
Retraction
Retracted: Prediction and Optimization of Stability
Parameters of Borehole Sensor for Deep Water Drilling
Based on Genetic Algorithm

Journal of Sensors

Received 17 October 2023; Accepted 17 October 2023; Published 18 October 2023

Copyright © 2023 Journal of Sensors. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article has been retracted by Hindawi following an investi-
gation undertaken by the publisher [1]. This investigation has
uncovered evidence of one ormore of the following indicators of
systematic manipulation of the publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research reported
(3) Discrepancies between the availability of data and the

research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Peer-review manipulation

The presence of these indicators undermines our confidence
in the integrity of the article’s content and we cannot, therefore,
vouch for its reliability. Please note that this notice is intended
solely to alert readers that the content of this article is unreliable.
We have not investigated whether authors were aware of or
involved in the systematic manipulation of the publication
process.

Wiley and Hindawi regrets that the usual quality checks did
not identify these issues before publication and have since put
additional measures in place to safeguard research integrity.

We wish to credit our own Research Integrity and Research
Publishing teams and anonymous and named external
researchers and research integrity experts for contributing to
this investigation.

The corresponding author, as the representative of all
authors, has been given the opportunity to register their agree-
ment or disagreement to this retraction.Wehave kept a recordof
any response received.

References

[1] J. Huang, Q. Xia, R. Cai et al., “Prediction and Optimization of
Stability Parameters of Borehole Sensor for Deep Water Drilling
Based on Genetic Algorithm,” Journal of Sensors, vol. 2022,
Article ID 3779630, 7 pages, 2022.

Hindawi
Journal of Sensors
Volume 2023, Article ID 9820268, 1 page
https://doi.org/10.1155/2023/9820268

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9820268


RE
TR
AC
TE
DResearch Article

Prediction and Optimization of Stability Parameters of Borehole
Sensor for Deep Water Drilling Based on Genetic Algorithm

Jing Huang ,1 Qian Xia ,2 Rao Cai ,2 Kunling Zhou ,2 Zhiquan Ren ,2

Huachi Yan ,3 and Mohammad Asif 4

1Petro China Zhanjiang Branch, Zhanjiang, Guangdong 524057, China
2CNOOC Development Engineering Technology Co., Ltd., Zhanjiang, Guangdong 524057, China
3Xi’an ZhuoZhi Oilfield Technology Service Co., Ltd., Xi’an, Shaanxi 710065, China
4Bakhtar University, Kabul, Afghanistan

Correspondence should be addressed to Mohammad Asif; econbu@bakhtar.edu.af

Received 10 December 2021; Revised 10 March 2022; Accepted 18 April 2022; Published 14 May 2022

Academic Editor: Pradeep Kumar Singh

Copyright © 2022 Jing Huang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to study the prediction and optimization of borehole stability parameters in deepwater drilling based on genetic
algorithm. First, a genetic hybrid algorithm based on pattern search is proposed. Then, based on the adaptive genetic
algorithm, the evolutionary population is searched for patterns, which makes the hybrid algorithm not only has a strong global
search ability but also improves the local optimization accuracy. Finally, the unit footage cost in the drilling process is taken as
the objective function, and the algorithm is verified by taking the drilling in Karamay area as an example. The calculation
results show that if the bit wear reaches 0.8-0.9 and then the bit is pulled out, the utilization rate of the bit can be increased,
the design efficiency and accuracy can be improved, and the drilling cost can be reduced. The wear amount of the optimized
bit is higher than that of the actual bit. Increasing the utilization rate of the bit can reduce the cost of drilling meters to a
certain extent and improve the economic benefits of drilling. The objective function and constraint conditions for the
optimization of drilling parameters are determined, and the algorithm is verified with the drilling data of Karamay Oilfield.
The results show that the algorithm improves the stability and speed of iterative convergence and improves the reliability of
data analysis results. Based on the regional three-dimensional formation rock parameter data volume, the optimization method
can be used to optimize the drilling parameters before drilling and provide a basis for formulating the drilling design scheme.

