
Research Article
A Lightweight Human Action Classification Method for Green
IoT Sport Applications

Da Xiao ,1 Tianyu Huang ,1,2 Yihao Li ,1 Chang Liu ,1 and Fuquan Zhang 2,3

1Department of Computer Science and Technology, Beijing Institute of Technology, 100081, China
2Beijing Key Laboratory of Digital Performance and Simulation Technology, 100081, China
3College of Computer and Control Engineering, Minjiang University, 350108, China

Correspondence should be addressed to Tianyu Huang; huangtianyu@bit.edu.cn

Received 3 May 2022; Accepted 15 June 2022; Published 30 June 2022

Academic Editor: Saru Kumari

Copyright © 2022 Da Xiao et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper proposes a lightweight human action classification method for Green Internet of Things (IoT) sport applications. This
method classifies the human motion data collected by wearables or other IoT devices with energy-efficient techniques, by enabling
a small number of sample training and incremental classification to achieve the purpose of energy-efficient. To lessen the
complexity of the model and reduce the number of samples required for parameter estimation, we propose a shared Hidden
Conditional Random Field (sHCRF) model. The sHCRF model adds a shared-classification layer structure to reduce the
parameter computation. In the experiments, the classification accuracy of the sHCRF model is above 95%. This paper
introduces an incremental learning method based on knowledge distillation. The new model suppresses the forgetting of
existing classification knowledge while fitting new data to learn new classification knowledge. In the incremental scenarios, the
classification accuracy of the sHCRF model is above 70%. The experimental results show that this method can lightly
implement convenient and fast automatic classification of action acquisition.

1. Introduction

In recent years, smart wearables and mobile sensors have
become an integral part of human’s daily lives [1] with the
development of Green Internet of Things (IoT). These wear-
ables can be used to capture the human motion data when
people exercise or engage in other daily activities. By analyz-
ing and classifying the captured motion data, it can be used
to assist exercise and monitor the human health, etc., in
which the results of analysis or classification can be fed back
through sport applications, like sport watches and smart
treadmill. Human action recognition is a higher-level work
for computers to understand human motion. Among them,
the motion categories are the base for human action recogni-
tion. Due to the complexity and temporal impact of human
motion, high-dimensional features of motion data compli-
cate human action classification. Modeling of human
motion involves the relationship between thousands of vari-
ables. Researchers have proposed human action recognition
models based on neural networks [2], like convolutional

neural networks (CNN) [3], Recurrent Neural Networks
(RNN) [4], and Graph Convolutional Neural (GCN) [5] net-
works. However, these models require more energy, and
they need to be trained on a large number of manually
labelled samples. The training process is time-consuming
and labor-intensive. Our work is aimed at building a light-
weight action classification method to achieve the purpose
of energy efficiency, which enables the model training on a
small number of samples while saving storage and computa-
tional overhead. The probabilistic graphical model has a
strong ability to model the relationship between variables
based on prior knowledge, greatly reducing model parame-
ters and, more importantly, reducing the amount of sample
data required for parameter estimation. It is potential to
model motion lightweightly based on the probabilistic
graphical models.

The human motion data captured by sensors is time
series data, and each frame represents the posture of the
human body at the current moment. It is necessary to pay
attention to the spatiotemporal information so as to
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accurately describe the characteristics of human action clas-
sification. The Hidden Conditional Random Field (HCRF)
model, as an undirected probabilistic graphical model, is a
discriminative model. It can label the entire sequence of
samples as actions and use hidden state variables to capture
intermediate structures. For action recognition task, the
existing consensus is that the ideal model should be derived
and optimized on the basis of maximizing the discriminant
function.

This paper proposes a lightweight human action classifi-
cation method. We introduce posture base, posture change
base, and posture semantic base to characterize human
motion data. The features are obtained based on the data
collected by sensors corresponding to the main kinematic
joints. In order to reduce the computational cost of training,
we propose a shared Hidden Conditional Random Field
(sHCRF) model by designing a shared-classification layer
structure, which reduces parameter amounts. The incremen-
tal learning and classifying methods are designed by intro-
ducing knowledge distillation. The framework of our
method is shown in Figure 1. Human motion data is contin-
uously collected by smart wearables, and then, the collected
data is characterized. The features are sent to the sHCRF
model for training. When the model fits new data, the model
will add the distillation loss on the basis of the classification
loss, so that the model can suppress forgetting owned knowl-
edge while learning new classification knowledge. After
training the model, the updated classification knowledge will
be uploaded to the IoT. The contributions of this paper are
as follows:

(1) A lightweight human action classification method
for Green IoT sport applications is proposed. The
method is based on probabilistic graphical model
training on a small number of samples. In the mean-
time, it can realize automatic incremental learning
and classifying by knowledge distillation

(2) Human action features are designed, including pos-
ture sequence, posture change sequence, and posture
semantic sequence. They can describe human pos-
ture features and the temporal correlation between
human postures

(3) A shared-classification layer structure is introduced
to improve the HCRF probabilistic graphical model.
It lessens parameter amount and achieves better
classification

2. Related Work

Our lightweight action classification method is related to
feature description of human motion, the human action
classification model, and incremental learning methods.

2.1. Feature Representation Method of Human Motion Data.
Human body motion data contain complex information due
to the many multidimensional data involved. The semantic
motion information of the motion data cannot be directly
reflected. So, it is necessary to extract the features of the data.

The extracted motion data features provide a basis for simi-
larity measurement between different actions. Forbes and
Fiume [6] used the weighted Principal Component Analysis
(PCA) dimensionality reduction algorithm to extract the
feature representation of motions. Still, the corresponding
relationship between the features extracted by this method
and the motion semantics is not apparent. Müller et al. [7]
proposed a method for indexing the geometric parts of the
human body. They defined 31 Boolean features to describe
the geometric relationship of the human posture, ensuring
the unity of logical similarity and numerical similarity of
human motion. Their method has groundbreaking signifi-
cance, but it had complicated feature definition. Liang et al.
[8] used the technique of subspace division to represent
the geometric features of human posture. They defined a
set of feature vectors to represent motion data based on this
method. This method is concise for the feature definition of
human posture.

