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Recent years have witnessed the rapid development of microelectromechanical systems, and human motion tracking technology
based on IMU (inertial measurement unit) has attracted much attention. However, the magnetic field varies with time and
position, which makes it necessary to calibrate sensors before tracking. To address the poor adaptability of IMU to the
environments and improve the accuracy of estimated traces, this paper presents an ENN-based (Elman neural network)
method to track human arm motions, which consists of two steps. First, the data derived from IMUs are preprocessed for the
rough Euler angles; then, an ENN is trained to estimate motions. We explore the initially estimated position to calibrate the
acceleration measurements as the input of the ENN. Real-world experiments of arm motion tracking are carried out with the
ground truth from an optical motion tracking system. The experimental results show that the mean tracking errors are around
35mm, with a strong ability to eliminate the effect of extreme measurement and environment noises, avoiding calibrating the
magnetometer. The implementation of the well-trained model to independent motions indicates that the robustness of the
proposed method is excellent, and the errors reduce by 37.2% on the x-axis and perform similarly on the z-axis compared with
4 traditional methods. This method quite suits those situations where trajectory tracking of the standardized motions is
required, such as the medical habilitation.

1. Introduction

Human motion tracking is the procedure where the trace of
human movements can be detected in quantity and quality
via onbody sensors [1]. Nowadays, this technology is appli-
cable in a wide range of fields including medical health [2],
virtual reality [3], and sports biomechanics [4].

There are currently motion tracking methods such as
marker-based optical tracking, exoskeleton-based mechani-
cal tracking, and IMU- (inertial measurement unit-) based
tracking. The optical tracking system has good accuracy,
but it requires multiple fixed high-quality cameras and, thus,
is restricted to a relatively small indoor space [5]. Mechani-
cal tracking confronts the problem of reducing the error
between the mechanical rotational axis and the human joint

[6]. The IMU sensors consist of an accelerometer, a gyro-
scope, and a magnetometer, which can measure the orienta-
tion of the rigid body they are attached to, making it possible
to track human motion [7]. However, this method also suf-
fers from limitations such as long-term drift, magnetic inter-
ference, and inconsistency [8].

Thanks to the rapid development of microelectrome-
chanical systems (MEMS), IMU-based methods have
received much attention for their portability and low cost
[9]. In recent years, various researches have been performed
on IMU-based methods, especially in the data fusion field
[10]. Zhu and Zhou designed a real-time motion tracking
system based on a Kalman filter using IMUs [11]. Xiaoping
et al. developed a quaternion-based extended Kalman filter
to obtain the optimal orientations [12]. Fourati et al.
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presented a complimentary observer to calculate the attitude
information based on quaternions [13]. Atrsaei et al. intro-
duced a constraint of velocity to IMU to track fast motion
[14]. Chen et al. improve the real-time tracking strategy
by the combination of displacement and movement angle
using the complementary and Kalman filters [15]. All
these works are aimed at gaining the optimal estimation
of quaternions through traditional filtering technology.
Besides, these works failed to get rid of the problems with
the calibration and magnetic field distortion caused by dif-
ferent environments.

Another problem of the IMU-based method is the align-
ment of multiple sensors. Zimmermann et al. develop a
LSTM model to align the IMU to segment to obtain biome-
chanical joint angles [16]. Chen et al. design a novel online
IMU-based human gait estimation framework, which intro-
duces the kinematic chain constraints between multiple seg-
ments, achieving adaptive alignment and drift rejection [17].
These works contribute to alignment, but the complicated
modeling process is unavoidable.

Nowadays, due to the advances in artificial intelligence,
more researchers focus on how to improve the IMU mea-
surements based on ANN (artificial neural network) [18].
Zhang et al. [19] proposed a DNN model to process the
IMU data, integrating the DNN estimated value and numer-
ical value to gain a more reliable pose. To get a more precise
pose, Brossard et al. [20] applied a convolutional neural net-
work to regress the gyro corrections. This work is aimed at
denoising the gyroscopes and win a good precision com-
pared to other methods. Though it is not designed for
human motion track, it shows the possibility to apply neural
networks to this area. Compared with a complex deep learn-
ing model, the ENN (Elman neural network) has won the
favor of researchers due to its constructions and successful
applications to nonlinear problems [21]. Kolanowski et al.
presented an ENN-based navigation system to estimate the
attitude of the rigid body where the IMU is attached [22].
Guo et al. proposed an attitude calculation algorithm aided
by ENN (Elman neural network) to overcome the IMU’s
poor adaptability to environments [23]. Chong et al. pro-
posed a genetic Elman neural network to improve the tem-
perature drift modeling precision of gyroscope [24]. All
these work shows the possibility to estimate the human
motion trace by processing the IMU data based on the neu-
ral network.

