successive
points a = L/N , where N is the number of steps in the curve.

3. Results and Discussions

The tunable Q-factor wavelet transform approach is used to
extract unique features from all 16 channels of EEG signals.
EEG data from ADHD and normal subjects are decomposed
into multiple levels, and Higuchi and Katz’s fractal dimen-
sional features are obtained. The total extracted features for
each fractal measures are 112 since six level wavelet decom-
positions have been performed using TQWT. Hence, a total
of 7 wavelet coefficients with respect to 16 EEG channels
(16∗7 = 112) the size of the features that have been taken.
For improved classification accuracy, the optimal selection
of quality factor (Q) and decomposition levels (j) is investi-
gated. The redundancy (r) value is fixed to 3 in order to per-
form better [42, 51]. The TQWT technique is applied on the
EEG signals of both ADHD and normal subjects under eyes-
closed and eyes-open states for extracting different subbands
for different Q and j values. Initially, keeping the Q as 1 and
the features are extracted for all the 15 decomposition levels.
The unique features extracted with Higuchi and Katz frac-
tional dimension decomposition methods are fed into differ-
ent classifiers for investigating the efficiency in terms of
classification accuracy. Classifiers such as linear discrimi-
nant, logistic regression, support vector machine, k-nearest
neighbour, ensemble and artificial neural networks are
experimented. In all of the experimental conditions, decom-
position level 6 achieved maximum classification accuracy.
After setting the j value to 6, the Q value is changed from
1 to 10, and the Katz and Higuchi features are computed
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Figure 5: Classification accuracy for different decomposition levels for EEG signals under (a) eyes-closed state (b) eyes-open state.
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for each of the 6 + 1 (7) subbands including one low pass
subband are considered. The total number of samples exam-
ined in this study is 6400, with 25 second EEG data sets col-
lected. The classification accuracy of each classifier for the
EEG signals under the eyes-open state and eyes-closed state
are demonstrated in Figure 4.

On observing the classification accuracies of different
classifiers, the ANN classifier has exhibited the highest
classification accuracy among all the classifiers in both
eyes-closed and eyes-open states EEG analysis. Because the
ANN classifier outperformed all other classifiers in terms
of classification accuracy, only the ANN classifier is used
for further investigation. The results are analysed under
eyes-open state and eyes-closed for both ADHD and normal
subjects. The potential features extracted from all the 15
decomposed levels of EEG signal under eyes-closed and
eyes-open states. Figure 5 demonstrates the classification
accuracy of both feature extraction methods under eyes-
closed and eyes-open states, respectively, for different
decomposition levels. It is evident that the potential features
extracted from the Katz have maximum classification accu-
racy in a greater number of decomposition levels than the
Higuchi under eyes-closed state. In the meantime, the
Higuchi fractional dimension could provide more features
that can reflect ADHD in more decomposition levels
under the eyes-open state.

In order to determine the best Q and j values, a series
of experiments are carried out. While keeping the quality
factor Q = 1 and redundancy factor r = 3 as constants
and extracting the unique features from Katz and Higuchi
fractal dimensions for all the 15 decomposition levels, it
exhibits that the classification accuracy reaches its maxi-
mum significant in the 6th level in both the feature extrac-
tion methods under eyes-closed and eyes-open states.
After choosing j = 6 as the decomposition level, the quality
factor is changed from 1 to 10, and the characteristics
extracted from all 7 subbands (j + 1) for each value of Q
are compared. Unique features extracted using Higuchi
fractal dimension and Katz’s fractal dimension techniques
are distinct for ADHD and normal subjects EEG signals.
An artificial neural network classifier with a 10-fold
cross-validation method is used to validate the classified
results. The classification accuracy at different Q values
while keeping the decomposition levels 6 as constant is
shown in Table 1(b).

