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Quantifying atmospheric aerosols and their linkages to climatic repercussions is necessary to understand the dynamics of climate
forcing and enhance our knowledge of climate change. Because of this reactivity to precipitation, temperature, topography, and
human activity, the atmospheric boundary layer (ABL) is one of the most dynamic atmospheric regions: ABL aerosols have a
big impact on the evolution of climate change’s radiative forcing, human health, food security, and, eventually, the local and
global economy. Continuous monitoring and instrumental and computational approaches are required for the detection and
analysis of ABL pattern behavior. This paper provides a deep learning-based outer layer aerosol detection system based on
Light Detection and Ranging (LiDAR) data fusion. The suggested method applies sequential models to turn low-level data into
compressed features using object-based analysis, feature-level fusion, and autoencoder-based dimensionality reduction.
Convolutional neural networks (CNNs) were used to convert compressed data into high-level properties that could be used to
categorize air particles in the outer layer. This research describes deep learning approaches that allowed for detecting 40%
more atmospheric features at a horizontal resolution of 5 km during daytime operations when applied to LiDAR data.
Compared to existing deep learning algorithms for edges and complicated near-surface sceneries during the day, a
convolutional autoencoder (CAE) trained using LiDAR dataset standard data products showed the potential for improved
aerosol discrimination with 98% accuracy.

1. Introduction

In the Earth’s climate system, air quality and hydrological
cycle with an extent that is mainly dependent upon the
atmospheric properties height, thickness, and type and air

characteristics such as clouds and aerosols play a vital role
[1]. Clouds of liquid water on the surface of Earth tend to
reflect inbound sunlight, cooling the surface of Earth. How-
ever, ice clouds in the upper troposphere absorb and reradi-
ate heat emitted from the surface, warming up the surface of
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the Earth. Aerosol particles include windblown desert dust,
wildfire smoke, sulfurous particles from volcanic eruptions,
and fossil fuel particulate matter [2]. Aerosols cool or warm
the surface, depending on their size, composition, and loca-
tion in the atmosphere [3].

A CNN is a supervised machine learning method used
for the recognition of picture features. Commercial uses of
CNNs include a wide variety of object detection and seman-
ticized issue segmentation [3]. CNNs have also been used to
predict tropical cyclone intensity precisely using satellite
imagery and hailstorm detection in radar images with higher
accuracy than previous techniques. After instantiation of
CNN’s layer architecture, the model is trained with truth
data sets, which develops expertise to predict proper charac-
teristics in the image [4]. While the training of a CNN can
take a long time, the forecasts are rapid compared to older
algorithms or a manual approach. A collection of CNNs
has been built to forecast the positions of clouds and aerosols
in CATS LiDAR data to increase the speed at which LiDAR
data may be distributed and establish feasibility to give real-
life time layer type products [5].

Natural and artificial aerosol emissions can significantly
threaten urban and regional air quality, such as biomass
burning. As a result, it is crucial to understand the optical,
microphysical, and geometrical characteristics of local or
targeted aerosol emissions in the boundary layer. The
LiDAR sensor, which uses a laser as its source, may offer
highly temporal and spatially vertically resolved profiles of
aerosols [6]. As a result, LiDAR remote sensing observations
will aid in the research and characterization of aerosol emis-
sions from source to destination and improve air quality.
This section welcomes submissions on the most recent
results and advancements in LiDAR distant detection of
optical, microphysical, and mathematical spray properties
from airborne-mounted LiDARs, territorial ground-based
LiDAR organizations, global satellite missions, across all
instrument platforms (Raman, high-spectral resolution,
DIAL, and others), fleeting and spatial scales, and from
airborne-moon missions. LiDAR control through a remote
and the identification of anthropogenic aerosols that have
an impact on air quality from industrial, biomass burning,
and agricultural sources, as well as campaigns targeted at
giving a full assessment of climate and health consequences,
are especially encouraged [7]. Man-made aerosol emissions
in cities are linked to their impacts on micrometeorology
and the radiative budget, i.e., their function in heating/cool-
ing the atmospheric column and promoting/suppressing
convection, and are given specific emphasis [8]. We have
used convolutional autoencoder models (CAE) [7] to detect
aerosols from fusion LiDAR dataset [8]. CAE’s ability to
extract the aerosol type is influenced by the optical inputs’
physical substance and uncertainty, as well as the CAE struc-
ture and training technique, notably the size of the data set
employed for this purpose. An aerosol model detailing the
optical characteristics of distinct particles was created to
provide a consistent depiction of the aerosol types. This
model can provide a representative and statistically mean-
ingful synthetic database in order to recreate known aerosol
features. This synthetic data collection is important since few

observational data sets are statistically relevant, well-charac-
terized, and representative of the whole range of aerosol spe-
cies. Normalization is a common practice in data
preparation for machine learning. You must normalize your
data to a standard scale without distorting the range of num-
bers or surrendering any information if you want it to be
consistent [9]. The aerosol model was constructed in order
to train the CAE by simulating a large number of LiDAR
observations (i.e., a synthetic data set) [10]. The most likely
aerosol type inside the detected layers is the output data
from generative adversarial neural networks (GANs) [10].

