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Future autonomous electric vehicles (EVs) are equipped with several IoT sensors, smart devices, and wireless adapters, thus
forming an Internet of Vehicles (IoVs). These intelligent EVs are envisioned to be a promising solution for improving
transportation efficiency, road safety, and driving experience. Vehicular fog computing (VFC) is an evolving technology that
allows vehicular application-related tasks to be offloaded to nearby computing nodes and process them quickly. A major
challenge in the VFC system is to design energy-efficient task offloading algorithms. In this paper, we propose an optimal
energy-efficient algorithm for task offloading in a VFC system that maximizes the expected reward function which is derived
using the total energy and time delay of the system for the computation of the task. We use parallel computing and formulate
the optimization problem as semi-Markov decision process (SMDP). Bellman optimal equation is used in value iteration
algorithm (VIA) to get an optimal scheme by selecting the best action for the current state that maximizes the energy-based
reward function. Numerical results show that the proposed scheme outperforms the greedy algorithm in terms of energy
consumption.

1. Introduction

Recently, autonomous and connected electric vehicles also
known as the Internet of Vehicles (IoVs) have gained exten-
sive attention and flourished as a promising technology by
bringing convenience to society by solving the traffic issues
like accidents [1], congestion, and environmental pollution
[2]. By 2035, it is estimated that around 25% of autonomous
vehicles will be on-road [3]. Nowadays, a large number of
sensors, smart devices, and controllers are deployed in vehi-
cles to facilitate the drivers and passengers for autonomous
driving, infotainment, and natural language processing [4].

According to an estimate in 2020, every day around
4000GB of data is produced by the vehicles [5]. Due to these
smart sensors and controllers, the IoVs consume an enor-
mous amount of power for the processing of data generated

by the smart devices [6, 7]. As the vehicles have limited
resources of energy and computational power, the computa-
tion of smart applications that cannot be managed locally
needs to be offloaded to the helping nodes [8].

With the development in the technology of computation
and communication [9], the vehicles can be both task pro-
ducer and service provider nodes. This concept brings the
computation capabilities near the proximity of task producer
vehicles with the help of Vehicular to Vehicular (V2V) and
Vehicular to Infrastructure (V2I) communication [10].

Vehicular fog computing is a novel technique for com-
puting tasks and uses computational resources of both mov-
ing and parked vehicles [11]. The basic concept behind VFC
is to install resource units (RUs) on connected vehicles so
that these vehicles act as fog nodes and deliver their services
of communication and computing, according to the
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requirements [12]. To enable communication of tasks to the
vehicular fog nodes, vehicles are armed with different types
of network interface components. Vehicular fog nodes com-
municate with devices and the Internet via cellular network
or IEEE 802.11p [13].

VFC is thus a proficient method for low latency tasks
and smart IoV applications. However, vehicular fog nodes
have limited computation capability of RU’s and bandwidth
of communication; hence, it is not possible to process all the
tasks and satisfy computation latency requirements by the
VFC. To solve this issue, vehicles are also connected to the
cloud servers in the form of remote cloud (RC) using cellular
communications [14]. Vehicles can transfer the tasks to the
RC and avail the opportunity of powerful computational
resources. However, long distance between RC and vehicles
suffers from challenges of high latency and high-power con-
sumption due to the transfer of tasks to the RCs. To assure
reliable computing services to the EVs, the three-tiered
VFC architecture is considered in this paper. This architec-
ture includes task producer devices, vehicular fog nodes,
and the remote cloud as shown in Figure 1 [15].

In this paper, we propose an optimal energy-efficient
algorithm for task offloading in a VFC system that mini-
mizes the energy consumption of the system. We propose
an energy-based reward function for the considered problem
and utilize parallel offloading. Vehicles with the tasks divide
it into several parts and offload it to the neighboring vehicles
for processing. One part of the task is computed locally, and
the rest of the parts are offloaded to the remaining other
cooperative vehicles such that the energy efficiency of the
whole system is maximized.

The main contribution of our work is summarized as
follows:

(i) We propose a novel reward function that considers
the energy of the system for parallel task offloading

(ii) We formulate the problem of task offloading as
semi-Markov decision process (SMDP) that con-
sider factors such as (1) arrival of task, (2) departure
of task, (3) arrival of the vehicle, and (4) departure
of the vehicle

(iii) The state space, actions, reward, and transition
probabilities of the VFC system are analyzed and
defined to obtain the optimal policy, which deter-
mines the best action for the specific state for task
offloading

(iv) We used the iterative algorithm to solve the optimal
task offloading problem and increased the long-
term expected reward in the form of saved energy
and time

(v) We compare the results of the proposed technique
with a greedy algorithm and show significant per-
formance gains

The rest of the paper is organized as follows. Section 2
provides the related literature review. In Section 3, we
describe the system model of the VFC system. In Section 4,

we formulate the problem as an SMDP optimization prob-
lem. The solution to the optimization problem is given in
Section 5 as an iterative algorithm. Section 6 presents the
numerical results and analysis of the performance. Finally,
in Section 7, conclusion and future work are presented.