The feature extraction techniques used are Katz and
Higuchi for both eyes-closed and eyes-open condition. For
each technique, 112 features are extracted and given to the
ANN classifier. The classification accuracy obtained are
shown in the Tables 1–3 for different levels 3, 6, and 8 with
Q-factor varying from 1 to 10. Among these, level 6 is giving
the best accuracy. The features extracted through Katz frac-
tional dimension have a higher potential to discriminate the
ADHD and normal subjects under an eyes-closed state. The
EEG signals with eyes-closed states are more significant with
higher classification accuracy than the eyes-open state in
ADHD diagnosis using Katz fractional dimension estima-
tion method. The classification accuracy became maximum
at the decomposition level 6 consistently at Q = 1 for both

feature extraction methods indicating that the filter banks
are perfectly tuned to the optimal classification accuracy at
the 6th decomposition level.

Table 1: (a) Classification accuracy for different Q values for a
fixed decomposition level j = 3, (b) Classification accuracy for
different Q values for a fixed decomposition level j = 6, (c)
Classification accuracy for different Q values for a fixed
decomposition level j = 8

(a)

Level = 3 Eyes-closed Eyes-open
Q Katz Higuchi Katz Higuchi

1 99.17 91.67 99.00 99.00

2 98.75 95.92 87.42 98.75

3 95.92 93.17 91.67 91.67

4 95.92 69.33 84.08 87.42

5 99.17 70.00 88.17 95.92

6 99.17 82.50 84.08 99.17

7 99.17 84.08 91.67 99.17

8 99.17 88.83 84.08 95.92

9 99.17 87.42 88.17 98.75

10 99.17 88.17 98.75 95.92

(b)

Level = 6 Eyes-closed Eyes-open
Q Katz Higuchi Katz Higuchi

1 100.00 94.25 100.00 100.00

2 99.17 98.75 88.17 99.00

3 98.17 95.92 92.92 92.67

4 98.17 70.00 87.83 89.00

5 100.00 69.33 91.67 97.17

6 100.00 84.08 86.50 100.00

7 100.00 82.50 93.17 100.00

8 100.00 87.42 86.58 97.17

9 100.00 88.83 92.00 99.17

10 100.00 78.25 93.83 97.75

(c)

Level = 8 Eyes-closed Eyes-open
Q Katz Higuchi Katz Higuchi

1 99.17 91.67 99.17 99.17

2 98.75 95.92 84.08 98.75

3 98.75 91.67 90.67 90.17

4 98.75 69.33 86.50 88.17

5 99.00 68.17 90.17 95.92

6 99.00 82.50 86.50 99.17

7 99.00 84.50 91.67 99.17

8 99.00 86.50 86.50 98.75

9 99.00 84.08 89.67 98.75

10 99.00 69.33 91.67 95.92
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3.1. Performance Metrics. The classifier’s performance was
measured using accuracy, sensitivity, specificity, negative
predictive value (NPV) and positive predictive value
(PPV), F1-score, G-mean, and Matthew’s correlation coeffi-
cient (MCC). The mathematical background of each perfor-
mance metric is given as follows:

The percentage of true positives (TP) and true negatives
(TN) over the total number of true positive (TP), true nega-
tive (TN), false positive (FP), and false negative (FN) indi-
viduals was used to calculate the classification performance
for accuracy.

Accuracy %ð Þ = TP + TNð Þ
TP + TN + FP + FNð Þ ∗ 100 ð16Þ

Sensitivity is calculated by dividing the number of true
positive (TP) cases by the number of genuine positive cases,
i.e., the total of true positive (TP) and false negative (FN)
cases.

Sensitivity %ð Þ = TP
TP + FNð Þ ∗ 100 ð17Þ

Specificity refers to the number of true negative (TN)
cases found among all actual negative cases, i.e., the total
of true negative and false positive (FP) cases.

Specificity %ð Þ = TN
TN + FPð Þ ∗ 100 ð18Þ

The ratio of true positives to the number of positive
brain maps is known as the positive predictive value (PPV).

Positive Predictive Value %ð Þ = TP
TP + FPð Þ ∗ 100 ð19Þ

The ratio of true negative to the number of negative
brain maps defines the negative predictive value (NPV).

Negative Predictive Value %ð Þ = TN
TN + FNð Þ ∗ 100 ð20Þ

Table 2: Performance metrics for Katz and Higuchi feature extraction methods (a) eyes-closed state (b) eyes-open state.