Deep learning techniques consist of deep layers where
feature extraction and classification are not separately per-
formed. Deep learning is a subclass of machine learning that
processes data and makes patterns for use in decision-
making. The deep learning technique teaches the machine
to perform intelligent tasks. Deep learning contains numer-
ous techniques such as a CNN, CAE, and GAN model [11].
The CNN works automatically for detecting features and
classifying the raw dataset. Deep learning is a more advanced
technique for recognizing hidden features more accurately
and efficiently [12].

The detection of aerosols with manual detection is a
challenging task due to the various properties of the environ-
ment. Hence, an automated and accurate system is required
for aerosol emission detection [13]. The research is aimed at
designing an intelligent aerosol emission detection system
using fusion LiDAR data and applying deep and machine
learning techniques to predict the emissions’ area [14].

The aerosol emissions recognition has been considered
as an essential application for numerous security branches
and health systems. Several researchers have applied hand-
crafted techniques to identify such anomalies in the scene
[15]. Using handcrafted features from linear binary configu-
ration from three orthogonal planes, Gaussian mixture
model, Markov random field, etc. for irregularity recognition
is not acceptable as they solely rely on human assumption.
Hence, the training data is not explained correctly to learn
discriminative features characteristic of aerosols [16]. The
acquired data from remote sensing and satellites are the
key characteristics and contributions of this research. We
used the convolutional autoencoder (CAE) neural network
to process the data, which takes photos and extracts the hid-
den patterns of the input images before reconstructing the
features from the hidden pattern. We then established a
sequential model in the autoencoder model, which allows
us to simply build sequential layers of the network from
input to output. Then, we have applied GAN, which helps
to solve such tasks as pattern recognition from descriptions,
getting high resolution of images from low-resolution ones
and predicting which is the aerosol emission area or not [1].

All of this research [17] have revealed a diverse group of
people. A wide range of aerosols is challenging to categorize
due to many flaws (e.g., many aerosol types have identical
optical characters). Other challenge in the categorization of
aerosols is the difficulty in linking their optical qualities to
their physical properties source [18]. In actuality, atmo-
spheric aerosols are made up of a variety of substances.
There are a lot of sources, and data on pure aerosol kinds
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are scarce. Systematic measurements and intense measure-
ment campaigns employing various aerosol measurement
methods have been carried out to address these difficulties.

Many Earth systems, such as temperature, air quality,
and hydrology, are affected by the atmospheric properties
of clouds and aerosols, and their effects are highly influenced
by their height, thickness, and kind. At ground level, liquid
water clouds tend to reflect incoming sunlight, which helps
chill the surface [18]. Additionally, clouds in the upper tro-
posphere that comprise ice are capable of absorbing heat
from the surface and reemitting it, therefore contributing
to the rise in surface temperature [19]. Dust, smoke, sulfur,
and particles of fossil fuel burning are all examples of aerosol
particles. The ability of aerosols to cool or heat the surface
depends on their size, composition, and position in the
atmosphere [20]. Many types of aerosols, including dark-
colored ones, such as black carbon from fossil fuel combus-
tion, are known to absorb radiation. Table 1 shows the pre-
vious studies’ comparative analysis.

For this reason, the current study presents and contrib-
utes as follows:

(i) The use of LiDAR and orthophotofusion combined
with a deep learning (DL) strategy to detect aerosols

(ii) DL has progressed past multilevel perceptron and
now includes the following

This particular study employs an autoencoder frame-
work and a convolutional neural network (CNN) to accom-
plish feature dimensionality reduction and object
classification of aerosols and no aerosols in LiDAR and
orthoimage data after segmentation.

2. Materials and Methods

An aerosol model was used to investigate the optical charac-
teristics of pure aerosols produced by a single source (e.g.,
dust produced by the deserts and marine particles produced
by the oceans). Continental, continental polluted, dust,
marine, smoke, and volcanic are the six forms of pure aero-
sols addressed in this article. The aerosol model combines
the global aerosol dataset with iterative computations of
each aerosol type’s intensive optical properties, as well as a
numerical technique for T-matrix. The OPAC software
application was used to determine the chemical makeup of
each pure aerosol type (aerosol and cloud optical proper-

ties). To replicate the vast spectrum of particles in the atmo-
sphere, the chemical composition of each aerosol type was
modified within specified boundaries. For sound wave-
lengths of 350, 550, and 1000nm, the aerosol model was uti-
lized to create a synthetic database. These wavelengths were
selected from OPAC’s 61 wavelengths (0.25–40m) for which
GADS possesses microphysical aerosol parameters. After
that, the wavelengths are rescaled in angstroms to match
the traditional LiDAR wavelengths (i.e., 355, 532, and
1064 nm). This was deemed to be an acceptable assumption
for all aerosol types, given the minimal difference between
the LiDAR and model wavelengths. The aerosol model can
be expanded to cover more wavelengths if necessary.