To eliminate extreme measurement noises and avoid the
influence of the environment, this paper proposes an ENN-
based method for human arm motion tracking by three
attached IMUs. The high-end optical motion tracking sys-
tem, Opti Track, is introduced as the ground truth, and
ENN is trained to estimate the arm traces. Real-world exper-
iments of arm motion tracking are then carried out to verify
the effectiveness of the proposed method. The results show
that the accuracy and robustness of the method are both
acceptable.

The rest of this paper is organized as follows. Section 2
provides detailed information about the proposed method.
Section 3 reports the environment, process, and results of
the experiments. And in Section 4, the authors discuss the

results and possible error sources. Finally, Section 5 draws
the conclusion and future work.

2. Methods

Generally, a human arm can be modeled as three joints con-
necting two rigid bodies, as is shown in Figure 1. The arm
can be simplified by two consecutive links, and three IMUs
are attached to the three joints (the wrist, elbow, and shoul-
der) to describe the motion trace of the arm, each one
described in a frame defined as

τi = Oi, xi, yi, zið Þ, ð1Þ

where Oi denotes the orientation while the other three pres-
ent the position coordinate in the corresponding coordinate
system.

Based on the human arm model setup, an ENN-based
model is presented to estimate the trace of the arm.
Figure 2 depicts the procedure of our proposed method,
which contains two steps.

Step 1. Data preprocessing: the collected data are first
segmented and then preprocessed. The acceleration and
angular velocity are applied to calculate the attitude infor-
mation, which is then aligned in the same frame.

Step 2. estimation/estimation: the data after preprocess-
ing is set as the input of the ENN while the ground truth
coordinates are collected by the optical tracking system.
And the output coordinate P = ½x y z�T can describe the
arm trace. In this step, we introduce the feedback to help
optimize the body acceleration.

When the IMU data has been collected and prepro-
cessed, the well-trained ENN model is called to compute
the coordinates of the arm, and then, a smoother is applied
to gain the final trace of the arm.

2.1. Data Preprocessing. The output of the IMU provides the
acceleration a by the accelerometer, the earth magnetic field
m by the magnetometer, and angular velocity ω by the

IMU

IMU

IMU
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y

z

Wrist
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Shoulder

Figure 1: Human arm model. Three IMUs (triaxial accelerometers
and gyroscopes) are attached to the wrist, elbow, and shoulder,
respectively.
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gyroscope [25]. The acceleration can be decomposed into
three components as

a = g + ab + ε, ð2Þ

where g is the gravitational acceleration, ab denotes the
body acceleration (the acceleration generated by person
movements), and ε represents the measurement noise, of
which the distribution is normally Gaussian distribution.
Among the three components, g can be considered a con-
stant vector for any object; thus, it is feasible to pick g out
to estimate the orientation of the object. With the assump-
tion that the noise ε can be neglected, we design a low-
pass filter for the acceleration signal to extract the gravity
component [26].

In practice, m measured by the magnetometer will be
affected by the ferrous materials in the environment, so it
is necessary to calibrate the magnetometer before estimating
the arm movements [27]. However, it is inconvenient or
even troublesome when the number of sensors increases.
Considering a and ω are capable to offer enough informa-
tion of arm movements, m is removed from the orientation
estimation. Thus, the adaptability of IMU to environments
can be improved in some way. However, the change of mag-
netic field strength with the movement is an important fea-
ture, so it is used to improve the ENN model, which will
be detailed in the next section.