2. Related Work

In recent years, few works have been carried out to investi-
gate the task offloading problem in vehicular fog computing.
Wu et al. in [16] proposed a task offloading policy for the
VFC and used IEEE 802.11p protocol for the transmission
of tasks. Tasks are divided based on priorities according to
the delay requirements. The problem is formulated as
SMDP, and the task offloading scheme is presented to max-
imize the long-term reward in the form of reduction of pro-
cessing time of a prioritized task. To solve this problem,
iterative algorithm is used.

In [17], the authors improve the efficiency of
application-aware offloading by proposing a VFC system in
which public vehicles such as buses are being used as fog
servers. A priority queuing system is applied to model the
VFC for the application-aware delay requirements. The
problem is formulated as SMDP. An application-aware task
offloading policy is proposed to obtain the maximum long-
term award of the VFC model.

In [18], a novel offloading scheme has been proposed to
minimize the cost of energy consumption, failure in offload-
ing, and service latency of the VFC network. At first, the
overloaded cloudlet node has been determined, and then,
an offloading policy has been introduced to determine which
task will be offloaded and for the selection of vehicular node
to place the offloaded task.

A game-theoretic approach can be used to overcome the
demand-resource mismatch by minimizing the usage of
resource energy and reducing the response time. The pro-
posed resource allocation model has outperformed the
state-of-the-art VFC models in terms of improved perfor-
mance for the vehicles by keeping reducing the energy con-
sumption [19].
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Figure 1: Basic three-tier architecture of VFC.
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A distributed scheduler scheme for the energy consump-
tion minimization for computing has been presented in [20].
The proposed model maximizes the efficiency of the system
as well as maintains the quality of service. In [21], the
authors show that the long-term reward of the VFC system
can be increased by using an optimal task offloading strategy
that uses the computation and transmission delays and
available RUs. An iterative algorithm is used to solve the
problem which is formulated as SMDP.

The work in [22] proposed the concept of VFC in which
the electric vehicles are used as fog nodes and used to save
energy for mobile devices. They used the Markov decision
process to formulate the resource allocation problem and used
dynamic programming to solve this problem. In [23], the
authors proposed an efficient incentive mechanism based on
the contrast matching approach for the problems of task off-
loading and computational resource allocation problems in
the VFC system. By this approach, the base stations offload
the task to nearby vehicles and minimize the task delays by
using the underutilized resources of the vehicles.

The work in [24] proposed a deep dynamic reinforce-
ment learning algorithm by exploiting the Markov decision
process. They used reinforcement learning to get an offload-
ing decision that minimizes the cost of the VFC system con-
sisting of consumption of energy and service delay. In [25],
Liu et al. presented a three-layered architecture for service
offloading in the VFC system consisting of vehicular fog,

fog server, and central cloud. They formulated the probabi-
listic task offloading problem to minimize the energy con-
sumption payment cost and the execution delay and solved
it by the iterative coordination process.

In [26], a task offloading policy for the VFC system is pro-
posed that considers the task priority, vehicle mobility, and the
availability of service by the vehicles. The priority-based task
offloading policy was formulated as MDP and solved by a soft
actor-critic-based deep reinforcement learning algorithm to
maximize the entropy of policy and the reward.

To achieve the benefits prevailed by vehicular fog comput-
ing (VFC), the authors in [27] have presented a three-layer
VFC model to minimize the response time of the vehicles.
The problem has been formulated as a real-time optimization
problem for the effective management of decentralized traffic.

Different from the work in the literature that studied the
task offloading scheme in VFC system, we develop an
energy-efficient task offloading scheme in VFC system to
maximize the long-term reward by using the parallel com-
puting and computing one part of the task request locally
and offloading the remaining task to the vehicular fog nodes.

We utilize vehicular fog computing model in [21] as
basis of our work; however, there are two major differences
from the previous work. The first difference is the consider-
ation of local computing at the task-generating vehicle as
well as remote cloud computing whereas [21] only considers
resources from other cooperative vehicles. The second
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Figure 2: System model.
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difference is that the focus of our work is on energy effi-
ciency, and hence, we propose a new reward function that
considers energy consumption of the vehicular computing
node.