Combining the geometric features of the human body
and the method of subspace division, the motion data fea-
tures in this paper are divided into parts that describe spe-
cific human postures, posture changes, and features that
characterize the primary state of posture. The first is from
the static and dynamic perspectives, and the last is related
to the parameter construction of the model. Semantic infor-
mation in the same essential state in different actions may
differ.

2.2. Human Action Classification Method. Action classifica-
tion methods for human action need to model the tempo-
ral and spatial information in motion data. In recent years,
researchers have proposed many action classification
methods based on neural network. The methods they used
include the model based on RNN [9], CNN [10, 11], GCN
[12–14], and Long Short-Term Memory (LSTM) [15]. The
probabilistic graphical model is one of the popular solu-
tions to the problem of action classification. The probabi-
listic graphical model is divided into a directed graph
model and an undirected graph model. Both of them are
suitable for modeling sequence models. Ma et al. [16] used
the Hidden Markov Model (HMM) to recognize human
action. Samr and Nizar [17] used the Beta-Liouville
HMM action classification method. Wen et al. [18] used
a Hierarchy Dirichlet Process-Hidden Markov Model
(HDP-HMM) to represent the action class. This method
can automatically obtain the number of hidden states dur-
ing the learning process. Using undirected probabilistic
graphs, Vrigkas et al. [19] used the HCRF model to recog-
nize the human activities. The modified Hidden Condition
Random Field (mHCRF) model based on the HCRF
model was proposed by Zhang and Gong [20]. Their
method optimized the algorithm by introducing the exact
hidden state sequence obtained from the HMM to prevent
it from falling into a local optimum.

We use the sHCRF model for action classification, which
is based on a probabilistic graph model. It is suitable for
modeling the temporal correlation in sequence data, and
the graph model supports sequence data input with different
lengths.
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2.3. Incremental Learning Method. At present, among the
methods for achieving category increment, the incremental
learning [21] method is showing adequate results in various
classification techniques. Incremental learning is a system
that continuously learns from new samples and saves most
previously learned knowledge. Whenever new data are
added, it is not necessary to rebuild all the knowledge bases.
Only the changes caused by the new data update the original
knowledge bases. The incremental learning method is more
closely aligned with the principles of human thinking.

Incremental learning methods based on regularization
usually do not need to use old data to let the model review
the tasks it has learned. The Learning without Forgetting
(LwF) algorithm proposed by Li and Hoiem [22] does not
need to use the data of an old task and can fit new data while
suppressing the forgetting of old knowledge. The main idea
of the LwF algorithm comes from the knowledge distillation
method proposed by Hinton et al. [23], which predicted the
new model on a new task similar to the prediction of the old
model on the new task. Irfan et al. [24] proposed a model
which can handle both multitask and single incremental task
scenarios as opposed to various existing models that cover
only the multitask scenarios. The Elastic Weight Consolida-

tion (EWC) algorithm based on the Bayesian framework
proposed by Kirkpatrick et al. [25] introduces an additional
parameter-related regular loss. The loss encourages the new
model parameters obtained by further task training to be as
close as possible to the old model parameters according to
the importance of different parameters. In the replay-based
incremental learning method, when training a new task, part
of the old representative data is retained and used for the
model to review the old knowledge learned. It may overfit
the retained old data. Lopez-Paz and Ranzato [26] proposed
the Gradient Episodic Memory (GEM) algorithm for this
problem. It only updates the parameters of the new task
without interfering with the parameters of the old task. It
modifies the gradient update direction of the new task in
an inequality-constrained manner so that the model does
not increase the old one. Concurrently with the loss of the
task, it tries to minimize the loss value of the new task.

Most incremental learning methods are based on convo-
lutional neural networks, and they have few applications to
probabilistic graphical models. Moreover, there is no clearly
applicable method in action classification. Based on the anal-
ysis and conclusions presented in Section 2.2, the action
classification model proposed in this paper uses the

Posture sernantic
sequence

Capture new motion data by sensors Classification knowledge CKN+1

Classification knowledge CK
N

Parameter sets

sHCRF model

Training

Distillation loss

Classification
loss

Class 1 Class 2 Class N

Posture sequence

Posture change
 sequence

Figure 1: The framework of the action classification for Green IoT.
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probability graph model as its basic model and introduces
the idea of “shared parameters” in the depth model, which
has the conditions for category increment.

3. Collection and Characterization of Motion
Capture Data

The human action features in this paper are extracted from
motion capture data. The motion capture data is represented
as the skeleton hierarchy, which refers to the motion nodes
as joints. They have characteristics that describe human pos-
ture, posture changes, and features that define deep semantic
information of human actions. The first two are composed
of a posture base and a posture change base, respectively,
and describe the static and dynamic characteristics of the
data, respectively. The last feature is referred to as the pos-
ture semantic base in this paper. The posture semantic base
represents the essential characteristics of a human posture.
The complete set of posture semantic base defined in this
paper is the posture semantic base set HD, where D is the
size of the collection. The state transition set TC represents
all posture semantic base transitions between the posture
semantic bases, where C is the size of the set.

3.1. Motion Capture Data Collection. The motion acquisition
device consists of 17 node sensors and a hub developed by
our research group. As shown in Figure 2, there is a 9-axis
sensor of each node, containing a 3-axis accelerometer, a
3-axis gyroscope, and a 3-axis magnetometer. The precision
of the sensor is +0.5 degrees. The original data collected are
gravity acceleration, rotation rate, and magnetic force data,
respectively. The reconstructed motion data is solved by a
9-axis fusion algorithm. It is identified by the specific data
ID of each sensor, where the position of sensor nodes corre-
sponds to human joints. The IDs are shown in Table 1.

