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Person reidentification (re-id) has gained significant progress and aroused great interest in computer vision. However, due to the
effect of weak illumination and poor alignment, person re-id is still a challenging task. Many previous works focus on either
illumination enhancement methods or pose estimation. However, those methods are difficult to apply in real-world scenarios,
which usually contain various interference factors. To improve the performance of re-id, we propose an Illumination-Invariant
and Pose-Aligned Network (IIPA-Net). The illumination change is handled by a retinex decompose network, and the pose
variation problem is solved by a local feature matching method. Based on the multimodal nature of a person, we propose a
part attention module to optimize the global feature. Finally, a data-driven training strategy is proposed to train the proposed
architecture effectively. Experiments show that the proposed framework outperforms other state-of-the-art approaches on both
normal- and low-light datasets.

1. Introduction

Person reidentification (re-id) is aimed at identifying a spe-
cific person (probe query image) from a gallery of candidate
images captured by multiple cameras with overlap or
nonoverlap fields of view. The increasing need for safety
and security, combined with the growing availability of sur-
veillance cameras, makes person reidentification an increas-
ingly explored area [1]. However, it is very challenging since
the interest person images captured by surveillance cameras
usually have significant variations in different viewpoints,
illumination, human pose, and so on [2]. Low resolution,
partial occlusions, and blurring increase the difficulty of per-
son re-id [3].

Since person images are captured by different cameras
under unknown lighting conditions, the appearance of the
same person contains various variants, making the re-id task
extremely difficult. In order to eliminate the effect of illumi-
nation, many methods rely on the statistics of color distribu-
tion and project image to color constant space [4]. However,

the prior information of lighting is unpredictable in real-
world scenarios. An alternative solution is to simulate the
real-world illumination and use data augmentation tech-
niques, which is expensive and needs a lot of labeled data
[5]. Pose misalignment, which is caused by changed view-
point or inaccurate detection boxes, is another interference
of person re-id framework [6]. A straightforward solution
to this pose variation is to apply human pose estimation,
which parses a person image into different semantic parts.
However, pose estimation requires massive labeled data to
train the model [7]. What is more, the re-id accuracy degrades
substantially for inaccurate estimation. Figure 1 shows some
examples of illumination change and pose misalignment.

Convolutional neural networks (CNNs), which have
powerful representation and invariant embedding capabili-
ties, have boosted the performance of person re-id [8].
CNN-based person re-id methods can be divided into two
aspects: discriminative feature representation learning and
deep metric learning [9]. In the first category, majority of the
methods generally concentrate on extracting discriminative
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features, then formulate the person re-id as a classification
problem [10]. In the second category, a robust metric between
positive (the same) and negative (the different) persons is
learned to deal with the matching problem [11]. In this paper,
we focus on extracting discriminative feature representation.
To achieve this aim, we propose a joint CNN framework that
couples global and local feature learning to suppress interfer-
ence, especially illumination and pose variations. Firstly, moti-
vated by deep retinex illumination decomposition [12], we
adopt a lightweight estimation to eliminate the effect of illumi-
nation and enhance the global person feature. Secondly,
inspired by AlignedReID++ [13], which aligns local informa-
tion to learn more discriminative features, we introduce a local
feature matching to align different parts of person image,
which is able to solve the pose variation problem. We find that
the illumination-invariant feature can guide the local feature
matching to align different person image parts. Thirdly, since
the detected person has two significant modes [14], we concat-
enate the low-level feature of CNNs and the two-peak Gauss-
ian map to design an attention mechanism. Consequently, the
proposed IIPA-Net can boost the performance of the re-id in
both normal- and low-light datasets. In summary, the contri-
butions of this paper are threefold:

(i) We build a novel network framework, which con-
tains a retinex decomposition net and a weight-
shared Resnet50 backbone CNN and achieves
illumination-invariant and pose-aligned re-id

(ii) We propose a part attention module to reweight the
CNN output and extract the most informative parts
of a person

(iii) A data-driven training strategy is introduced to
train the network effectively and speed up the train-
ing process