Every type of pure aerosol is made up of an internal
combination of fundamental components in variable mix
ratios that do not interact physically or chemically. Water-
soluble, insoluble, soot, mineral, sulfate, and sea salt are all
collected by OPAC (accumulation, coarse). The microphys-
ical properties of each component are stored in the GADS
database. Smoke and continentally contaminated kinds,
however, cannot attain values above 1.2 for angstrom (550
to 350nm) with the present GADS soot refractive index
values.

Figure 1 depicts the workflow of the suggested technique
combining a convolutional autoencoder, a sequential algo-
rithm, and a GAN. The following are the details of the block
diagram.

2.1. Data Acquisition of UAV LiDAR Datasets. The input
photos are from the remote sensing LiDAR data of the aero-
sol emission dataset, 128 × 128 × 3 input form. The convolu-
tional autoencoder uses this image as an input (CAE). To
recover the hidden patterns, CAE separates the input image
into convolutional and pooling layers. It will then be sup-
plied into the deconvolutional and unspooling layers, which
will reconstruct the features of the hidden pattern. We used
a sequential approach, which made it simple to build subse-
quent network layers in the order of input to output. Then,
we employed a GAN to tackle problems like picture genera-
tion from descriptions or features, converting low-resolution
image frames to high-resolution image frames, detecting
which emission activity is active or not, and recovering
image frames containing a given pattern.

One of the most well-known datasets in the field of aero-
sol detection is the LiDAR fusion dataset. It contains data
from an aerial view, LiDAR, and other sensors attached to

Table 1: Comparative analysis of previous studies conducted on LiDAR.

Ref Technique Source of data Outcome Accuracy

Xiu et al. [1] Semantic segmentation LiDAR dataset The entire waveform of LiDAR 89%

Zhang et al. [2] Computer vision techniques Land SAT8 data Retrieval of Forest aboveground biomass 90.3%

Melotti and Premebida [5] Multimodal deep learning
Self-created
dataset

Object recognition combining camera 93%

Zhang et al. [7] Multisource data fusion LiDAR dataset Data fusion 88%

Wahid et al. [6]
Object exploration vision

techniques
Self-created
dataset

Distributed soft actor critics 86.45%
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the top of a drone that flies through various environments
and scenarios.

This collection contains LiDAR frames that have been
converted to 2D depth images. These 2D depth images show
the same scene as the corresponding LiDAR frame but are
more user-friendly.

The 360 LiDAR frames, like those in the dataset, are
arranged in a cylinder around the sensor. The 2D depth
images in this dataset might be represented as if the cylinder
of the LiDAR frame had been split in half and straightened

into a 2D plane. The distance of the reflecting item from
the LiDAR sensor is represented by the pixels in these 2D
depth photographs. The number of laser beams utilized to
scan the surroundings is represented by the vertical resolu-
tion of the 2D depth image (64 in our case). These 2D depth
images could be utilized for segmentation, detection, recog-
nition, and other tasks, drawing on a large body of computer
vision literature on 2D images. We have compared our
model with a hybrid model of GAN and autoencoder to
compare the performances.

LiDAR Input image Orthophoto

Multilevel
segmentation

Features extraction

Textures Geometry RGB

Fusion and feature
abstraction

Convolutional neural
networks Auto encoders

GAN model

High level features

Dense layer with sigmoid
classification of data

Performance
evaluation

Sequential model

Shape Pattern

Figure 1: Proposed methodology.
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2.2. Model Training. The proposed technique defined the
rule when emissions occurred. We trained the model, which
contains spatial feature descriptors. The image description
explains the visual feature of each frame. Each frame has

its characteristics such as shape, color, andtexture. This
description provides a feature vector. The convolutional
autoencoder model is adequately trained with blocks of
pixels that contain only standard segments. The frames’