3.2. Posture Base. Human motion capture data are sequence
data of multiple frames of human posture arranged along
the time axis. Each frame is composed of three-
dimensional rotation data for each joint of the human body.
In this paper, we define the number of primary moving
joints M. The primary moving joints of the human body
include the joints on the arms (including shoulders, elbows,
and wrists), leg joints (including hips, knees, and ankles),
and torso joints (mainly the abdomen). When M is 13, the
primary moving joint is composed of all arm joints and leg
joints, plus abdominal joints. This paper takes the root joint
coordinate system of the initial posture of the human
motion data as the absolute coordinate system of the pri-
mary moving joint. The rotation matrix of the moving joint
is obtained from its Euler rotation angle. The direction vec-
tor of the moving joint is taken from a unit vector parallel to
the direction vector of the coordinate axis in the absolute

(a) Schematic diagram of sensor wearing
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(b) Sensor position correspondence

Figure 2: Motion capture sensor set.

Table 1: Sensor position correspondence.

MTS_
ID

Corresponding
location

MTS_
ID

Corresponding
location

0xFF01 Left hand 0xFF0B Right hand

0xFF02 Left low-arm 0xFF0C Right low-arm

0xFF03 Left up-arm 0xFF0D Right up-arm

0xFF04 Left shoulder 0xFF0E Right shoulder

0xFF05 Left up-leg 0xFF0F Right up-leg

0xFF06 Left low-leg 0xFF10 Right low-leg

0xFF07 Left foot 0xFF11 Right foot

0xFF08 Waist

0xFF09 Chest

0xFF0A Head
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coordinate system. In the local coordinate system of the
joint, the spherical coordinate of the moving joint is com-
posed of the angle between the direction vector and the axis
of the local coordinate system.

To get the posture base of the joint, we first divided the
rotation space of the joint into three subspaces by each axis
according to the knowledge of human kinematics and
related motion experience. Then, we selected a direction vec-
tor of the joint and calculate the angles between the vector
and each coordinate axis. We used the angles to determine
the subspace where the vector is located by each axis, and
we obtained a joint state vector, whose length was 3. We also
obtained other state vectors by selecting different direction
vectors. Finally, we selected the required values from the
obtained state vector to get a weighted sum. The weighted
sum is the posture base of the joint. As shown in the con-
struction process of the posture base of the elbow joint in
Figure 3, we first select the lower arm bone as the direction
vector of the elbow joint. The rotation space of the elbow
joint is divided into three subspaces by each axis, which
are 0° ~ 60°, 60° ~ 120°, and 120° ~ 180°, respectively. A
three-bit code is defined according to the spherical coordi-
nates, and each bit code can take 0, 1, or 2 according to
the angle interval of each dimension in the spherical coordi-
nates. The code is a ternary code. At this point, the informa-
tion about the direction vector of the joint rotating around
itself is missing; so, it is necessary to introduce the spherical
coordinate information of other vectors perpendicular to the
direction vector to obtain other ternary code and to con-
struct the posture base of the elbow joint in the current
frame. The formula of posture base can be expressed as fol-
lows:

pbki = f p Jki ,Vk

� �
= 〠

n

l=0
Ζα Jki ,Vl

kð Þ, ð1Þ

k ∈ 0,Mð �, i ∈ 0,Nð �, n ∈ 2, 3½ �, l ∈ 1, n½ �: ð2Þ

pbki represents the posture base of the kth joint in the ith
frame data. f pðJki ,VkÞ is the characteristic function. Jki repre-
sents the spherical coordinates of the kth joint in the ith

frame data. Vk is the direction vector set of the kth joint.
∑n

l=0Ζ
α is the weighted sum of joint states for the purpose

of compressing information. n represents the number of
joint state vectors, and its value is related to the rotational
freedom of the joint. Z represents the number of divisions
of the joint’s subspace. Function α is the method to deter-
mine the state of the included angle in the corresponding
dimension. Vl

k represents the lth direction vector in Vk.
Function α is defined as

α Jki ,Vl
k

� �
=

0, Jki ,Vl
k

D E
∈ β1, β2ð Þ,

1, Jki ,Vl
k

D E
∈ β2, β3ð Þ,

2, Jki ,Vl
k

D E
∈ β3, β4ð Þ,

8>>>>><
>>>>>:

ð3Þ

0° ≤ β1 < β2 < β3 < β4 ≤ 180°: ð4Þ
hJki ,Vl

ki represents the angle between Jki and Vl
k. β1, β2,

β3, and β4 are subspace boundary values of joint rotation
space. In Figure 3, β1 = 0°, β2 = 60°, β3 = 120°, and β4 =
180°.

3.3. Posture Sequence and Posture Change Sequence. The
human posture sequence is a time series composed of pos-
tures. The posture pi of the ith frame can be expressed as f
pb1i , pb2i ,⋯, pbMi g. The posture sequence PN is expressed as
fp1, p2,⋯, pNg.

The posture change base is the code obtained by changes
of the spherical coordinates of the corresponding joint
between adjacent moments—increasing, decreasing, and
unchanged—similar to the coding method of the posture
base. Its code is computed by the included angle change
value of each dimension. The coding formula is expressed
as follows:

pcki = f c Jki
� �

= 〠
n

l=0
3d Jk,li ,Jk,li+1ð Þ, ð5Þ

k ∈ 0,Mð �, i ∈ 0,Nð �, n ∈ 2, 4½ �, l ∈ 1, 3½ �: ð6Þ

Joint state vector of the elboe joint

Joint state vector

Joint state vector 1
(X1, Y1, Z1)

Joint state vector 1
(X1, Y1, Z1)

Joint state vector m
(Xm, Ym, Zm)

Weighted
summation

Posture
base

X rotation

X1
(0/1/2)

Y1
(0/1/2)

Z1
(0/1/2)

X

Y

X X

Y Y
Z

Z

0
(0°–60°)

2
(120°–180°)

1
(60°–120°)

0
(0°–60°)

0
(0°–60°)

2
(120°–180°)

2
(120°–180°)

1
(60°–120°)

1
(60°–120°)

Y rotation Z rotation

Figure 3: The construction process of the posture base.
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pcki represents the posture change base of the kth joint
between the ith and the ði + 1Þ-th frame. f cðJki Þ is the
characteristic function. ∑n

l=03d is the weighted summation,
where 3 indicates that the angle changes of the joints in
three coordinate axis directions need to be considered. d
is the coding function for changing spherical coordinates.
It is defined as

d Jk,li , Jk,li+1
� �

=
0, Jk,li+1 − Jk,li > 0,
1, Jk,li+1 − Jk,li = 0,
2, Jk,li+1 − Jk,li < 0:

8>><
>>:

ð7Þ

Jk,li and Jk,li+1 are the lth dimensional angles in Jki and
Jki+1, respectively. The posture change ci of the ith and
the ði + 1Þ-th frame can be expressed as fpc1i , pc2i ,⋯, pcMi
g. The posture change sequence CN can be expressed as
fc1, c2,⋯, cNg.