For arm motion tracking, it is particularly important to
obtain the attitude information of the arm segment; hence,
it is necessary to put the attitude information into the net-
work [28]. There are three common methods to calculate
the attitude, namely, the Euler algorithm, direction cosine
method, and quaternion method. The direction cosine algo-
rithm is widely used in navigation coordinate systems; how-
ever, the complicated calculation restricts its application in
motion tracking. The quaternion method shows advantages
in fast computation and all kinds of attitude calculation,
but it does not allow separating the attitude angle directly
and is easy to fall into instability once the measurement of

one sensor gets disturbed [29]. Though the Euler angles suf-
fer the gimbal lock, they are more understandable and effi-
cient in decomposing rotations into individual freedoms,
requiring less computational efforts [30].

This paper applies the Euler algorithm to calculate the
attitude. By solving Equation (3), we can get the roll (ϕa)
and pitch (θa), and by solving Equation (4), we can get roll
(ϕg), pitch (θg), and yaw (ψg). By fusing the data from the
accelerometer and gyroscope, we can get the final attitude as

ϕa = arctan
gy
gx

� �
,

θa = − arctan gxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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z

q
0
B@

1
CA,

8>>>>>><
>>>>>>:

dϕg
dt

dθg
dt

dψg

dt

2
66666664

3
77777775
=

1
sin θg ⋅ sin ϕg

cos θg

cos ϕg ⋅ sin θg
cos θg

0 cos ϕg −sin ϕg

0
sin ϕg
cos θg

cos ϕg
cos θg

2
66666664

3
77777775
⋅

ωx

ωy

ωz

2
664

3
775,

ϕ = ϕa + ϕa − ϕg

� �
⋅ K ,

θ = θg + θa − θg
� �

⋅ K ,

ψ = ψg,

8>>><
>>>:

ð3Þ

where subscript a or g denotes the angle calculated by the
data from the accelerometer or the gyroscope and K is a
scale factor, whose value is 0.4 in our example.

2.2. Elman Neural Network. In traditional ways, we need to
process a series of computations to figure out the final mov-
ing trace, and we consider applying an ANN to help

IMU
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Figure 2: Flowchart diagram of the proposed method for one segment. Vectors ai, ωi are the values measured by the IMU at the ith sample,
ϕi, θi, ψi are the Euler angles (roll, pitch, and yaw), and the vector P is the estimated position (a three-dimensional coordinate) of the IMU-
attached object.
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calculate the coordinates. The coordinate calculated by the
Opti Track system is set as the ground truth data. To find
out the mapping relationship between the IMU data and
coordinates, we develop an ENN for each IMU.

ENN is one kind of recurrent neural network (RNN),
and its structure is depicted in Figure 3. It is composed of
three layers, namely, the hidden layer, output layer, and con-
text layer [31]. Compared to other ANNs, ENN is more pop-
ular for its unique advantage that the context nodes can
memorize the values of previous hidden nodes, which makes
ENN applicable in the fields of dynamic system identifica-
tion and prediction [32].

And the Elman network is also denoted by the following
equations:

x ið Þ = f w1 ⋅ u i − 1ð Þ +w2 ⋅ xc ið Þ + b1ð Þ,
xc ið Þ = x i − 1ð Þ,

P ið Þ = g w3 ⋅ x ið Þ + b2ð Þ:
ð4Þ

During the training process, we pay more attention to
the drastically changing axis. Although the accuracy of m
is severely affected by the environment, the relative changes
of different actions are similar. Therefore, we can consider
usingm to improve the traditional MSE (mean square error)
loss function. We redesign the loss function as

E =wxex +wyey +wzez , ð5Þ

where wx , wy, and wz are the error weights calculated
according to the change of magnetic field strength and e pre-
sents the MSE of the error on each axis. Equation (10) shows
the calculation of wx as an example.

wx =
stdmx

stdmx + stdmy + stdmz
, ð6Þ

where std presents the standard deviation of the vector in the
subscript.