3. System Model

In the present section, we present the system model inspired
by [21] as shown in Figure 2. For computing, VFC is a recent
paradigm that has been furnished several applications that
required high computation and time-critical applications by
offering the computing resources for the processing. All the
vehicles, in the VFC, have a processor with a RU and also a
source of a task; i.e., the vehicles can offload their computation
tasks between each other. Since the arrival and departure of
the vehicles from the VFC are random, the resources of com-
putation change randomly in the VFC system. We assumed
that all vehicles have the same virtualized RUs, and also, they

are conscious of the accessible RUs in the system through
communication with other vehicles in real time. When a task
request arrives at the system, it has to be decided whether to
accept this request or transfer it to the remote cloud (RC)
according to the availability of the resources. If the request is
accepted by the VFC system, the system decides to allocate
the number of RUs according to available RUs.

For the illustration, we consider an example present in
Figure 2. Vehicle V1 generates a task and is accepted by the
VFC system as there are sufficient available resources; the task
is then divided into four equal subtasks; one part is computed
by V1 itself and the remaining three parts are offloaded to the
three RUs, i.e., V2, V3, and V4: If there are no available RUs,
the task is transferred to the RC for the computation. After the
computation, the result is feedback to the V1. The vehicles
arrive and depart the system according to the Poisson process.
The arrival rate of the vehicle is λc, and the departure rate of
the vehicle is μc. The maximum number of vehicles that the

Table 1: List of important notations used in the paper.

Notations Description

K Maximum vehicles in the VFC system

R Available RUs

MR Maximum number of RUs that can be allotted to a task request

S Maximum number states

λc Vehicle arrival rate

μc Vehicle departure rate

λh Task request arrival rate

μh Task request service rate

ni Total request tasks serviced by i RUs

T Task request arrival

Di The departure of the task request serviced by i number of RUs

C+1 Vehicle’s arrival

C−1 Departure of vehicle

ωe Income weightage of energy

ωd Income weightage of time

βe Price per energy saving

βd Price per delay saving

ζ Cost for transmission of task request

dc Transmission time between VFC to RC

df Transmission time between requested vehicles to VFC

I Total income of system

Pc Computation power of RUs

Pt The transmission power of vehicles

η Punishment to the VFC system due to vehicle departure

γ Discount factor

α The factor of continuous discount

ϵ Threshold value

θ Convergence rate
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VFC system can handle is denoted as K, and we assume that
available RUs in the system are R which fluctuate according
to the departure and arrival of the vehicle. The number of
RUs R in the VF cannot surpass the maximum number of
vehicles K, i.e., R ≤ K . Task arrival rate and service rate also
follow the poison distribution denoted as λh and μh, respec-
tively. The computing service rate is μh when only one RU
process the task for i RU service rate iμh.

4. Problem Formulation

In this section, we formulate the problem of task offloading by
using SMDP. The number of available RUs in the VFC system

changes by the events of departure and arrival of tasks and
vehicles. When a task request from the vehicle arrives at the
system, the system allocates the different number of RUs or
transfer it to the RC for processing. The system achieves a
reward as a result of task offloading decision which depends
on the energy saved and computation time for the processing
of the task.

In this SMDP model, the state is a set consist number of
available and occupied RUs under different events. An action
indicates the choices for decisions for different states. The
reward reflects the advantage of the system in terms of energy
and time for different states and actions. The probabilities of
transition from one state to another under different actions
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Figure 3: State transition diagram.

Input: state-space S, action space Λ, reward Rðs, aÞ, transition probability Pðs′ ∣ s, aÞ, rate of convergence ϵ
Output: the optimal policy π∗

Initialization: set value function VðsÞ = 0 for all s ∈ S and m = 0
1. For every state s ∈ S
2. V̂m+1ðsÞ =max

a∈A
½R̂ðs, aÞ + bγ∑s′∈SP̂ðs′ ∣ s, aÞV̂mðs′Þ�

3. IfkV̂m+1 − V̂mk < ϵthen
4. For each system state s ∈ Sdo
5. ′π∗ðsÞ′ = arg max

a∈A
½R̂ðs, aÞ + bγ∑s′∈SP̂ðs′ ∣ s, aÞV̂m+1ðs′Þ�

6. Else
7. m + +8 back to line 1
9. Return the optimal policy π∗

Algorithm 1: VIA.
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are described by transition probabilities. The notations used in
this section are summarized in Table 1.

4.1. States. The system state S indicates the available
resources present in the VFC system in the form of RUs,
the number of requests processed by various numbers of
RUs, and the events of requests and vehicles [21], i.e.,

S = s ∣ s = R, n1, n2,⋯, nMR
, e

� �� �
, ð1Þ

where R is the available RUs in the system and ni denotes
the quantity of task request served by the i resource units 1
≤ i ≤MR, and e is a particular event that belongs to the E set

E = T ,D1,D2,⋯,DMR
, C+1, C−1

� �
: ð2Þ

Here, T denotes the task’s arrival,MR denotes the maxi-
mum RUs the system of VFC can assign to the task,Di is the
departure of the task that was serviced and accomplished by
i RUs, C+1 denotes vehicle’s arrival rate, and C−1 denotes the
departure of the vehicle. The overall sum of vehicles K
should be greater than the number of RUs in the system.
The allocated RUs to the in the system can be calculated
by ∑MR

i=1 i:ni that should always be less than the available

RUs in the system at any state, i.e., ∑MR
i=1 i:ni ≤ R. Moreover,

the remaining number of available RUs is measured from
R −∑MR

i=1 i:ni.