3.4. Posture Semantic Base. The posture semantic base of a
frame in the human motion data represents the essential
characteristics of the current posture. The posture semantic
base corresponding to different postures may be the same,
but it may represent different semantic information among
the actions. A collection of posture semantic bases in a
movement can be a feature representation of the campaign.
This collection is a subset of the posture semantic base set
HD.

The posture semantic base considers the dynamic and
static characteristics of human motions. It is a K-dimen-
sional integer vector hK = fμ1,⋯, μp, υ1,⋯, υqg, where p
-dimensional data μ = fμiji = 1,⋯, pg describe the state of
p motion joints of the human body and represent the state
of the selected joint in the human body coordinate system.
This method divides the joint rotation space into two sub-
spaces, corresponding to the rotation angle of the joint. Tak-
ing the shoulder joint as an example, this method divides the
rotation space of the shoulder joint into upper and lower
subspaces, where the horizontal plane is used as the inter-
face. The subspace is for determining the state of the joint;
in addition, the q-dimensional data ν = fνjjj = 1,⋯, qg
describe the movement of the human body and are reflected
by the angle between the direction of human motion and the
direction of the human face in the current frame. For exam-
ple, when K = 8, p = 6, and q = 2, μ represents 6 states of the
shoulders, hips, root joint, and abdomen joints; ν represents
the movement of the human body in the horizontal and ver-
tical directions. The size of the posture semantic base setHD
is related to the definition of the posture semantic base,
which is 2K .

The posture semantic base is used as a hidden state node
in the HCRF model. But in the HCRF model, the hidden
state sequence is uncertain. In our method, we designed
the posture semantic sequence as a certain input of the hid-
den state layer to optimize the model.

4. An Incremental Action Classification Method
Based on the sHCRF Model

This paper proposes a new action classification model based
on the human action features described above, namely, the
shared Hidden Conditional Random Field model. The
model was improved based on HCRF, and it introduces a
structure with a shared-classification layer. To solve the
problem of data storage during the learning process, this
study used batched incremental learning.

4.1. The Shared-Classification Layer Structure. The sHCRF
model introduces a shared-classification layer structure,
which has two layers. One is the shared layer, which is used
to extract the motion semantic information from the fea-
tures. The other is the classification layer, which uses the
information from the shared layer to classify the samples.
The structure can reduce the redundancy of model parame-
ters, as well as maintain high classification accuracy.

The shared layer is composed of two parts, one is used to
process posture sequence, and it is a parameter matrix of size
M ×D. The other is used to process posture change
sequence, and it is a M × C parameter matrix. The former
is constructed based on the posture semantic base set HD,
and the latter is constructed based on the posture semantic
base transition set TC . Both the parts get the spatiotemporal
information of the human action from the features. Figure 4
shows the shared layer for posture. As shown in Figure 4, in
the shared layer for posture of the sHCRF model, each col-
umn vector hi represents a posture semantic base. There
are N posture semantic bases in the structure. Each action
has its posture semantic base set, which is a subset of the
posture semantic base set HD.

The shared layer’s output is input to the classification
layer. Each category corresponds to a classification layer.
The number of the columns of the two-parameter matrices
in the classification layer is D and C, respectively, and the
number of the rows of both the two-parameter matrices is
the number of the data categories. The classification layer
uses these data to calculate the probability that the sample
belongs to each category. At last, the category with the high-
est probability is used as the label of the sample.

The inference process of the sHCRF model, which uses
the shared-classification structure, is as follows. When per-
forming human action classification tasks, the model first
obtains the semantic information of the human posture
and posture changes in the human motion data. It then
brings this information into the specific human body motion
and analyzes the time-space relationship of motion again.
Finally, it obtains the probability that the input sample
belongs to the current motion category.

4.2. sHCRF Model Introduction. The sHCRF model further
optimizes the classic HCRF model by introducing a
shared-classification layer structure. This structure signifi-
cantly reduces the model’s computational complexity and
improves its speed of motion modeling and classification
accuracy. The classical HCRF model obtains the classifica-
tion probability of a given input by fitting the conditional
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probability PðY ∣ PN ;ΘÞ, where PN is the sequence data
with input length N , Y is the sample label, and Θ is the
parameter of the model. The model assumes that the hidden
state sequence H of the sample, which can be understood as
the posture semantic sequence in the sHCRF model, is
uncertain, and all hidden state arrangements are considered
in the calculation. The computational complexity is ΟðQ ×
2KNÞ, Q is the number of motion categories, K is the dimen-
sion of the hidden state, and N is the length of the input
sequence. The conditional probability formula calculated
by the model is as follows:

P Y ∣ PN ;Θ
� �

= ∑He
ϕ y,H,PN ;Θð Þ

∑y,He
ϕ y,H,PN ;Θð Þ : ð8Þ

PN is the human posture sequence. ϕ is the potential
function of the model, and it is defined as

ϕ y,H, PN ;Θ
� �

=〠
j

f h hj

� �
× θh y, hj

� �
+〠

j

f e ej
� �

× θe y, ej
� �

+〠
j

f pj

� �
× θ hj = a

� �
:

ð9Þ

f ∗ is the characteristic function of the model, and both
f hðhjÞ and f eðejÞ are the one-dimensional integers. f hðh jÞ
is the feature corresponding to the hidden state hj. f eðejÞ is
the feature corresponding to the jth state transition ej. fðpj

Þ is a multidimensional vector, which is the feature of the
posture of the jth frame pj. Θ is divided into θ, θh, θe accord-
ing to the corresponding characteristics. θ represents the
degree of correlation between the observation node and the
hidden state node, which is a multidimensional vector. a is
a current hidden state, and its length is the same as the

length of the human posture at the current moment. θh is
the weight of the corresponding hidden state in a particular
category, and θe is the weight of the corresponding state
transition in a category. The model structure is shown in
Figure 5.