2 × 64 × 64 × 64

8 × 32 × 32 × 64

8 × 32 × 32 × 64

Max pooling 2
2 × 64 × 64 × 64

Max pooling 3
2 × 64 × 64 × 64

Fully connected 1
8 × 64 × 64 × 32

Fully connected 2
16 × 128 × 128 × 32

Convolution 4
16 × 128 × 128 × 3

Activation
16 × 128 × 128 × 3

Output
16 × 128 × 128 × 3

Convolution 3
2 × 64 × 64 × 64

Max pooling 1
8 × 32 × 32 × 48

Max pooling 3D
from encoder

Convolution 2
8 × 32 × 32 × 64

ReLU 2

ReLU 1
8 × 64 × 64 × 48

8 × 64 × 64 × 48

Convolution 1
8 × 64 × 64 × 48

Input image
8 × 64 × 64 × 48

2 × 64 × 64 × 64

ReLU 3
2 × 64 × 64 × 64

8 × 64 × 64 × 32

ReLU 4
8 × 64 × 64 × 32

Figure 2: Generative adversarial network (GAN).
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input and output volume mistakes are reduced. The model is
trained correctly on the regular images, and then the model
shows the low reconstruction error. Each testing input image
produces a reconstruction error. The reconstruction error
depends upon custom loss. We set the threshold on the
value. If the value crossed a threshold limit, it shows an aero-
sol emission and represents a regular event below the thresh-
old limit. Thus, the system will be able to recognize the rare
events that occur in the images.

2.3. Model Parameters. The training model is used for reduc-
ing the reconstruction error of the input volume. The pro-
posed Model used an Adam optimizer, and the learning
rate automatically depends upon the updated history of the
model’s weight. The minimum patch size is 64. Every train-
ing image size is trained for a maximum of 50 epochs, or
until the aerosol layers are lost and the 10 consecutive
epochs are reduced. The spatial autoencoder activation goal
is chosen to be the hyperbolic curve. Despite its regulariza-
tion capacity, we did not use the rectified linear unit (ReLU)
to guarantee the regularity of the encoding and decoding
functions because triggered values from ReLU have no upper
bound.

2.4. Convolutional Autoencoder Model. An autoencoder is an
encoder-decoder system that reconstructs the input as the
output. We achieved autoencoder by two subsystems: the
encoder converts the input image frame into a feature vector
for internal representation [6]. The decoder, on the other
hand, translates the internal representation back to the orig-
inal reconstructed image. Autoencoder provides a recon-
struction error [19]. The minimum reconstruction error
means a slight difference between the input and the recon-
structed image frames [20].

2.5. Sequential Model. The sequential model was used, which
makes it simple to stack sequential network layers from
input to output. Figure 2 shows generative adversarial net-
work (GAN).

2.6. Generative Adversarial Network Model. GAN is a gener-
ative modelling method based on the CNN method. In
machine learning, generative modeling is an unsupervised
learning problem [21]. It comprises pitting two neural net-
works against each other to automatically find and learn reg-
ularities or patterns in incoming data. Adversarial
competition consists of two parts: generator: replicate
authentic data in order to create fictitious data and discrim-
inator: detecting the generator by distinguishing between
accurate and fictitious data [12].

As a result, we used GAN to perform tasks such as image
generation from descriptions or features, obtaining high res-
olution image frames from low resolution ones, predicting
which emission activity is active and which is not and
retrieving image frames containing a given pattern.
Figure 3 shows classification using the generative adversarial
model.

2.7. Model Description. As shown in Figure 1, the UAV fused
LiDAR dataset utilized in this investigation was collected

above the Universiti Sains Malaysia campus on February 3,
2018, at midday. A Canon PowerShot SX230 HS (5mm)
camera was used to collect data from a UAV flying at a
height of 353 meters (5mm). The photographs were created
using three channels (RGB) with a ground resolution of
around 9.95 cm/pixel, a resolution of 4000 3000-pixels, and
an 8-bit radiometric resolution. An orthomosaic snapshot
of the collected image series was produced with an average
root mean square errors (RMSE) of 0.192894m. (1.08795
pix). The DSM was also created with Agisoft PhotoScan Pro-
fessional. The chosen subset spans a total area of 1.68 km2.
The DSM’s resolution was 79.6 cm/pixel, while Agisoft’s
point clouds had a point density of about 1.58 points/m2.
Figure 1 depicts the operational flow of the suggested tech-
nique using a convolutional autoencoder, a sequential algo-
rithm, and a generative adversarial network (GAN). The
following are the details of the block diagram:

The input photos come from the UAV aerosol real-
world aerosol collection and have a 128x128x3 input shape.
The convolutional aAutoencoder uses this image as an input
(CAE). CAE extracts latent patterns from input pictures
using convolutional and pooling layers (128x128x3). It will
then be fed into the deconvolutional and max-pooling
layers, which will recreate the hidden pattern’s characteris-
tics. We used the sequential model, which allows us to stack
sequential network layers from input to output effortlessly.
Then, we used GAN to help with tasks like picture genera-
tion from descriptions or features, obtaining high resolution
image frames from low-resolution ones, predicting whether
aberrant activity is there or not, and retrieving image frames
containing a given pattern.

Feature descriptors output feature descriptors/feature
vectors from an input image frame. Feature descriptors are
a set of integers that encode useful information. To validate
the results, the UAV data was divided into two categories:
testing (20%) and training (80%). Convolutional autoenco-
der and GAN model are two deep learning algorithms. The
purpose of each model is to generate reconstructed images
in a hybrid way by using an output layer from previous
models. The sequential model has been used in CAE for
sequencing the stack layers.