1. Introduction

Drilling costs are affected and restricted by many factors. The
optimization design of drilling parameters is to establish the
objective function and model of drilling cost according to the
influence law of different parameters on drilling cost and
taking footage cost as the standard to measure the technical
and economic effect and use the optimization method to
select drilling parameters, as shown in Figure 1, so as to make
the drilling process reach the optimal technical and eco-
nomic effect [1]. The traditional method is to correct the
Younger model with an empirical formula, which has good
analytical performance and a high coincidence rate with

the actual drilling situation. In recent years, some scholars
have proposed the ROP model and real-time optimization
objective function of drilling parameters based on the drill-
ability representation, but the application results are not
ideal. This is a nonlinear optimization combination problem.
Currently, the commonly used solving methods mainly
include the classic multivariate function extremum method
and the pattern search method (PSA). The mathematical
derivation and calculation process of function extreme value
method is complex, which requires manual intervention, and
the design process has long cycle and low efficiency. The pat-
tern search method is essentially a natural evolutionary selec-
tion algorithm, which is the basis of genetic algorithms. The
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penalty function method is used to solve the model through
population optimization search, which has great advantages
in solving such nonlinear optimization problems. The com-
bination model of genetic algorithm and pattern search is
used to study the optimization method of drilling parame-
ters. Combined with the strong global search ability of
genetic algorithm and the characteristics of high local opti-
mization accuracy of the pattern search method, the optimal
drilling parameter combination is found. Compared with the
conventional design method of trial calculations and optimi-
zation schemes based on experience, the new method is more
efficient and can directly determine the optimal scheme
under given conditions [2, 3].

The combined model of genetic algorithm and pattern
search and the optimal optimization parameters are studied.
Compared with the conventional design method of empiri-
cal trial calculation and optimization scheme, the new
method is more efficient and can directly determine the opti-
mal scheme under a given condition.

2. Literature Review

Cao et al. used the linear elastic constitutive model and
Mohr-Coulomb strength criterion to analyze the wellbore

stability of the deep-water Medusa oilfield in the Gulf of
Mexico and applied the calculation results to field operations
[4]. Due to the lack of sufficient geological and logging data
for deep-water drilling, it usually results in deviations in the
calculation results of the safe drilling fluid density window.
When studying the wellbore stability of bijupira and salema
oilfield in deep water in Brazil, Zhang and others analyzed
the calculation results by using the method of quantitative
risk assessment. The results show that the prediction accu-
racy of in situ stress and formation strength has the greatest
impact on the calculation results of drilling fluid density
window [5]. Through the analysis of foreign deep-water
wellbore stability research (Figure 2). A deep water drilling
water pipe system and vibration active control system
including a sensor, actuator, signal processing module con-
trol module for monitoring longitudinal and lateral vibra-
tion of the drain water pipe system. Zhang et al. found that
although deep-water formations have their own characteris-
tics compared with land and shallow-water formations, it is
the same in wellbore stability research methods [6]. Zheng
et al. studied the influence of water depth on the fracture
pressure and found that the fracture pressure of the deep-
water wellbore is relatively close to the pressure of the over-
lying strata, but no specific model [7]. Han et al. used the
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Figure 1: Schematic diagram of drilling gravity.
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established model to study the wellbore stability of a deep-
water gas field in the South China Sea. The results show that
the low overburden pressure and low fracture pressure of the
deepwater formation are the main factors affecting the safety
of deepwater drilling. [8]. Mousavi et al. established a special
safe drilling fluid density window calculation model for the
shallow deep water formation in a nearly plastic state. Con-
ventional models can be used to calculate deep strata [9].

3. Optimization Model of Drilling Parameters

The purpose of drilling parameter optimization is to find
the drilling parameter coordination to achieve the best tech-
nical and economic effect in the drilling process. Therefore,
it is necessary to establish the optimal drilling objective
function, which can reflect the influence law of various
parameters on the drilling process and can also measure
the technical and economic effects of drilling. The parame-
ter combination that satisfies the extreme conditions of the
objective function is the optimal drilling parameter combi-
nation [10].

(1) Objective function

There are many functions to measure the overall techni-
cal and economic indicators of the drilling process. More
commonly used and intuitive is to take the drilling unit foot-
age cost as the evaluation index of drilling parameter optimi-
zation. The expression is:

Cpm = Cb + Cr t + ttð Þ
H

: ð1Þ

In the formula, Cr is the drilling rig operating fee, yuan/
h, t is the drilling time, tt is the tripping and single connec-
tion time, h, and H is the drill footage.