In classification of human action, based on the input of
certain human action features, the posture semantic
sequence of the input is also determined. Equations (8)
and (9) can be simplified to Equations (10) and (11), respec-
tively. The computational complexity has been reduced to
ΟðQ ×NÞ.

P Y ∣ PN ;Θ
� �

= eϕ y,H PNð Þ;Θð Þ
∑ye

ϕ y,H PNð Þ;Θð Þ , ð10Þ

ϕ y,H PN� �
;Θ

� �
=〠

j

fh h j

� �
× θh y, hj

� �
+〠

j

fe cj
� �

× θe y, cj
� �

:

ð11Þ
Both fhðh jÞ and feðejÞ are the multidimensional vectors.
Figure 6 shows the structure of the mHCRF model. The
model has a certain hidden state sequence as the input,
and there is also a posture change sequence.

The improved potential function does not consider the
human body posture sequence or posture change sequence.
These two feature sequences carry richer posture informa-
tion than the hidden state sequence. The lack of this infor-
mation reduces the effectiveness of a model. Therefore, this
paper proposes an sHCRF, in which the shared parameter
draws on the “sharing mechanism” of the convolutional net-
work, which not only effectively reduces the number of
model parameters but also extracts the corresponding infor-
mation of the human action sequence under a hidden state
(or state transition). The model considers the series of
human actions while introducing shared parameters and

h1 h2 h3 h4 h5 hN h1 h2

K

N

h3 h4 h5 hN h1 h2 h3 h4 h5 hN h1 h2 h3 h4 h5 hN

Shared layer for posture

Figure 4: Diagram of sHCRF for motion categories. The left part corresponds to the shared layer for posture of the sHCRF model, and the
right part shows the corresponding posture semantic base set (a subset of the posture semantic base set HD) in different motions.
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the determined hidden state sequence. Equations (10) and
(11) are improved as follows:

P Y ∣ PN ;Θ
� �

= eϕ y,H,PN ;Θð Þ
∑ye

ϕ y,H,PN ;Θð Þ : ð12Þ

PN is the human posture sequence, and ϕ is defined as

ϕ y,H, PN ;Θ
� �

=〠
j

f pj

� �
× θsh hj = a

� �
× θh y, hj

� �

+〠
j

fe cj
� �

× θse cj = b
� �

× θe y, cj
� �

:
ð13Þ

pj is a human posture of the jth frame, and cj is a posture
change between the jth and the ðj + 1Þ-th frame. θsh and θse
are shared parameters from the shared layer, whose function
is to extract the semantic information of the input features
and compress its size. The lengths of θsh and θse are the same
as fðpjÞ and feðcjÞ, respectively. θh and θe are classification
parameters from the classification layer, which are used as
weights to determine the category of posture and posture
change. The dimension of both parameters is 1. Figure 7
shows the structure of the sHCRF model. There are three
types of inputs to the model, posture semantic sequence,
posture sequence, and posture change sequence. The func-
tion of posture semantic sequence is to extract the
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Figure 5: HCRF model structure, in which the hidden state sequence considers the combination of all hidden states.
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information of posture sequence and posture change
sequence according to some semantics. The model calculates
the probability that the extracted information belongs to a
certain category.

4.3. An Incremental Action Classification Based on
Knowledge Distillation. To adapt to the continuous input
of new categories of action samples, this paper uses the
incremental learning method based on the sHCRF model
to retain the old knowledge while acquiring new knowledge.
In general, it is best to retrain the model by combining old
data with new data, but additional storage space is required
for the old data. To simulate the learning and memory
mechanism of the human brain, the sHCRF model only uses
new data for training. It prevents the forgetting of old
knowledge without old data by adding distillation loss based
on classification loss. Let LC be the classification loss func-
tion. Let LD be the distillation loss function. Let L be the
total loss function, where λ be the custom hyperparameter.
Generally, let λ be 1. They are defined as follows:

LC = yn × log ŷn, ð14Þ

LD = yo × log ŷo, ð15Þ

L =LC + λLD +R: ð16Þ
yn is the label of new data, which uses one-hot encoding

[27]. As a hard label, it gives the accurate category of the
sample. ŷn, ŷo, and yo are the vectors of the probabilities of
each label. The first two are the calculated results, which
are the prediction of the new model on the new data. The
last is the prediction of the old model on the new data, which
is a soft label. R is the regular term of the parameter. To
adapt to the distillation loss, we made further improvements

to the conditional probability function PðY ∣ X ;Θ, TÞ of the
sHCRF model:

P Y ∣ X ;Θ, Tð Þ = eϕ y,H,X;Θð Þ/T

∑ye
ϕ y,H,X;Θð Þ/T : ð17Þ

The newly added temperature coefficient T can control
the smoothness of the probability distribution of the output.
yo, ŷn, and ŷo are defined as follows:

yo = P Yi ∣ X ;Θold, T = tð Þ ∣ Yi ∈ Yoldð Þ, ð18Þ

ŷn = P Yi ∣ X ;Θnew, T = 1ð Þ ∣ Yi ∈ Ynewð Þ, ð19Þ
ŷo = P Yi ∣ X ;Θnew, T = tð Þ ∣ Yi ∈ Yoldð Þ: ð20Þ

yo and ŷo are shown in Equations (18) and (20), where
the temperature coefficient T = t, t > 1. ŷn is shown in Equa-
tion (19), and the temperature coefficient T = 1. Yold is the
label set of the old data, and Ynew is the label set of the
new data.