2.8. Raw Image Data Processing. The UAV aerosol dataset is
used for testing and evaluation of the offered method. The
aerosol dataset contains 13 different real-world anomalies.
The real-world anomalies are abused, arrest, assault, and
explosion, etc. We know that images are combinations of
frames; so, we have converted the images into frames for
preprocessing and feature extraction. The converted image
frames in the form of JPEG and applied image resizing are
as follows: the image resizing is essential because the dimen-
sion of each image’s frame is not the same. The resized
images are fed into the temporal volumes.

2.9. Model Training. The proposed technique defined the
rule when abnormal events occurred. The maximum regular
frames are different as compared to the abnormally frames.
We trained the model, which contains spatial feature
descriptors. The image description explains the visual feature
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of each image’s frame. Each frame has its characteristics such
as shape, color, texture, and motion. This description provides
a feature vector. The convolutional autoencoder model is ade-
quately trained with images blocks contains only regular seg-
ments. The error between the input and output volume of
the frames is reduced. The model is trained correctly on the
standard image’s frames, and then the model shows the low
reconstruction error. Each testing input images volume pro-
duces a reconstruction error. The reconstruction error
depends upon custom loss. We set the threshold on the value.
If the value crossed a threshold limit, it shows an abnormal
event, and below the threshold limit, it represents a typical
event. Thus, the systemwill be able to recognize the rare events
that occur in the images. In the following Table 2, we have
shown the features that are extracted in the model.

One can find a wide variety of information about surface
elements like topography, texture, and shape by studying
them on images and LiDAR surveys. Using a lot of different
characteristics might lead to overfitting, and that it is espe-
cially true when the training set is quite small. The other
downsides of using several characteristics are that they
increase the level of noise, the volume of redundant informa-
tion, and the time it takes to compute. To deal with the prob-
lem of high-dimensional feature space, an autoencoder-based
technique is proposed that reduces feature space dimensional-
ity and improves low-level features by translating them into
fewer features (i.e., reduced low-level features). The redesigned
features will most likely be more informative than the initial
raw features, assisting the full detection model creation pro-

cess. CNNmodels were built to identify key architectural attri-
butes, which were then processed using a series of convolution
and pooling procedures to convert low-level characteristics
into high-level ones. This section discusses the process after
using autoencoders and CNN models to abstract low-level
properties.

2.10. Model Parameters. The training model is used for
reducing the reconstruction error of the input volume. The
proposed model used an Adam optimizer; the learning rate
automatically depends upon the updated history of the
model’s weight. The minimum patch size is 64. Depending
on the aerosol layers, each training image size is trained for
a maximum of 50 epochs. Following the loss of authentica-
tion data, the 10 consecutive epochs are no longer reduced.
The spatial autoencoder activation goal is chosen to be the
hyperbolic curve. Despite its regularization capacity, we did
not use the rectified linear unit (ReLU) to guarantee the reg-
ularity of the encoding and decoding functions because trig-
gered values from ReLU have no upper bound. An
autoencoder is an encoder-decoder system that reconstructs
the input as the output. We achieved autoencoder by two
subsystems: the encoder converts the input image frame into
a feature vector for internal representation.

The decoder, on the other hand, uses the internal repre-
sentation to translate it back to the reconstructed images.
Autoencoder provides a reconstruction error. The minimum
reconstruction error means a slight difference between the
input images frame and the reconstructed image frame.

Generated image Prediction: real (1) or generated (0)

Dense (1,)
Dropout (0.4)

Generator network Discriminator network

Input image

Conv2D (3, 5 × 5)

Leaky ReLU
Batch normalization
Conv2D (128, 5 × 5)

Leaky ReLU

Leaky ReLU

Batch normalization
Conv2D (128, 4 × 4, 2)

Batch normalization
Conv2D (128, 4 × 4, 2)

Leaky ReLU
Batch normalization

Conv2D (128, 4 × 4, 2)

Leaky ReLU

Leaky ReLU

Leaky ReLU

Leaky ReLU

Batch normalization

Batch normalization

Batch normalization
Dense (32768)

Noise vector (100,)

Batch normalization

Conv2D (128, 5 × 5)

Conv2D (128, 5 × 5)

Conv2D (128, 3 × 3,)

Conv2D transpose (128, 4, 2 × 2)

Figure 3: Classification using the generative adversarial model.
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2.11. Sequential Model. The sequential model was employed
in Figure 4, which allows us to easily stack sequential net-
work layers from input to output.

2.12. Generative Adversarial Network (GAN). GAN is a gen-
erative modeling method based on the CNN method. In
machine learning, generative modeling is an unsupervised
learning problem. It comprises pitting two neural networks
against each other to find and learn regularities or patterns
in incoming data. As a result, we used a generative adversar-
ial network (GAN) to solve tasks like image generation from
descriptions or features, obtaining high resolution image
frames from low-resolution ones, predicting whether abnor-
mal activity is abnormal or not, and retrieving image frames
that contain a given pattern.