Formula (1) analyzes and solves the problem while only
considering the cost of the drill bit and the operating cost of

the drilling rig, without the cost of drilling fluid and drill tool
assembly. The modified F. S. Young mode drilling rate equa-
tion is as follows:

vpc = KCPCH W −Mð Þnλ 1
1 + C2h

, ð2Þ

where vpc is the ROP, m/h, W, M is the weight-on-bit and
threshold weight-on-bit, respectively, kN, n is the speed, r/
min, k is the formation drillability coefficient, CpCH are the
differential pressure influence coefficient and the hydraulic
purification coefficient, respectively, λ is rotation speed index,
C2 is the wear coefficient of the drill bit teeth, and h is the tooth
wear, 0 ≤ h ≤ 1.

Formula (2) can be converted to the relationship
between drill working time and drill footage:

dH = KCPCH W −Mð Þnλ 1
1 + C2h

dt: ð3Þ

The expression of the drill tooth wear equation is:

dh
dt

=
Af a1n + a2n

3� �

Z2 − Z1Wð Þ 1 + C1hð Þ : ð4Þ

In the formula, Af is the formation abrasiveness coeffi-
cient, a1, a2 is the rotational speed influence coefficient, which
is determined by the bit type, Z1, Z2 is the weight-on-bit influ-
ence coefficient, which is related to the diameter of the drill bit,
and C1 is the tooth wear slowdown coefficient [11–13].

3.1. Improved Genetic Function. The sensor genetic algo-
rithm is based on Darwin’s natural selection theory as its
basic idea, a computational model that simulates the pro-
cess of biological genetics and evolution. The basic theoret-
ical idea of genetic algorithm is to randomly generate a
series of solutions to be selected, namely, chromosomes,
to form a population, where each individual represents a
set of solutions, represented by a string structure composed
of a set of genes (gene, chromosome value). Evaluate indi-
viduals through a certain standard, retain good perfor-
mance, eliminate poor performance, and allow each
group of solutions to generate new solution sets through
information crossover or mutation, and then perform eval-
uation and optimization, and repeat until solutions that
meet the requirements of the standard are obtained.
Genetic algorithms include 3 basic operations such as
selection, crossover, and mutation, which are also called
genetic operators. The genetic algorithm has a relatively
strong global search ability and can solve the global opti-
mization problem of the objective function, but the genetic
algorithm has poor precision for local optimization. If a
single-genetic algorithm is used, it is difficult to obtain
the optimal parameter combination. The genetic algorithm
includes three basic operations: selection, crossover, and
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Figure 2: Deep water drilling system control system.
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mutation, which are also called genetic operators. If a
single-genetic algorithm is used, it is difficult to obtain
the optimal parameter combination. The pattern search
method has good local optimization accuracy, and genetic
algorithm has good scalability. Through the mixed use of
these two algorithms, it can learn from each other and
optimize the parameter combination with higher accuracy.

(1) Principle of pattern search method

The pattern search method is a derivative free optimiza-
tion (DFO) method. Generally, the search is performed in a
loop along the coordinate direction set, and it is verified
whether the direction is a descending direction, to obtain
next iteration point.

(2) Improved genetic algorithm model

The pattern searchmethod is a very efficient method with-
out derivative free optimization (DFO) and does not need to
calculate the search direction, while the genetic algorithm
(GA) itself is also a derivative free optimization method used
to solve optimization problems, but also have the strong local
optimization ability of pattern search method, and the hybrid
algorithm is still a DFO method [14–17].

3.2. Optimization of Drilling Parameters Based on Improved
Genetic Algorithm. In view of the drilling parameter opti-
mization problem to be solved, the sensor real number
encoding is selected. The encoding method does not need
to convert the real number value into binary and other
genotype string structure data, but directly performs the
operation of each operator on the phenotype data. Each
chromosome is a real vector [18].