The knowledge distillation algorithm of the sHCRF
model does not need the old data to participate in the train-
ing, and the model can retain the old knowledge while fitting
the new data. The new model adds new classification param-
eters based on the old model. Before training, the old model
is used to predict the new human motion data to obtain the
soft label of the old knowledge. The temperature coefficient
of the prediction function T = t ðt > 1Þ, then the soft label
is used as a kind of “pseudo label.” The new data and the
correct label are used as the input of the loss function. In
the training process, the new model uses the prediction
function of temperature coefficient T = t ðt > 1Þ and T = 1
to predict the new data. The prediction result of the former
and the “pseudo label” do cross-entropy to obtain the
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Figure 7: sHCRF model structure, in which the shared-classification layer structure is introduced.
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model’s distillation loss, and the latter’s prediction result is
compared with the correct label. The cross-entropy obtains
the classification loss of the model, and the two and the reg-
ular parameter terms constitute the total loss of the model.

5. Experiments

5.1. Human Motion Data Introduction. We captured the
human motion data by 17-sensor motion capture equipment
developed by our work group and reconstructed the cap-
tured information into skeleton data, as shown in Figure 8.
The human skeleton comprises 17 joints. All the data sam-
ples take the T-Posture as the initial posture, in which the
T-Posture shows that the human body is upright and the
arms are held flat. Table 2 shows the dataset Data0, which
contains all the motion data used in the experiment, includ-
ing Walk, Run, Soccer, Basketball, Jump, Jump Forward,
Dance, Yoga, Sit, Pick, Swing, Clean, Yan Fei, and Push-
up. The dataset has 14 motion categories. The number of
frames is 1,056,405, and the total number of samples is 984.

The datasets listed in Table 3 are subsets of the dataset
Data0 in Table 2. Each subset called DataX is divided into
old and new parts, representing old data in DataX_Old
and new data in DataX_New. When the datasets in
Table 3 display the classes they contain, the class name is
represented by a numerical label, which corresponds to the
class number in Data0. In Data1, the old part contains the
classes of Walk, Run, and Jump. The new part contains the
classes of Soccer, Basketball, Dance, and Swing. In Data2,
the old part contains the classes of Soccer, Basketball, Dance,
and Swing. The new part contains the classes of Walk, Run,
and Jump. Data1 and Data2 have the same data categories,
and Data2 exchanged old and new data on the basis of
Data1. In Data3, the old part contains the classes of Walk,
Run, and Jump. The new part contains the classes of Swing,
Yan Fei, and Push-up. The degree of overlap between old
and new data in DataX is defined by comparing the similar-
ity of pose semantic sets of all action classes in DataX_Old

and DataX_New. It is affected by two factors: one is the pro-
portion of the intersection of posture semantic base sets in
the old and new data in the old data, and the second is the
proportion of the intersection of the posture semantic base
sets of the new and old data in the key posture semantic base
in the old data. The high overlap degree in Data1 shows that
more than 90% of posture semantic bases in the old data

Figure 8: Motion capture and data reconstruction.

Table 2: The whole motion dataset Data0 in the experiment.

No. Class name Frames Samples

1 Walk 57369 150

2 Run 23082 150

3 Soccer 13228 24

4 Basketball 51764 56

5 Jump 88572 152

6 Jump Forward 31624 72

7 Dance 246308 120

8 Yoga 80632 24

9 Sit 136066 44

10 Pick 32458 68

11 Swing 17528 40

12 Clean 109188 24

13 Yan Fei 93970 28

14 Push-up 64616 32

Table 3: Subsets of Data0. These subsets can be divided into
DataX_Old and DataX_New sets, where X is the serial number of
the subset to which they belong.

DataX (dataset=) Old (DataX_Old=) New (DataX_New=)

Data1 1, 2, 5 3, 4, 7, 11

Data2 3, 4, 7, 11 1, 2, 5

Data3 1, 2, 5 11, 13, 14
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appear in the new data. The high overlap degree in Data2
shows that the intersection of the posture semantic sets of
the old and new data coincides with most of the key posture
semantic bases in the old data. The overlap degree in Data3
is less than that in the previous two datasets, indicating that
more than half of the posture semantic bases in DataX_Old
is unique to the old data.

5.2. Experiments. We designed three experiments in this
paper. The first explored the sHCRF model’s performance,
including the model’s training efficiency and the classifica-
tion accuracy of the model. The second explored the mem-
ory ability of the sHCRF model. The last explored the
energy consumption of the sHCRF model. In each experi-
ment, we selected three-quarters of each type of motion
samples as training samples.

The experiment of the sHCRF model’s performance: this
experiment used the HCRF model and the mHCRF model as
the benchmarks to verify the performances of the sHCRF
model in classification and training. The input of the HCRF
model was only the posture sequence, while both the
mHCRF model and the sHCRF model had two types of
input. One was included three types of features: posture
sequence, posture change sequence, and posture semantic
sequence. The other lacked a posture change sequence based
on the previous one.

The experiment of the sHCRF model’s memory ability:
this experiment had three steps. In the first step, we com-
pared the total classification accuracy of the model with
the distillation loss using different temperature T . In the sec-
ond step, we compared the classification accuracy of the
model with and without the distillation loss. The experiment
was carried out in the datasets with different overlap degrees.
We first let the model fit the old data. Then, we initialized
the new classification layer parameters corresponding to
the new category based on the model fitted to the old data.
We used the model to fit the new data with and without dis-
tillation loss, respectively. Finally, we used the updated two
new models to test on the test set containing all data, respec-
tively. In the third step, we compared the total classification
accuracy with and without distillation of the sHCRF model
in incremental learning.

The experiment of energy consumption of the sHCRF
model: this experiment used the HCRF model and the
mHCRF model as the benchmarks to show that the sHCRF
model can reduce the energy consumption. The results were
presented in the form of energy consumption ratio.