3. Results and Discussion

The neural complexity addresses the lesser limits of neural
resources (neuronal counts) a network needs to do a specific
task within a certain tolerance. Lower limits on the informa-
tion required for the intended input-output function are
measured by the complexity of the information (i.e., number
of examples). This study suggests a superresolution convolu-
tional neural network (CNN) with a minimal level of com-
plexity (SR). The computational complexity of the
suggested strategy is 71.37 percent lower in CPU, TPU,
and GPU than the very-deep SR (VDSR) technique, with a
peak signal-to-noise ratio loss of 0.49 dB.

Autoencoder, a generative model, was used in the pro-
posed model. Image samples are used to train the autoenco-
der, and testing images are used to predict the aerosol. An
encoder and a decoder make up the autoencoder. For the
reconstructed pictures, the trained model’s loss function is

calculated. At the feature extraction stage, as shown in
Figure 5, A total of 21 features, including spectral, form, tex-
tural, and LiDAR-based attributes, were retrieved to recog-
nize aerosol layers objects in LiDAR and orthophoto data.
Spectral features were used to evaluate the mean pixel values
in the orthophoto bands. Shape attributes are the geometric
information of meaningful things that is determined from
the pixels that make up these objects. To make sure that
these features are used effectively, the map must be seg-
mented accurately. Haralick texture characteristics were also
used to construct texture features based on the grey-level co-
occurrence matrix (GLCM) or the grey-level difference vec-
tor. Alternatively, the topography and height of objects were
described using LiDAR-based characteristics. The identifica-
tion and description of aerosol layers are critical elements in
the reconstruction of aerosol layers objects. The preceding
alluded to a method for distinguishing aerosol layers items
among various objects [20]. The last, on the other hand, is
concerned with defining the mathematical limit of aerosol
layer objects so that their computation and concentration
information can be displayed as attributes connected with
the objects in a geographic information framework (GIS).
From one perspective, orthophoto has a critical spatial objec-
tive limit and exhibits solid reflectance around the limits of
aerosol layers. In any event, the uncanny similarity of distinct
ground objects complicates orthophoto extraction of aerosol
layers. However, because of the relatively tiny footprint size
of the laser bar and unfavorable backscattering from lighted
targets, collecting aerosol layers edges with tallness discontinu-
ities is difficult in LiDAR [20]. The use of orthophoto and
LiDAR together can increase the precision of aerosol layer
detection and description measurements in this way.

Information combination is the process of using or com-
bining data from multiple sources to frame a new dataset

Table 2: Features extraction from dataset.

Data Feature GLCM Description

Orthophoto Spectral
Angular
Contrast

Correlation

∑
N−1

i,j=0
P2ij

∑
N−1

i,j=0
Pij i − jð Þ

∑
N−1

i,j=0
Pij i − uð Þ − j − uð Þð Þ

Orthophoto Texture
Entropy

Homogeneity
Mean

∑
N−1

i, j=0
P ln ijð Þ

∑
N−1

i, j=0
P

j
1 + Pijð Þ

ϥi ∑
N−1

i,j=0
f ið ÞPij ið Þ = ϥj ∑

N−1

i,j=0
f jð ÞPij jð Þ

LiDAR Shape

Area Area of segments

Compactness Compactness of polygon

Density Density of holes

LiDAR LiDAR

DEM Digital elevation model

DSM Digital surface model

nDSM Object high (DEM-DSM)
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and achieve a certain aim. [21]. Pixel, highlight, and choice
combinations are the three layers of combination that can
combine information from numerous sources. Because aero-
sol layer identification and description using object-based

inquiry are more basic and proficient, the current research
receives the component level. Low-level highlights for aero-
sol layer detection are framed using orthophoto highlights
(e.g., phantom and textural highlights) and LiDAR

2 × 64 × 64 × 64

8 × 32 × 32 × 64

8 × 32 × 32 × 64

Max pooling 2
2 × 64 × 64 × 64

Max pooling 3
2 × 64 × 64 × 64

Fully connected 1
8 × 64 × 64 × 32

Fully connected 2
16 × 128 × 128 × 32

Convolution 4
16 × 128 × 128 × 3

Activation
16 × 128 × 128 × 3

Output
16 × 128 × 128 × 3

Convolution 3
2 × 64 × 64 × 64

Max pooling 1
8 × 32 × 32 × 48

Max pooling 3D
from encoder

Convolution 2
8 × 32 × 32 × 64

ReLU 2

ReLU 1
8 × 64 × 64 × 48

8 × 64 × 64 × 48

Convolution 1
8 × 64 × 64 × 48

Input image
8 × 64 × 64 × 48

2 × 64 × 64 × 64

ReLU 3
2 × 64 × 64 × 64

8 × 64 × 64 × 32

ReLU 4
8 × 64 × 64 × 32

Figure 4: Sequential model.
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highlights (e.g., DSM, DEM, nDSM, and spatial highlights)
(Table 1).