2. Related Work

The main challenges of reidentification are changes in illumi-
nation, viewpoint, and pose across cameras. Many works
focus on extracting the most discriminative visual feature of
a person, including color [14], texture [15], and shape [16].
Kviatkovsky et al. [14] use shape context descriptors as a
color-based signature to represent a person, which is divided
into two significant modes. However, they assume that the
silhouette of a person can be always obtained, which is not
the case in real-world applications. Deep learning has revolu-
tionized the techniques for person reidentification [17]. Li
et al. [18] successfully apply deep learning to extract the fea-
tures for person reidentification. Xiao et al. [19] propose a
new deep learning framework that jointly handled both per-
son detection and reidentification in a single convolutional
neural network. Wu et al. [20] improve the discriminative fea-
ture representation of CNNs by exploiting unlabeled tracklets.
The major limitation of this framework is that they either have
handcrafted features or employ single scene images, thus
making them less robust to various lighting conditions and
changed human pose. Retinex theory is widely used for illumi-
nation estimation [21]. Many retinex-based re-id algorithms
had achieved competitive performances [22, 23]. Specially,
Liao et al. utilize the retinex transform and a scale invariant
texture operator to handle illumination variations [23]. Huang
et al. propose a retinex decomposition network to address the
illumination variation problem and achieved a competitive re-
id performance in low-light condition [22].

In [24], a new synthetic dataset, which contains hundreds
of illumination conditions, is introduced to simulate the real-
world lighting. The above methods reduced the adverse effects
of illumination variant. However, they ignore the matching of
local feature and failed to learn the aligned information, which
effectively eliminate the influence of pose variant.

(a) Illumination change

(b) Pose variation

Figure 1: Examples of challenging images in re-id.
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To reduce the negative impact of pose variant, some
works apply human pose estimation to extract pixel-level
body regions [8, 25]. Zheng et al. adopt the pose estimation
confidence of input image to build a pose-invariant embed-
ding (PIE) descriptor [8]. In [25], Zhao et al. represent a per-
son with a discriminative feature, which is learned from
different semantic regions of a person. On the other hand,
some works focus on utilizing horizontal stripes or grids to
extract pose-invariant features [13, 26]. Sun et al. design a
Part-based Convolutional Baseline (PCB) network to learn
discriminative part-level features [26]. Using the dynamic
programming to match horizontal stripes of person images,
Luo et al. propose a deep model to address the misalignment
issue [13]. Additionally, Miao et al. propose an occluded per-
son re-id framework by incorporating the pose information
[27]. In spite of the great progress in re-id performance,
the above methods still could be optimized by integrating
the advantages of different architectures.

Different from existing frameworks, we focus on
addressing issues of illumination and pose change simulta-
neously. Then, we propose a novel framework that is able
to learn illumination invariance and pose alignment in a
multitask manner.

3. Methodology

In this section, we firstly describe the retinex decomposition
net and the part attention module. Then, the details of the
proposed structure and training strategy are introduced.

3.1. Retinex Decomposition Net. To simulate the human color
perception, retinex theory decomposes the observed image
into two components: reflectance and illumination [21].
Mathematically, the source image S can be denoted as follows:

S = R ∘ I, ð1Þ

whereR and I represent the reflectance and illumination com-
ponents, respectively, and ° represents element-wise multipli-
cation. The reflectance map described the intrinsic person
property and is invariant to light change.

Thus, it is active to extract illumination-invariant dis-
criminative features from the reflectance map. The illumina-
tion map, which represents various light environments, is
harmful to re-id performance and ignored in this paper.

Unlike deep retinex net [12] that performs both reflec-
tance and illumination decomposition to enhance low-light
images, we only perform retinex decomposition net to
extract the consistent feature of a person. As shown in
Figure 2, the retinex decomposition net includes 8 layers.
The first layer is a 3 × 3 convolutional layer, which extracts
convolutional features from the input image. The second
to sixth layers are 3 × 3 convolutional layers with a Relu acti-
vation function. The seventh layer is a 3 × 3 convolutional
layer which maps R and I from feature space. The last layer
is a sigmoid function that normalizes R and I to ½0, 1�.