Table 4 shows the settings of hyper parameters in the
experience. The first column in the table represents where
the hyperparameters are located.

6. Results and Discussion

6.1. Performance of the sHCRF Model. The experiment to
verify the model’s performance first tested the classification
accuracy of the model. Then, we tested the model’s training
efficiency in the multiclass action classification task, and the
model’s parameters’ amount. In the experiment, the training
efficiency was represented by the single iteration time, which

had been normalizing. The number of categories in the data-
set ranges from 3 to 14 of Table 2. When the number of cat-
egories increased, the input samples also increased. Multiple
experiments were conducted on each task by using data
from random categories in the Data0 dataset. Since the
parameter optimization of the model may achieve local opti-
mization during training, multiple experiments were needed
to obtain optimal results. In the comparative experiments
with the baseline: HCRF model and mHCRF model, each
model’s classification accuracy and the single iteration time
with different multiclass tasks were compared. Among them,
the mHCRF model was divided into two types according to
whether its input included posture change sequences,
namely, mHCRF(1) and mHCRF(2). The mHCRF(1) indi-
cates that the input of the mHCRF model does not include
the posture change sequence, while the input of the
mHCRF(2) model includes the posture change sequence.
In addition, the posture semantic sequence is used as input
in the mHCRF model in this paper, but in the original
method, the annotation of HMM is the input. The sHCRF
model was divided into two types according to whether its
input included posture change sequences, namely,
sHCRF(1) and sHCRF(2). The sHCRF(1) indicates that the
input of the sHCRF model does not include the posture
change sequence, while the input of the sHCRF(2) model
includes the posture change sequence.

Figure 9 shows the classification accuracy of the model
in the multiclass action classification task, and Figure 10
shows the single iteration time in the multiclass action clas-
sification task. When only considering the influence of input
feature, as shown in the results of sHCRF(2), sHCRF(1),
mHCRF(2), mHCRF(1), and HCRF in Figures 9 and 10,
the structure of the sHCRF(2) model is the same as the
mHCRF(2) model. The classification accuracy of the sHCRF
and the mHCRF models was higher than that of the HCRF
model, the accuracy of the sHCRF and mHCRF models
was more than 90%, and the accuracy of HCRF was about
80%. The mHCRF(2) model had the higher classification
accuracy than the mHCRF(1), and the accuracy of the
mHCRF(2) was more than 95%. The sHCRF(2) model had
the higher classification accuracy than the sHCRF(1), and
the accuracy of the sHCRF(2) was more than 95%. The sin-
gle iteration time of the sHCRF(1) is the shortest, followed
by the mHCRF(1). The HCRF took the most single iteration
time. When only considering the influence of the model’s
structure, compare the results of sHCRF(2) and mHCRF(2)
in Figures 9 and 10. The accuracy of the sHCRF(2) model

Table 4: The settings of hyper parameters in the experience.

Parameters’ location Hyper parameters Value

Equations (1) and (5) M 13

hK K 7

HD D 128

TC C 16484

Equation (16) λ 1

Equations (18) and (20) T 2
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was higher than that of the mHCRF(2) model. The accuracy
of the mHCRF(2) model was slightly inferior. The single
iteration time of the sHCRF(2) model was shorter than that
of the mHCRF(2) model. Generally, the improvement of
input features contributed significantly to the classification
accuracy, and the improvement of the model’s structure
can speed up the single iteration time.

As shown in Figure 9, when the number of categories
increased, the classification accuracy of the sHCRF(2) model
stayed above 95%. The classification accuracy of the
mHCRF(2) model was similar to that of the sHCRF(2)
model. The accuracy of the mHCRF(2) model was slightly
inferior. The accuracy of the mHCRF(1) model is lower than
that of the previous two models. However, the lowest accu-
racy is still 90%. The accuracy of the mHCRF(1) model
was slightly lower than that of the sHCRF(1) model. The
classification accuracy of the HCRF model remained above
80%. But as the number of categories increased, the classifi-

cation accuracy rate gradually decreased. The model main-
tained a high classification accuracy.

As shown in Figure 10, the single iteration time of the
sHCRF(2), sHCRF(1), mHCRF(1), and mHCRF(2) models
increased steadily with the increase in the number of catego-
ries. The single iteration time of the sHCRF(2) model was
shorter than that of the mHCRF(2) model, and the single
iteration time of the sHCRF(1) model was shorter than that
of the mHCRF(1) model. Unlike the three models, the single
iteration time of the HCRF model increases rapidly. The
HCRF model spends more time on datasets with more than
five categories than is displayed.

As shown in Figure 11, there were the results of the
parameters’ amount of the sHCRF(2) and mHCRF(2)
models. The sHCRF(2) model had the minimum amount
of parameters, followed by the mHCRF(2) model. When
the number of categories increased, the amount of parame-
ters of the mHCRF(2) model rapidly increased, and its
parameters’ amount was more than the sHCRF(2) model.

Based on the results of the first two performance indica-
tors obtained from the comprehensive experiment, the
sHCRF model and other undirected probability graph
models have shown excellent performance in the compari-
son experiment of the motion classification task. It has good
advantages in classification accuracy and training speed.

6.2. Performance of the sHCRF Model in Incremental
Learning Scenarios. In the experiment of the performance
of the sHCRF model in the incremental learning scenario,
the study first tested the classification accuracy of the model
with the distillation loss using different temperature T . The
result is as shown in Figure 12. In Figure 12, when the value
of T is not greater than 5, the old data classification accuracy
fluctuates slightly around 80%. The new data classification
accuracy is about 90%, and the total accuracy is around
85%. When the value of T increases gradually from 5, the
old data classification accuracy began to decline signifi-
cantly. The same applies to other results, the decline rate
of the new data classification accuracy is relatively gentle.
When using the distillation loss, the value of T will affect
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the classification accuracy of the model. The memory ability
of old knowledge declines when the value of T exceeds a cer-
tain threshold. The threshold is related to the size of the
model.