We introduce feedback to calibrate the input ab. The pre-
dicted coordinate is applied to compute the body accelera-
tion and helps correct the input. Also, we take the x-axis as
an example to explain. First, the acceleration at sample i
on the x-axis in the Opti frame can be calculated as

axoi =
xi+1 + xi−1 − 2xi

dt2
: ð7Þ

Since the IMU and Opti frames are aligned, the esti-
mated body acceleration âb can be figured out by rotating
aoi with the matrix

Rn
b =

cos θ cos ψ −cos ϕ sin ψ + sin ϕ sin θ cos ψ sin ϕ sin ψ + cos ϕ sin θ cos ψ
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And then, the weighted average of the measured and

estimated body acceleration is regarded as the corrected ab.
Now, the input and output matrixes are set as

ab1 ω1 ϕ1 θ1 ψ1

⋮ ⋮ ⋮ ⋮ ⋮
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xN yN zN

2
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3
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,

ð9Þ

where the input components are calculated in Section 2.1,
while the target components are provided by the Opti Track
system. After the estimation, we apply the five-dot-cubic
algorithm [33] to smooth the coordinates.

3. Experiments and Results

3.1. Experimental Setup. To verify the efficiency of the pro-
posed algorithm, an experiment was carried out. The ground
truth was obtained from the Opti Track Motive system of
millimeter-level accuracy, while tracking a subject equipped
with 4 IMUs. Three of them were attached to the left arm
(on the wrist, elbow, and shoulder) of the subject with three
corresponding markers for the optical system to track. And
the fourth IMU is fixed on the chest of the subject as a refer-
ence. Here, the x-axis is pointing forward, the y-axis is
pointing to the right side, and the z-axis is perpendicular
to the ground. Figure 4 shows how the subject wears the
IMUs and the markers.

After the experimental environment was set up, the sub-
ject was asked to perform several movements at a relatively
slow speed, including forward-smooth-lift (FSL), lateral-
smooth-lift (LSL), forearm-supination (FS), and elbow-
smooth-lift (ESL). Each movement gets started and ends
up with the N-pose gesture (standing still with the arms ver-
tical alongside the trunk on the ground) and lasts for at least
10 seconds. Figure 5 shows how the movements are
organized.

Captured data include the marker positions in the opti-
cal coordinate system and the IMU signals in the respective
sensor reference system. The data by the Opti Track system
was sampled at 120Hz while the data by IMU (HI221, hip-
nuc) was at 35Hz. We resampled the Opti data to make its
frequency rightly the same as the IMU data. IMU and Opti
data were captured by different terminals, but they were
manually synchronized by the N-pose gesture at the begin-
ning and end of each sequence. This synchronization
method may result in a misalignment in time, but it is
acceptable for the time misaligned is quite short.

4 Journal of Sensors



3.2. Performance Index. To assess the performance of our
method, we develop some indices to evaluate the model
accuracy and robustness. Given two variables with N sam-
ples, P (describing the estimated position on one axis) and
G (describing the ground truth position on the same axis),
the following indices can be used for assessment:

Mean error:

E =
1
N
〠
N

i=1
Gi − Pik k: ð10Þ

Maximum error:

Em =max Gi − Pik k, i = 1, 2,⋯,N: ð11Þ

Correlation coefficient:

C =
cov P,Gð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Pð Þ var Gð Þp : ð12Þ

3.3. Results. The aligned IMU and Opti data are then put
into the Elman NN to train the model, where the data is sep-
arated into a train set (70%) and a test set (30%). Then, we
adapt the trained model to estimate a new independent
motion to assess the generalization ability of the model.
We have compared the accuracy and the robustness on sev-
eral aspects, and the results are listed as follows. Here, we
pay more attention to the x-axis and the z-axis, for the
arm motions in experiments have few movements on the y
-axis, which can be regarded as random error.

First, the data captured in one motion is implemented to
verify the proposed algorithm. Figure 6 depicts the error
between the estimated coordinate and the ground truth data
on the x-axis of the wrist in four motions, which shows that
the proposed method can help to get the trace of the arm rel-
atively accurately. Table 1 reports all the performance indi-
ces of different parts of the arm in the 4 motions in test sets.