To extract R from different lightness images, the decom-
position network is fed in paired normal/low-light images
each time. During the training stage, the paired images,

instead of their corresponding ground truth, are taken to
train the retinex decomposition net. However, it can predict
R and I in the test stage.

The loss LR for retinex decomposition net consists of
reconstruction loss Lrecon and invariable reflectance loss Lir:

LR = Lrecon + λirLir, ð2Þ

where λir is used to balance the consistency of reflectance.
The reconstruction loss Lrecon is defined as

Lrecon = 〠
i=low,normal

〠
j=low,normal

λijLir Ri ∘ Ij − Sj
�
�

�
�
1, ð3Þ

where Slow and Snormal denote the input low-light and
normal-light images, respectively. Rlow and Ilow denote
the reflectance and illumination of Slow, as well as Rnormal
and Inormal of Snormal. The invariant reflectance loss Lir is
defined as

Lir = Rlow − Rnormalk k1: ð4Þ

3.2. Part Attention Module. In order to extract discrimina-
tive features, many re-id methods introduce the attention
mechanism to highlight the informative parts of person
images, while suppressing cluttered background [9, 28].
The goal of the attention mechanism is to produce a
saliency map to reweight CNN output. Given a 3-D X ∈
ℝC×H×W , where C, H, and W indicate the number of
pixels in the channel, height, and width dimensions,
respectively, the reweight process can be formulated as

Y = A Xð Þ ⊙X, ð5Þ

where Y is the reweighted map and AðXÞ is the output of
the attention module. Combined with the state-of-the-art
detector, there is an intuitive assumption that the detected
persons lie in the middle of images. In real-world scenarios, a
person usually has different clothing for lower and upper
parts. Based on their multimodal nature, we introduce a
two-peak Gaussian mapMf , defined as Equation (6), to deal
with the intradistribution of person appearance:

Mf = 2πð Þ−1/2 Σj j−1/2 e−1/2 r−μ1ð ÞTΣ−1 r−μ1ð Þ + e−1/2 r−μ1ð ÞTΣ−1 r−μ1ð Þ
� �

,

ð6Þ

where μ1 = ½H/3,W/2� and μ2 = ½2 ×H/3,W/2� represent the
peak centers of the Gaussian map.

As shown in Figure 3, we concatenate Mf and the 4th
layer of Resnet-50. Subsequently, six 3 × 3 convolution layers
are added to extract the discriminative feature. Finally, a
softmax classifier is implemented with a Fully Connected
(FC) layer.

3.3. IIPA-Net Architecture. As shown in Figure 4, the pro-
posed IIPA-Net can be divided into two parts: global branch
and local branch.
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Figure 2: Retinex decomposition net.
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For the first branch, the most discriminative image parts
of a person are extracted by the part attention module. In the
second branch, the person images are enhanced by preserv-
ing the reflectance map of retinex decomposition net. Both
of the two branches are sent into the weight-shared Resnet50
backbone CNNs, which makes the proposed model more
flexible and easy to train. The output of Resnet50 is
aℝc×h×w feature map, where c represents the feature channel
and h ×w is the spatial size. We extract a global discrimina-
tive feature vector I ∈ℝc×1 using Global Average Pooling
(GAP). Then, the global feature distance can be calculated by

dI A, Bð Þ = IA − IBk k2, ð7Þ

where IA and IB denote the global feature of images A and B.
The global feature is able to learn holistic information from
the person image. However, it fails to address the pose-
misalignment issue for the reason that the local representa-
tion is still unexploited. To learn the pose-aligned local
feature, the output feature map of Resnet50 is transferred
into c × h size using horizon horizontal average pooling.
Let PA = fp1A, p2A,⋯,phAg and PB = fp1B, p2B,⋯,phBg denote the
local feature of images A and B. We can have the distance
of the ith vertical part of A and jth vertical part of B as
follows:

d i, jð Þ = e piA−p
i
Bk k2 − 1

e piA−p
i
Bk k2 + 1

: ð8Þ

We further have the distance matrix D, where its
elements are dði, jÞ. As described in [13], the local
pose-aligned feature distance dpðA, BÞ can be derived
by dynamically matching local information (DMLI), which

could dynamically align different part features. Finally, we
obtain the total distance of A and B by

d A, Bð Þ = dI A, Bð Þ + dp A, Bð Þ: ð9Þ

The total loss function of the framework is

Ltotal = LID + LIT + LPC , ð10Þ

where LID and LIT denote softmax loss and triplet loss [29] of
the global feature and LPC denotes the circle loss [30] of the
local pose-aligned feature. The performance of different loss
functions is described in Section 4.3.

3.4. Training the Network. Since there is a lack of explicit
ground truth for the training part attention module and
retinex network, it is difficult to optimize the network for
various scenes. Therefore, we try to train the network in a
date-driven way. The whole network is trained in four
stages, as illustrated in Algorithm 1.

(i) First, the backbone network, Resnet-50, is initialized
by the ImageNet [31] pretrained model and trained
to convergence under the supervision of triplet loss

(ii) Second, the synthetic low-light image sets based on
PASCAL VOC, together with their original images,
are fed to the Retinex decompose network, as
described in Section 3.3. This training step is fin-
ished after 200 epochs

(iii) Third, all the layers in Resnet-50 are fixed; only the
part attention module is trainable. Then, the IIPA-
Net is retained with the softmax and triplet loss on

Parts
attention
module

Retinex
deconmpose

network

Loss
functionShare weights

ResNet-50

ResNet-50

GAP

C
1

C
H

Horizontal
pooling

N

N

N

N

N images

Global distance

Local distance

DMLI

Figure 4: The proposed network architecture.
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the training set. The learning rate is decayed for 40
epochs

(iv) Finally, we set all the layers trainable and fine-tune
the IIPA-Net to convergence again

4. Experiments

4.1. Datasets and Evaluation Measures. Our experiments are
based on two real-world and popular person re-id datasets:
Market1501 [32] and DukeMTMC-reID [33]. To better
present the advantages of the proposed illumination-
invariant feature, we adopt two manual low-light re-id
datasets named low-light Market and low-light Duke. The
Market1501 includes 32,668 images of labeled people cap-
tured by six cameras. Specially, there are 12,936 images of
751 identities in the training set and 19,732 images of 750
identities in the testing set. The DukeMTMC-reID contains
25,272 images, which are extracted from the DukeMTMC
dataset [34] captured by eight cameras. There are 6,522
images of 702 identities in the training set and 18,750 images
of 1110 identities in the testing set. The low-light Market
and low-light Duke are built from Market1501 and
DukeMTMC-reID, respectively. Following [22], we use
gamma correction to simulate low-light conditions. Each
image in the datasets is processed with a gamma value,

which is randomly picked from f1, 2, 3, 4g. Figure 5 shows
examples of synthetic low-light images. To evaluate the
performance of different algorithms, we use Cumulative
Matching Characteristic (CMC) curves and mean Average
Precision (mAP) [32] as the evaluation criteria. CMC is
defined as a function of Rank-r [35].

q rð Þ = C rð Þj j
P g

�
�

�
�
, ð11Þ

where jP gj represents the total number of person images in
the gallery, and the query set CðrÞ is defined as

C rð Þ = pi : rank pið Þ ≤ rf g, ∀pi ∈P g: ð12Þ

mAP is calculated based on the Average Precision (AP)
and defined as

mAP = ∑n
k=1AP kð Þ

n
, ð13Þ

where APðkÞ represents the precision-recall curve area of the
kth query and n represents the size of the query set.

4.2. Experimental Setup. We implement all experiments
using an Intel Xeon e5-2630 v3 2.4GHz machine with

(a) Low-light Duke

(b) Low-light Market

Figure 5: Examples of synthetic low-light image.