We also verified the classification accuracy of the model
with and without distillation loss term, respectively. There
were three datasets in the verification experiment, Data1,
Data2, and Data3. The classification accuracy of old data is
used as the experimental result in Figure 13. In the experi-
ments on Data1 and Data2, the results were 6.9% and
5.8%, respectively. Its ability to retain old knowledge is
almost nonexistent. But the effects on Data3 are not. On
Data3, the model’s classification accuracy of the old data is
33.4%, showing a specific ability to retain old knowledge,
as determined by the sHCRF model’s structure. When the
overlap of Data3 is low, fitting the new data has little impact
on the old knowledge, which means that the parameters
related to the old knowledge had not changed much. So,
the old knowledge structure of the model was not completely
destroyed, and the model has a particular memory ability.

After adding the distillation loss term, the model’s mem-
ory ability improved further. This experiment was carried
out on Data1, Data2, and Data3. The comparison between
the classification accuracy of the model on Data1, Data2,
and Data3 with and without the distillation loss was given,
as shown in Figure 13. In Figure 13, the model’s classifica-
tion accuracy of the old data on Data1 has increased from
6.9% to 86.7%. The old data classification accuracy on Data2
has increased from 5.8% to 78.8%. The old data classification
accuracy on Data3 has increased from 33.4% to 72.9%. In
both Data1 and Data2, the preserving rate of old knowledge
of the model has been greatly improved, which effectively
inhibits the forgetting of old knowledge by the model. The
preserving rate of old knowledge of the model has been
improved on Data3. The new data classification accuracy
on Data1 is from 98.9% to 94.3%. The new data classifica-
tion accuracy on Data2 is from 98.5% to 90.1%. The new
data classification accuracy on Data3 is from 96.0% to
88.0%. The accuracy still maintains high. The model has

similar performance in the cognition accuracy of new and
old data because of the balance between the model’s classifi-
cation loss and distillation loss. When the overlap degree is
high, the distillation loss plays a more significant role in
maintaining the old knowledge.

In Table 5, there is the comparison of the total accuracy
of both the old and new data with and without distillation.
On Data1, the total accuracy increased from 52.8% to
90.5% by adding the distillation loss. On Data2, the total
accuracy is 52.2% without distillation, and it has improved
to 84.5% by adding the distillation loss. On Data3, the total
accuracy increased from 64.7% to 80.5% by adding the distil-
lation loss.

We compared the total classification accuracy with and
without distillation of the sHCRF model during incremental
learning. The results are shown in Figure 14. We first set up
the original model, which could classify three categories.
When the categories were incremental, the classification
accuracy of the model without distillation rapidly dropped
to about 50%. The classification accuracy was around 50%
as categories increased since then. The classification accu-
racy of the model with distillation also declined. The classi-
fication accuracy of the model was above 70% as categories
increased.

6.3. Energy Consumption Analysis. We combined the train-
ing efficiency and the amount of parameters to estimate
the ratio of the energy consumption of the sHCRF model
to that of the baseline models. The energy consumption
included the computation energy and the storage energy
[28]. The computation energy was estimated from the com-
putational complexity of the model, and the storage energy
was estimated from the amount of parameters of the model.
The experiment consisted of two contrasting experiments,
the comparison of the sHCRF model and the mHCRF
model, and the comparison of the sHCRF model and the
HCRF model. In the experiment, we tested on datasets with
different numbers of action categories. The results are shown
in Figure 15.

As shown in Figure 15, “S/M” represents the comparison
of the sHCRF model and the mHCRF model, and it repre-
sents a ratio. In the comparison of the sHCRF model and
the mHCRF model, when the number of categories
increased, the proportion of the storage energy dropped,
and the sHCRF model consumed less storage energy than
the mHCRF model. The proportion of the computation
energy was less than 1. It means that the sHCRF consumed
less computation energy. “S/H” represents the comparison
of the sHCRF model and the HCRF model, and it represents
a ratio. In the comparison of the sHCRF model and the
HCRF model, the sHCRF model consumed less storage
energy than the HCRF model. When the number of catego-
ries increased, the proportion of the computation energy
dropped and almost dropped to 0.

Based on the results of the energy consumption, when
the number of categories increased, the single iteration time
and the amount of parameters of the sHCRF model were
lower than those of the mHCRF model and the HCRF
model. It could be estimated that the computation energy
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and the storage energy of the sHCRF model were less than
those of the mHCRF model and the HCRF model. Combin-
ing the computation energy and the storage energy, it can be
considered that the sHCRF model consumes less energy.
The application system implemented based on the sHCRF
model can save the computation and storage energy in terms
of model training. The specific energy consumption also
depends on the energy consumption of the chips, and related

hardware. The energy consumption measurement of an
application system will be the future work.

7. Conclusions

In this paper, we proposed a lightweight action classification
method for Green IoT sport applications. We designed
motion features which could describe the spatial and tempo-
ral information of the motion data. We proposed a human
action classification model, namely, sHCRF, which can be
applied to incremental learning scenarios. The model
achieves the purpose of energy efficiency by reducing com-
putation overhead and amount of sample data required for
training. In general classification tasks, the model’s classifi-
cation accuracy is more than 95%. In the incremental learn-
ing scenario, this paper verifies that it can preserve the old

Table 5: The total accuracy of the sHCRF model of both the old
and the new data with and without distillation.

Dataset name
Total accuracy (%)

No distillation With distillation

Data1 52.8 90.5

Data2 52.2 84.5

Data3 64.7 80.5
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Figure 14: Comparison of the total classification accuracy with and
without distillation of the sHCRF model in incremental learning
process.
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knowledge. In the case of category increment, the preserving
rate is about 70%. The model’s learning ability balances the
old and new knowledge. This can effectively control the
growth rate of model capacity.

The knowledge distillation method used in this paper
depends on the similarity of the training data. If the actions’
distinctives are obvious, the effect of the traditional knowl-
edge distillation algorithm is not significant. Further work
will improve the model’s preservation rate of old knowledge
in incremental learning scenarios.
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