(a)

Level = 6 Accuracy Sensitivity NPV MCC F1-score G-mean
Q Katz Higuchi Katz Higuchi Katz Higuchi Katz Higuchi Katz Higuchi Katz Higuchi

1 100 94.25 100 89.17 100 91.3 100 90.16 100 93.33 100 93.95

2 99.2 98.75 98.33 97.5 98.75 98.3 98.54 97.89 99 98.33 99.08 98.54

3 98.2 95.92 95.83 91.67 97.5 94.2 96.6 92.82 97.33 94.67 97.62 95.24

4 98.2 70 95.83 66.67 97.5 65 96.6 41.37 97.33 69.52 97.62 65.13

5 100 69.33 100 58.33 100 66.7 100 43.46 100 65.17 100 67.23

6 100 84.08 100 76.67 100 80.4 100 70.52 100 82 100 83.39

7 100 82.5 100 75.83 100 80.4 100 67.56 100 80.17 100 81.7

8 100 87.42 100 80.83 100 84.6 100 76.4 100 85.67 100 86.75

9 100 88.83 100 86.67 100 90.8 100 78.97 100 87.24 100 87.16

10 100 78.25 100 73.33 100 77.1 100 58.79 100 76.5 100 76.99

(b)

Level = 6 Accuracy Sensitivity NPV MCC F1-score G-mean
Q Katz Higuchi Katz Higuchi Katz Higuchi Katz Higuchi Katz Higuchi Katz Higuchi

1 100 100 100 100 100 100 100 100 100 100 100 100

2 88.2 99 76.67 97.5 83.33 98.75 79.8 98.06 85 98.33 86.63 98.54

3 92.9 92.67 87.5 89.17 89.58 92.92 88.46 87.1 91.83 91 92.75 91.39

4 87.8 89 75.83 82.5 83 87.17 79.12 81 84.17 86.79 85.98 87.44

5 91.7 97.17 84.17 95.83 88.33 97.5 86.08 94.66 89.5 96.62 90.74 96.15

6 86.5 100 72.5 100 80.83 100 76.34 100 82.33 100 84.24 100

7 93.2 100 86.67 100 90.42 100 88.37 100 91.17 100 92.21 100

8 86.6 97.17 73.33 100 81.33 100 77 95.2 82.5 97.29 84.51 97.25

9 92 99.17 84.17 100 88.33 100 86.11 98.54 90 99.29 91.02 99.08

10 93.8 97.75 88.33 100 90.83 100 89.51 96.22 92.67 98 93.4 97.62
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Figure 6: Performance analysis of Katz fractional dimension with different decomposition levels (a) eyes-closed state (b) eyes-open states.
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Figure 7: Performance analysis of Higuchi fractional dimension with different decomposition levels (a) eyes-closed state (b) eyes-open
states.
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The harmonic and geometric measurements of sensitiv-
ity and specificity are the F1-score and G-mean, respectively.

F1 − Score %ð Þ = 2 ∗ Sensiitivity ∗ PPVð Þ
Sensiitivity + PPVð Þ ∗ 100 ð21Þ

Gmean %ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity ∗ Specificity

p
∗ 100 ð22Þ

Matthew’s correlation coefficient is a balanced metric
that determines both true and false positives and negatives,
even if the classes are of different sizes [55]. To determine
a result, the MCC takes into account the test’s true positives
(TP), true negatives (TN), false positives (FP), and false neg-
atives (FN), and a significant prediction is one. Matthew’s
correlation coefficient (MCC) is calculated as:

MCC = TP ∗ TNð Þ − FP ∗ FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP + FPð Þ TP + FNð Þ TN + FNð Þp ∗ 100 ð23Þ