1. The shared-weights Resnet-50 is trained to convergence with triplet loss.
2. All synthetic images, together with their original images, are fed into the Retinex decomposition network.
3. Parts attention module is trained using the training images set.
4. The whole network is fine-tuned with Equation (10).

Algorithm 1: Training steps of the proposed network.

6 Journal of Sensors



32GB RAM and one NVIDIA GTX Titan 12GB GPU. The
training patch size is set to be 32; λir is set to be 0.001. λij
is set to 1, when i = j. Otherwise, λij is 0.001. Each input

image is resized to 256 × 128. Random horizontal flipping
and cropping tricks are preformed to augment data. We
use Adam optimizer with learning rate 10−4.

4.3. Experimental Results. In this subsection, we firstly evalu-
ate the part attention module. The two-peak Gaussian map
can better guide the main body information of a person.
Then, the effect of low light is analyzed. We can see that the
low-light condition has a negative impact on pose alignment.
Then, we evaluate the performance of our proposed IIPA-
Net compared with other state-of-the-art re-id methods.

(a) Normal-light example (b) Low-light example

Figure 6: Illustration for the parts attention module. The first column shows the input images. The second and third columns show the
attention map results of normal and two-peak Gaussian.
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Figure 7: The example aligned results of a positive pair and a negative pair from low-light Market.
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4.3.1. Evaluation of Part Attention. To better illustrate the
effect of the proposed part attention module, we visualize
the attention maps of the model with normal and two-
peak Gaussian maps. In Figure 6, we can observe that the
two-peak Gaussian map can pay attention to both upper
and down parts of a person, while the normal one only to
either upper (Figure 6(a)) or down (Figure 6(b)) part. The
introduction of two-peak Gaussian makes part attention
work more effective with the multimodal nature of a person.
Figure 6 third columns show that the proposed part atten-
tion is able to produce similar predicted attention under
different light conditions.

4.3.2. Effect of Low Light. As shown in Figure 7(a), using
AlignedReID++ [13] as the baseline model, the fifth block
of the left image is aligned to the fourth and sixth blocks
of the right image and the distance of the two images is
0.7333, which is greater than the negative pair (0.5557).
However, after decomposing the illumination, our proposed
method is able to align the head, chest, foot, etc., of the pos-
itive pair images, and the distance is reduced to 0.4195,
which is less than the negative pair (0.5775), as illustrated
in Figure 7(b). The wrong connections of the baseline can
be attributed to the negative impact of the low illumination.
This indicates that the proposed approach eliminates the
effect of weak illumination and learns the illumination-
invariant features.

4.3.3. Performance of Different Loss Functions. We train four
models with softmax+triplet loss (LID + LIT + LPT), softmax
+instance [36] loss (LID + LII + LPI ), softmax+circle loss
(LID + LIC + LPC) and the proposed loss. The performance on
Market1501 is presented in Table 1. LI and LP represent
the loss of the global and local features, respectively. We
can observe that Softmax+Instance and Softmax+Circle loss
achieve the similar Rank-1 accuracy. Compared with Soft-
max+Triplet, the proposed loss improves the Rank-1 and
mAP arropminately 0.3 and 0.2, respectively. We believe
that the Circle loss works on some hard local features.

4.3.4. Comparison with State-of-the-Art. To evaluate the per-
formance of the proposed IIPR-Net, we report the experi-
mental results with some state-of-the-art methods. Our
baseline is AlignedReID++ [13], which focuses on solving
the pose change problem. In order to demonstrate the
advantage of the proposed framework, we also report the
results of baseline with a low-light enhancement method.
Both training and testing image sets are enhanced with
MSRCP [37] and then fed into the baseline.