Then, to evaluate the robustness of the method, the well-
trained model is implemented to estimate another four inde-
pendent motions. Figure 7 is the boxplot to depict the errors
on the x-axis on the wrist in the four motions. Table 2

u(i-1) w1

w2 b1

1

Hidden layer

Context layer

Output layer

f w3

b2

g P(i)x(i)

xc(i)

Figure 3: Structure of Elman neural network. In this structure, u is the input vector and y is the output vector; w1,w2, andw3 are the
weights; x is the unit vector in the middle layer and xc is the feedback state vector; b1, b2 are the deviation vector; f is the transfer
function of the hidden layer; and it is usually a tanh function while g is the transfer function of the output layer, and it is usually a
linear combination of the outputs of the middle layer.

Z

(a) (b)

Figure 4: Positions of the IMUs and optical track markers on the subject from the front and left sides.
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reports the performance indices of the z-axis on the wrist in
four motions. Finally, to further verify the effectiveness of
the proposed method compared with traditional methods,
we compare our method with the four classical methods,
namely, the Zhu model [11], Yun model [12], Young model
[34], and Bleser model [35], based on the dataset of [8].
Figure 8 compares the errors on the x-axis between the
selected methods on the EFE motion (elbow flexion/exten-
sion), and Table 3 reports the errors on the three axes of
the five methods.

4. Discussion

This section will discuss the performance of the proposed
method on tracking the arm based on the results in Section
3 from two aspects, accuracy and robustness. Then, some
possible error sources of this work will be mentioned, which
can be a guide for our future work.

4.1. Accuracy. The first aspect taken into consideration is the
accuracy, which is reflected by the mean and maximum
errors on the three axes. Generally, the smaller the errors
are, the more accurate the model is. The analysis of the
errors in Figure 6 and Table 1 suggests that the accuracy of
the method is acceptable. On the one hand, the 12 well-
trained models (each motion has one model for each part)
all play a good performance. The mean error of each model
is around 30mm, and the maximum errors are around
50mm (very few can reach over 100mm). On the other
hand, the errors on the x-axis have a similar performance
to those on the z-axis (they have their advantages in different
motions). Overall, the error of the action is acceptable. The
reconstructed IMU motion trajectory has a high correlation
with the Opti system, and only 4 values are lower than 0.85.
This shows that the reconstructed motion has a high consis-
tency with the actual motion. We can get better results from
the reconstructed motion and discover the characteristics of

(a) (b)

(c) (d)

Figure 5: How the movements are organized. (a) Forward-smooth-lift. (b) Lateral-smooth-lift. (c) Forearm-supination. (d) Elbow-smooth-
lift.
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the original action. From this perspective, the accuracy of
our proposed method is good.

A comparison between the method proposed in the arti-
cle and other traditional methods is also conducted. Based
on the open-source data set provided by the literature, we
compared the errors of these methods on the three axes.
Figure 8 shows errors on the x-axis, and Table 2 reports
errors on the three axes in detail. We can find that the pro-
posed method performs best on the x- and y-axes, reducing
about 37.2% of the mean errors and on the z-axis, the error
is also acceptable.

4.2. Robustness. The next aspect that plays an important role
is robustness, which is reflected by the performance of other
independent estimations based on well-trained models. Gen-
erally, robustness refers to the ability of the model to tolerate
perturbations. We have tested other four independent
actions for each motion to verify the robustness of the pro-
posed method.

Figure 7 presents the distribution of the error on the x
-axis in the new actions. The red symbol, “+”, represents
the outliers (values that reach over 1.5 times over the inter-
quartile range). We can find that the mean errors of the
new actions are similar to those of the test set while the gross
errors seem to have increased. And Table 2 supports the
point furtherly. The Em of the motion has increased by about
40mm, which suggests the weak robustness of this method.
Nevertheless, the correlation values are consistent with those
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Figure 6: Errors on the x-axis on the wrist of four motions, with the red dotted line presenting the mean error of each motion.