Calculate fitness values for individual chromosomes in
the population, and select excellent individuals to enter the
next generation population according to the selection prob-
ability. The higher the individual fitness value, the greater
the probability of being selected. Choosing the roulette
method for selection operation is a selection strategy based
on the fitness ratio. The probability of an individual i being
selected is:

pi =
Fi

∑N
j=1Fj

: ð5Þ

In the formula, Fi is the fitness value of the individual i and
N is the number of individuals in the population.

(3) Crossover operation

After the selection, the individuals in the new population
are paired, and one or a certain gene segment is cross-
exchanged, so that the excellent genes of the parent can be
retained and inherited to the next generation. Use real num-
bers to encode individuals, and use real number crossover
method for crossover operation, then the crossover opera-

tion method for the k chromosome ak and the l chromosome
al at the position j is:

akj = akj 1 − bð Þ + aljb: ð6Þ

(4) Pattern search optimization

Set an algebraic counter. When the genetic algorithm
completes a fixed number of iterations, it enters the pattern
search process to perform local optimization [19].

The pattern search method is initialized, and the individ-
ual with the largest fitness value obtained by the genetic
algorithm is used as the starting iteration point of the pat-
tern search, which is:

R0 = Xbest: ð7Þ

And set the initial step length to be the half of the differ-
ence between the final optimal individual and the worst indi-
vidual, which is:

δ0 =
Xbest − Xworst

2 : ð8Þ

In the pattern search iteration process, if the step size is
reduced below the convergence tolerance δtol, the search is
terminated, the iteration point at this time Rk is output,
and the chromosome individual encoded is substituted into
the genetic algorithm population to continue the evolution-
ary iteration [20].

4. Simulation Analysis

According to the mathematical model established above, the
improvement measures of the adaptive genetic algorithm are
introduced, and the application package is compiled for a
certain example of a well drilling parameter combination
to complete the optimization design task. The known
parameters of this well section are formation drillability
coefficient K = 213 × 10−3, abrasiveness coefficient Af =
2:28 × 10−3, threshold weight-on-bit Wn = 10KW, speed
index γ = 0:168, weight-on-bit influence coefficient D2 =
6144, D1 = 11443 × 10−5, speed influence coefficient Q1 =
115, Q2 = 6153 × 10−5, drilling rig Operation fee Cr = 225
yuan/h, and the tripping time tt = 5:57 h.

The classical extreme value method, the pattern search
method, and the improved self-adaptive genetic algorithm
are, respectively, applied to solve the problem, and the
obtained drilling parameters are shown in Table 1. From
the data in the table, it can be seen that the parameter values
obtained by the improved AGA algorithm are similar to
those obtained by the commonly used extreme value method
and the pattern search method (PSA), and the final drilling
cost C is slightly lower. Therefore, the application of the
improved AGA algorithm can complete the task of optimiz-
ing the design of drilling parameters. And in terms of work

4 Journal of Sensors
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extreme value method of manual solution, which is auto-
matically completed by the algorithm program [21].

It can be seen from Figure 3 that the evolution time of
the improved AGA is significantly shorter than that of the
pattern search method. At the same time, it can be seen that
its ability to inhibit algorithm fluctuations is stronger, which
is manifested in many ways: the inferior individuals in the
population are eliminated efficiently, the proportion of dom-
inant gene segments in individual gene segments increases
[22], the amplitude of fitness fluctuation decreases rapidly
in the early stage of evolution, and the direction of popula-
tion evolution tends to be the same before and after 50 iter-
ations, while PSA needs to be iterated to about 220 times to
reach this inhibition level. The convergence process of the
two algorithms is shown in Figures 3 and 4, respectively.
The improved AGA method is more stable than the PSA
method. It only takes about 50 iterations to reduce the aver-
age fitness of the population from 500 to 90 for the improved
AGA, while the convergence process of PSA method is rela-
tively slow. Based on the above analysis, it can be seen that
using improved AGA to solve the drilling parameter design
problem has higher stability and solution speed.

Figure 5 is the optimization of drilling parameter combi-
nation by improved genetic algorithm based on pattern
search. It can be seen from Figure 5 that the solution process
of the pattern search algorithm has a large fluctuation range
and the convergence process is relatively slow. After 150
times of iteration, the evolution tends to be the optimal solu-
tion, but there is still a slight fluctuation phenomenon. After
only about 70 times of population evolution, it can be con-
cluded that adopting an improved genetic algorithm based
on pattern search to solve the optimization of drilling
parameter combination can obtain higher stability and solu-
tion convergence speed [23].