As shown in Table 2, our proposed framework outper-
forms most state-of-the-art methods on all four datasets.
Specially, the proposed framework achieves 96.2% Rank-1
for Market1501 and 90.8% Rank-1 for Duke MTMC-reID,
outperforming other attention-based methods, i.e., MHN-6
[9] and DSA [38]. Although FlipReID [39] and st-ReID
[40] achieve the best performance, the extra data, for
instance, spatial and temporal information, are utilized to
train the network. For low-light Market and Duke datasets,
the Rank-1 accuracy of the proposed method is increased

by 10.1% and 11.2%, and the mAP increased by 9.5% and
6.0%, respectively. This demonstrates that our joint frame-
work not only eliminates the impact of low light but also
explores pose-invariant local features for person re-id.
Figure 8 depicts five examples of queries together with the
top 10 retrieved results of baseline and IIPA-Net on the
low-light Market dataset. As we can see, the IIPA-Net

Table 2: Experiment results of our framework compared to other
state-of-the-art methods.

Dataset Method Rank-1 mAP

Market1501

IDE [41] 85.3 68.5

Baseline [13] 92.8 89.4

PCB [26] 92.3 77.4

MHN-6 [3]
DSA [38]

95.1
95.7

85.0
87.6

FlipReID [39] 95.8 94.7

st-ReID [40] 98.0 95.5

IIPA-Net 96.2 90.3

DukeMTMC-ReID

IDE [41] 73.2 52.8

Baseline [13] 80.7 68.0

PCB [26] 81.7 66.1

MHN-6 [3]
DSA [38]

89.1
86.2

77.2
74.3

FlipReID [39] 93.0 90.7

st-ReID [40] 94.5 92.7

IIPA-Net 90.8 83.3

Low-light Market

Baseline [13] 33.4 14.1

Baseline+MSRCP
PCB [26]

49.4
48.5

15.7
16.2

IIPA-Net 60.5 27.7

Low-light Duke

Baseline [13] 36.2 12.4

Baseline+MSRCP
PCB [26]

40.4
48.4

18.3
21.0

IIPA-Net 51.6 24.3

Bold: best results.

Table 1: The performance of different loss functions on
Market1501.

Loss function Rank-1 mAP

LID + L
I

T
+ L

P

T
95.9 90.1

LID + L
I

I
+ L

P

I
95.7 89.8

LID + L
I

C
+ L

P

C
95.6 90.0

LID + L
I

T
+ L

P

C
96.2 90.3

Bold: best results.
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(a)

(b)

(c)

Figure 8: Continued.
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outperforms the baseline and accurately retrieves the target
in spite of illumination and pose variants.

4.3.5. Ablation Study. To verify the contribution of each
component, we perform the ablation study on normal- and
low-light Market datasets. Table 3 shows the results of each
component of IIPA-Net. We note that the attention compo-
nent achieves better results on the Market1501 dataset.
However, retinex is better in low-light conditions. The

combination of the retinex and attention achieves the best
performance on both datasets. The reason is that IIPA-Net
is able to learn both illumination and pose-invariant
features.

5. Conclusions

In this paper, we proposed a jointly illumination-invariant
and pose-aligned learning framework for person re-id.
Motivated by retinex theory, we introduce a retinex decom-
position net to eliminate the impact of different lights and
extract an illumination-invariant feature. To tackle the
problems of pose alignment, dynamically matching local
information is utilized to align local feature, which is trans-
ferred from the deep learning feature map. Based on the
nature of a person, we proposed a part attention mechanism
to extract the most discriminative global feature. The joint
framework is trained in a four-stage fashion. Experiments
demonstrate that the proposed framework achieves better
performance on both normal- and low-light datasets. In
the future, we will focus on long-term re-id scenarios which
present more complex scene variations.

(d)

(e)

Figure 8: Retrieved results of baseline and IIPA-Net on the low-light Market dataset. The first column images are the query. For each
example, the upper row images are the results of baseline and the lower row images are of IIPA-Net. The images with a green border are
the correct retrieved results, and those with a red border are the incorrect results.

Table 3: Ablation study on normal- and low-light market datasets.

Condition Method Rank-1 mAP

Normal

Ours w/o attention 94.4 89.5

Ours w/o retinex 92.6 88.3

Ours 96.2 90.3

Low light

Ours w/o attention 44.7 17.3

Ours w/o retinex 56.3 22.4

Ours 60.5 27.7

w/o: without; bold: best results.
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