Many of the features associated with ghastly, textural,
geological, and shape collections can be separated from
orthophoto and LiDAR data. Overfitting can occur when
several highlights are used, especially when the training tests
are minimal. Commotion, extra information, and more
computer time are some of the drawbacks of employing a
large number of highlights. The current study uses an
autoencoder-based technology to minimize space dimen-
sionality and improve low-level highlights by reducing them
into fewer highlights (i.e., diminished low-level highlights).
The new highlights should be more informative than the
old ones, and they should improve the overall system work
process for recognizing aerosol layers. A CNN model is also
evolved by executing several convolution and pooling
actions to choose the right highlights for identifying aerosol
layers and to turn lowered low-level highlights into signifi-
cant level highlights. The autoencoder and CNN models
are used to decrease (or abstract) low-level highlights in
the next sections.

The model has been properly trained when the recon-
struction error is modest. The model was not sufficiently
trained if the inaccuracy was significant. Testing photos are
used to evaluate the model after it has been trained. All of
the layers in the autoencoder with the dense layer are fully
connected. The information is passed through the bottleneck
layer between the encoder and the decoder. We only use one
frame at a time in a simple autoencoder. Figure depicts the
autoencoder visual layer structure and properties. Each con-
volution layer has a 3 × 3 filter size with 128, 192, and 256
filters. The convolution’s filtering processes are combined
in the max-pooling layer, which is 3 × 3. The image volume
is normalized using the normalization layers. The activation
function is performed using RLU layers. The number of
aerosol frames is detected on the softmax layer using the loss
function. For training, the loss function is utilized. The sig-
moid response value varies between 0.5 and 0.7. Figure 6
shows the structure of the max pooling layer.

Figure 6 shows an autoencoder that uses layers to trans-
late the input image frame into a feature vector for internal
representation (batch normalization, ReLU activation func-
tion, and Conv3D). The internal representation is used by
the decoder. In the third column, it reverts to the original
reconstructed picture frames, and in the second column, it
expresses the shape in vector form.

3.1. Model Sequential. The sequential model is made by
applying a 3D convolutional neural network, varying the
number of filters in convolutional layers. It will make it suit-
able for a basic stack of layers where each layer has accu-
rately one input tensor and one output tensor. It will
create its weights the first time it is called on an input image
since the shape of the weights depends on the shape of the
image frames. Before completing training, a model config-
ures the learning process, which is done via the compile
function. It receives three arguments optimizer, loss func-
tion, and a list of metrics.

An optimizer should be the string identifier or call to an
optimizer function. In the sequential model, the main aim is
to minimize the loss function. It is a string identifier to call a
loss function, e.g., a loss means squared error.

The output of the fully connected layer CNN is a soft-
max, and the sigmoid function is used for combining the
result of each layer in the sequential model that is shown
in Figure 7. For classification, a median filter of size three
is applied to the output conclusion to smooth out variations
in the classification of anomalies.

Figure 7 above shows the creation of a sequential model
by applying a 3D convolutional network, changing the num-
ber of filters in convolutional layers. It will make a suitable
plan for input to output weights of the shape depend upon
the image frame.

3.2. Generative Adversarial Network (GAN). The GAN
model has been used for the reconstruction of the image
with HD resolution. Here, we use the model.
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Figure 6: The structure of the max pooling layer.
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Following are the parameters on which basis we have to
evaluate our work. To validate the suggested technique, per-
formance measures such as accuracy, sensitivity, specificity,
and AUC are determined. The following are the perfor-
mance parameters of the suggested technique:

Specificity =
TN

TN + FPð Þ ,

Accuracy =
TP + TNð Þ

TP + TN + FP + FNð Þ ,

Sensitivity =
TP

TP + FNð Þ

AUC =
Sensitivity + Specificity

2
,

So�max output layer

Fully connected layer 2, 1024 for classification

Fully connected layer 1, 1024 for activation function

3 × 3 Max pooling

3 × 3 Max pooling

3 × 3 Max pooling

3 × 3 Kernel, 512 filter

3 × 3 Kernel, 512 filter

Input layer (128 × 128 × 3)

3 × 3 Kernel, 512 filter

3 × 3 Kernel, 512 filter

3 × 3 Kernel, 512 filter

3 × 3 Kernel, 512 filter

3 × 3 Kernel, 256 filter

3 × 3 Kernel, 256 filter

3 × 3 Kernel, 256 filter

3 × 3 Max pooling

3 × 3 Kernel, 192 filter

3 × 3 Kernel, 192 filter

3 × 3 Kernel, 192 filter

Figure 7: The internal structure of the sequential model.
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Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
,

F1Score =
2 ∗ Recall ∗ Precisionð Þ

Recall + Precisionð Þ : ð1Þ

(i) False-negative (FN): the feature detected result is 0,
and predictive powers are present

(ii) True-negative (TN): the feature detected result is 0,
and predictive power is absent

(iii) False-positive (FP): the feature detected result is 1,
and predictive power is absent

(iv) True-positive (TP): the feature detected result is 1,
and predictive power is present

3.3. Training. In the first step, we have trained our model on
70% data the training loss 0.00186344. Figure 8 shows train-
ing of data.