4.1. Example Calculation. Take a deep well in Karamay as an
example. The well is in the Permian Upper Wuerhe Forma-
tion from 3864 to 4158m. The lithology is mainly brown,
gray-brown mudstone, and gray sandy conglomerate. The
extreme value of formation drillability has little change and
the coefficient of abrasiveness Af = 2:5 × 10−3. Three cone
bit HJT517GK with a diameter of 215.9mm is designed for
drilling, and it is found that the bit parameters of the bit
are: weight-on-bit influence coefficient z1 = 0:618, z2 = 6:11,
rotational speed influence coefficient a1 = 0:5, a2 = 0:218 ×
10−4, tooth wear slowing factor C1 = 2, bit cost Cb = 25000
yuan/piece, daily drilling fee Cd = 53064 yuan/d, and the
drilling operation fee is Cr = 2211 1 yuan/h.

Three HJT517GK roller cone bits that participated in
the complete drilling of this well section were selected from
the mud logging data. The drilling parameters are shown
in Table 2.

It can be seen from Table 2 that the optimized WOB is
slightly higher than the actual WOB average value. It is rec-
ommended to use high WOB for drilling in this formation.
The optimized speed is not much different from the actual
average drilling speed. The optimized bit wear is greater than
the actual bit wear. If the bit is pulled out when the bit wear
reaches 0.8~0.9, the bit utilization rate can be improved, the
drilling cost can be reduced to a certain extent, and the dril-
ling economic benefit can be improved [24].

Figure 6 shows the calculation result of the safe drilling
fluid density window. The well is a normal pressure system,

Table 1: Optimization results of drilling parameters.

Project CH CP hf /p n/ r ⋅min−1ð Þ W/kN
Classical extremum method 1.0 1.0 1.0 50 355

PSA algorithm 0.8 1.0 0.9 58 351

Improved AGA algorithm 0.9 0.8 1.0 62 340
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Figure 3: The convergence process of the PSA method.
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and the water depth has no effect on the formation pressure.
The pore pressure changes in deep water formations are the
same as land formations. The safety drilling fluid density
window for deep water formations is very narrow, which is

mainly due to the rupture pressure value caused by the low
level of in situ stress. Given the formation pressure is not
affected by the water depth, the minimum horizontal in situ
stress is taken as the leakage pressure, and the density win-
dow between it and the collapse pressure is approximately
0.3 g/cm3, which is prone to drilling fluid leakage. From
the perspective of drilling conditions, the calculated value
of collapse pressure is consistent with the density of the
practical drilling fluid, and the fracture pressure and leakage
pressure are consistent with the measured values, indicating
the rationality of the calculation model [25].

5. Conclusion

This paper takes the optimization combination of drilling
parameters during the drilling process as the research object,
introduces constraints to control the lowest drilling cost, and
establishes a nonlinear optimization mathematical model for
the combination of multiple drilling parameters. In view of
the shortcomings of the general adaptive genetic algorithm,
improvement measures are proposed, and the improved
algorithm is used to solve the model. The optimization sim-
ulation test results show that the drilling parameter optimi-
zation method based on the improved adaptive genetic
algorithm (AGA) can complete the drilling parameter design
task under constrained conditions and can reduce the dril-
ling cost while improving the design efficiency and accuracy.
The comparison between the calculation process and opti-
mization results of the improved AGA method and the
PSA method shows that when the bit wear reaches 0.8-0.9,
the drill bit can be driven out again, which can improve
the bit usage rate, improve the design efficiency and accu-
racy, and also reduce drilling costs. The wear amount of
the optimized bit is higher than that of the actual bit.
Increasing the utilization rate of the bit can reduce the cost
of drilling meters to a certain extent and improve the eco-
nomic benefits of drilling. The improved AGA method has
rapid and stable convergence, small fluctuation of popula-
tion fitness, low frequency, and significantly improved
genetic evolution efficiency. Under certain conditions of
technical equipment, using this parameter optimization
method is an effective way to improve the efficiency of dril-
ling parameter design.

Data Availability

The data used to support the findings of this study are avail-
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