The classification process for ADHD and normal
subjects under eyes-closed and eyes-open conditions with
different decomposition levels j varying from 1 to 15 is per-
formed. The above performance metrics are evaluated and
plotted against the decomposition levels which is shown in
Figures 6 and 7. While comparing the performances in the
Katz fractional dimension method, the eyes-closed state
shown in Figure 6(a) reflects that the classification accuracy,
sensitivity, and all other performance matrices are consis-
tently stable at 100% in the lower decomposition level up
to level 6 and the variation observed in higher levels of
decomposition. This indicates that significant features are
extracted in the eyes-closed state and it has a higher ability
of discrimination at lower decomposition levels. In the
meantime, the EEG signals with eyes-open states shown in
Figure 6(b) indicate that the performance metrices has a
lesser value at lower decomposition levels, and improve at
higher decomposition levels. It reflects that the potential fea-
tures to discriminate the ADHD are more significant and the
ability of the classifier is increased in higher decomposition
levels.

Table 2 presents the statistical details of different perfor-
mance matrices while keeping the decomposition level 6 as
constant and varying the tuning factor Q. The filter banks
are tuned for its best performance at decomposition level
6, and observed that the Katz feature extraction method
showed higher significance in classifying the ADHD under
eyes-closed state with higher classification accuracy and sen-
sitivity. Meanwhile, the Higuchi feature extraction method
showed higher performance with higher classification accu-
racy and sensitivity under eyes-open state.

The classification accuracy of the proposed work is
compared with the similar works of various authors and
observed an improvement in performance. Table 3 shows
the performance comparison specifically in terms of classifi-
cation accuracy. The proposed methodology exhibits the
maximum performance with 100% classification accuracy.

It is clear, classify, and diagnose attention deficit hyper-
active disorder from the EEG signals has been used many

techniques and applications such as ANN, Fog computing,
Internet of Medical Thing, and other methods [69–74].

The merit of the proposed methodology is that it has
given the highest classification accuracy and this is a robust
system as it is validated with 10 fold cross-validation for dif-
ferent classifiers. The limitation of the present work is that it
needs preprocessed artifact-free EEG signals, that add an
additional signal processing stage to the implementation of
the proposed method for real-time diagnostic purposes. Also,
the data set shall be extended to fine-tune the system perfor-
mances in analysing the effectiveness of the proposed system.

4. Conclusion

The present work is an effective methodology to classify and
diagnose attention deficit hyperactive disorder from the EEG
signals. The EEG signals of both ADHD and normal subjects
recorded under eyes-closed and eyes-open states are prepro-
cessed and the tunable Q-wavelet transform is applied to
decompose into different subbands. The Katz and Higuchi
fractional dimension feature extraction techniques are
applied to extract the features for the effective classification
of ADHD and normal subjects with the possible maximum
accuracy. The Q-value and the decomposition levels are
optimally tuned to extract the potential features that can
bring out the maximum classification accuracy. Different
classifiers have experimented and the artificial neural net-
work classifier with a 10-fold cross-validation method is
found to be an effective classifier with a maximum classifica-
tion accuracy of 100%. According to the findings, the level of
decomposition and the Q-factor parameter has a significant
impact on feature extraction performance. The classification
accuracy varies dramatically with different Q-factor values,
with decomposition level j of 6 being the most appropriate.
Moreover, the Katz fractional dimension algorithm shows
better results in eyes-closed states and the Higuchi FD algo-
rithm demonstrates better results under eyes-open states.
Different performance metrics are used to measure the effec-
tiveness of the classifier algorithm that has justified the
observed results. The features extracted through Katz and
Higuchi from EEG signal under the eyes-closed state in
lower decomposition levels have higher significance in dis-
criminating ADHD from the normal subjects. Also, the
features extracted from the eyes-open state in higher decom-
position levels have higher significance in estimating ADHD
with higher classification accuracy. With the eyes-closed
EEG signals, the Katz feature extraction method showed
greater significance with higher sensitivity in diagnosing
ADHD. Meanwhile, the Higuchi feature extraction method
showed higher performance with higher sensitivity under
eyes-open state signals. As the proposed system has given
the highest classification accuracy with higher sensitivity,
this shall be used in the clinical diagnosis of ADHD.

Data Availability

The data sets are not publicly available. The data used to
support the findings of this study are available from the
corresponding author upon request.
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