Table 1: Performance indices of each test set.

x-axis z-axis
E Em C E Em C

Wrist

FSL 10.7 35.1 0.90 52.1 203.5 0.90

LSL 15.4 41.2 0.85 58.7 196.8 0.85

FS 27.2 129.9 0.94 10.9 24.7 0.85

ESL 28.2 58.5 0.90 26.0 160.6 0.92

Elbow

FSL 11.1 32.0 0.70 36.5 90.3 0.88

LSL 5.6 14.3 0.88 23.3 51.3 0.91

FS 30.1 83.4 0.89 7.5 25.5 0.95

ESL 21.0 53.3 0.93 9.3 22.4 0.92

Shoulder

FSL 12.8 32.5 0.91 13.3 34.2 0.94

LSL 5.0 21.2 0.69 5.7 16.8 0.69

FS 22.0 59.3 0.94 16.9 46.8 0.68

ESL 18.6 49.2 0.75 9.4 28.1 0.90

The data of each motion is separated into train set (70%) and test set (30%),
and the performances are calculated based on each test set. The italicized
values highlight the models that perform worse.
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in Table 1, showing that the estimated trace can recon-
struct the human motion. Therefore, it can be figured that
the proposed method can predict the trajectory of the
same motion well, regardless of whether they are continu-
ous actions. Although the maximum errors/outliners
become larger, which can be reduced by introducing the
kinematic chain in the future, the consistency of its actions
has not decreased. Overall, the robustness of the model is
acceptable.

4.3. The Error Sources. Though the accuracy and robustness
are acceptable totally, there are still some unpredictable
errors (like the maximum errors in Tables 1 and 2), which
may be caused by the following two aspects:

4.3.1. Experiment. In Table 2, we can figure that the E and
Em is larger than those in Table 1 while the C is similar, thus,
these errors may be caused by the independent experiments.
This is because there is some difference between the two
experiments on the position where the experimenter stands,
which may cause a relatively constant error on the x- or y
-axes. But this will not have a serious impact on the recon-
struction of the arm trace, for the reconstruction of the
arm movements is still clear and the correlations perform
well.

4.3.2. Data. The maximum errors shown in Section 3 are
unable to ignore and are possibly resulted by the collected
data in our experiments. On the one hand, there are some
missing values of the ground truth data (Opti data) caused
by some unavoidable occlusion of some markers. We have
filled the missing values using the interpolation and
resample it to the same frequency with the IMU data,
which may introduce some outliers with errors over
100mm to some extent. On the other hand, the IMUs
have been continuously working during the entire experi-
mental time, which may result in more noise in the last
several motions.
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Figure 7: Errors on the wrist of four motions. A well-trained model is applied to estimate another independent four motion. The boxplot
shows the median of the error along with the 25th and 75th percentiles.

Table 2: Performance indices of new estimations on the x-axis of
the elbow.

Motion E Em C Motion E Em C

FSL

1 56.8 179.9 0.92

FS

1 20.5 60.2 0.81

2 55.2 132.6 0.73 2 29.6 50.8 0.84

3 46.3 133.5 0.80 3 40.5 57.4 0.97

4 29.9 103.3 0.95 4 31.6 69.7 0.87

LSL

1 22.1 72.0 0.94

ESL

1 16.4 48.0 0.92

2 39.0 142.9 0.87 2 37.2 72.1 0.79

3 50.3 122.3 0.89 3 21.6 57.2 0.91

4 23.7 61.1 0.92 4 41.0 70.6 0.96

Each motion has one well-trained model, which is applied to estimate
another four independent actions. The italicized values highlight the
models that perform worse.
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5. Conclusion

This paper proposes an arm motion tracking method based
on wearable inertial sensors, using the ENN network. This
method effectively avoids the problem of poor adaptability
to the environment of traditional inertia-based solving
methods. In terms of model training, the magnetometer
information is perceived by IMU to train the model and
applies the acceleration and angular velocity to calculate
the attitude angles, which are set as the ENN input vector.
To calibrate the body acceleration, feedback is designed, the
more accurate results can be derived. Finally, the five-dot-
cubic algorithm eliminates the errors of the estimated trace.
Experiments verify the effectiveness of the proposed method
in both accuracy and robustness. In addition, this article also
uses open-source data to compare with other traditional esti-

mators to further verify the reliability of the ENN-based
method. In practical applications, this method quite suits
the situations where the fixed motions require assessment,
including rehabilitation and fitness exercises. The future
work will focus on reducing accumulative errors by introduc-
ing the kinematic chain and cutting the numbers of training
models by motion classifications and reconstructions.
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