3.4. Testing. The testing of data on the GAN model has been
carried out at 30% of set. Model accuracy to detect aerosols

Train dice score 0.005849773064255714
Val dice score 0.005922376643866301
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Train jaccard score 0.0029381755739450455
Val jaccard score 0.0029737688601017
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Figure 8: Training of data.
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is almost 98% at 140 epochs while at 60 epochs, it is 97%.
Figure 9 shows model accuracy and loss.

Figure 10 above shows the training and validation accu-
racy and loss of the CAE model in classifying the images of
aerosols from the datasets. The model has shown 98% accu-
racy of training and 98.7% accuracy of validation during
experiments. Figure 11 shows aerosol detection using the
GAN model.

Figure 12 shows aerosol outlier detection using at differ-
ent time spans. While comparing with the GAN model on
the right side at 60 epochs, CAE has shown the accuracy of
98% on training and 99% on testing with the inclusion of

the GAN model. Accuracy curves for training and validation
have no dropout when combining DSM and RGB (left) and
loss of information when using RGB alone (right), both
without dropout. Thus, the parameters were examined and
hypertuned to maximize detection accuracy. According to
the findings of the sensitivity analysis of these parameters,
the best 10-fold crossvalidation accuracy for aerosol detec-
tion was achieved for the area in which the tests were done.
The study concluded that 128 filters delivered an accuracy of
98.76% percent. The poorest results (15.5% accuracy) were
seen when using 64 filters. Adam also delivers an accuracy
of 81.41%, which is much superior to other optimization
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techniques. Conversely, the dense layer has ignored con-
cealed units with no consequence.

In testing, the most accurate (98.76%) results were pro-
duced using 10 or 100 units. The results for the 50- and 3-

unit units were slightly less accurate (81.61 percent). The
application of a smaller number of units in the fully linked
layer is beneficial to the computational performance of the
model; hence, it is considered best to utilize 10.

Table 3: Comparisons of current study with previous studies.

References Techniques Accuracy Outcome

[2] CNN 89% Object recognition

[1] Mark CNN 88% Waveform recognition

[5] Mod CNN 88.5% Biomass land recognition

Our proposed

CAE with GAN 98%

Outlier aerosol recognition

ADAM 81.41%

AdaGrad 23.57%

AdaDelta 38.95%

SGD 78.41%

RMSProp 69.55%
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Figure 12: Aerosol outlier detection using at different time spans.
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We have also compared our technique with state-of-the-
art algorithms, as shown below in Table 3.

4. Conclusions

The researchers employed autoencoders and CNNmodels to
detect aerosols in a LiDAR–orthophoto dataset, resulting in
a DL method. The architecture is designed to generate
objects using multiresolution and spectral difference
segmentations. The identification of 9 distinct features,
including spectral, textural, LiDAR, and orthofusion, was
completed for the detection of aerosols. Next, they were
compressed into 10 features at the feature level, using the
autoencoder model. To categorize the items, they employed
the high-level features generated from the modified com-
pressed features. Building detection using this design has
many advantages, including automated feature selection
and removal of redundant characteristics. Convolutional
neural networks (CNNs) were utilized to convert com-
pressed information into high-level characteristics that could
categorize the outer layer of atmospheric particles. This
research describes deep learning approaches that, when
applied to Lidar data, allowed for detecting 40% more atmo-
spheric features at a horizontal resolution of 15 km during
daytime operations. In comparison to existing deep learning
algorithms for edges and complicated near-surface sceneries
during the day, a convolutional autoencoder (CAE) trained
using LiDAR Dataset standard data products showed the
potential for improved aerosol discrimination. However,
the dataset including height information (the fused ortho-
mosaic photo and DSM) performed better in most discrim-
inative classifications. This study demonstrated CAE’s
capacity to accurately categorize lower-resolution UAV-
fused LiDAR images in comparison to very-high-resolution
aerial shots and also indicated that dataset fusion is promis-
ing. The model has shown 98% accuracy of training and
98.7% accuracy of validation during experiments. While
comparing with the GAN model on the right side at 60
epochs, CAE has shown the accuracy of 98% on training
and 99% on testing with the inclusion of the GAN model.
The sensitivity of CNNs with various fusion methods to
the training dataset, regularization functions, and optimizers
will be the subject of future research.
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