4.2. Actions. Action in the VFC system indicates the different
possibilities of decision that the system can be taken according
to the specific event of the current state [21]. Action based on
the state s belongs to the set Λ and is denoted by a ðsÞ

Λ = −1, 0, 1, 2,⋯,MRf g, ð3Þ

where aðsÞ = −1 shows the case when the task is completed
and depart the system; no action of allocation of RUs is taken

similarly when a vehicle arrives or departs, only the VFC sys-
tem is updating its information about the available RUs.When
the task request arrived, there are two options; either the
request is accepted or transfer it to the RC; aðsÞ = 0 indicates
the action when the task has arrived and there are no available
RUs in the system and transfer it to the RC; aðsÞ = imeans that
the task arrives and i RUs allocated for the processing of the
task. The relationship between action and events is shown in
the equation below.

Λ =
−1f g, e = D1,D2,⋯,DMR

, C+1, C−1
� �

,
0, 1, 2,⋯,MRf g, e = T:

(
ð4Þ

4.3. Rewards. The reward reflects the advantage of the system
of VFC after various actions undertaken for several states. As
the main purpose of the system is to cut off the energy con-
sumption and execution time of the tasks in the system by sav-
ing power and increasing the processing speed, the reward
comprises both, the total income and cost of the system [21].
When an action is performed at a specific state s, the system
earns an instant income Iðs, aÞ.

The state s remains for a certain time till the next event is
occurring, and state s is transitioned to the next state s′. This
time is known as the cost Gðs, aÞ of the system. The differ-
ence of the income Iðs, aÞ and the cost Gðs, aÞ is known as
reward Rðs, aÞ.

R s, að Þ = I s, að Þ −G s, að Þ: ð5Þ

The income and cost of the system are derived below.

4.3.1. Income. The income of the system depends on differ-
ent events and actions because the state is changed by the
occurrence of the events. The income of the VFC system
can be described as follows:

ωeβe Pc
1
μh

� �
− Ptdf − Pc

1
i + 1ð Þμh

� �� �
+ ωdβd

1
μh

� �
− df −

1
i + 1ð Þμh

� �� �
− ζdf

� 	
, a = i, e = T ,

ωeβe Pc
1
μh

� �
− Ptdf

� �
+ ωdβd

1
μh

� �
− df − dc

� �
− ζ df+dc
� �� 	

, a = 0, e = T ,

0, a = i, e = D1,D2,⋯,DMR
, C+1

� �
,

0, a = i, e = C−1f g, 〠
MR

i=1
i:ni < R,

−η, a = i, e = C−1f g, 〠
MR

i=1
i:ni = R:

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
ð6Þ
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The income function is explained below.

(1) a = i, e = T . When a task request arrives and is accepted by
the system when resources are sufficient for the task, the sys-
tem assigns i RUs to complete the request of the task; one part
is computed locally by the requested vehicle so that no energy
is wasted in idle. The instant income that can be earned by the
VFC system is ½ωeβeðPcð1/μhÞ − Ptdf − Pcð1/ðði + 1ÞμhÞÞÞ +
ωdβdðð1/μhÞ − df − ð1/ðði + 1ÞμhÞÞÞ − ζdf � while ðPcð1/μhÞ
− Ptdf − Pcð1/ðði + 1ÞμhÞÞÞ is the energy saved and ðð1/μhÞ
− df − ð1/ðði + 1ÞμhÞÞÞ is the time saved during the process-
ing of tasks in the VFC system.ωd and ωe are the weightage
to the saved time and energy according to the various pur-
poses; they can be predefined where ωd + ωd = 1. βd and βe
are the saved price per unit time and energy to convert the
energy and time into revenue. The cost of transferring the task
to the VFC system and receiving the result from it is denoted
as ζdf and is known as the transfer expense. Pc and Pt are the
computation and transmitting power, respectively. Pcð1/ðði
+ 1ÞμhÞÞ is the energy consumed when i RUs are assigned to
the task request i + 1 RUs process the task, as the requested
vehicle also processes one part of the task. The total service
time for the processing of the task is ð1/ðði + 1ÞμhÞÞ.

(2) a = 0, e = T . When a task request arrives and there are
not sufficient resources in the VFC system, the request is
not accepted by the system and transferred to the RC for
processing. ½ωeβeðPcð1/μhÞ − Ptdf Þ + ωdβdðð1/μhÞ − df − dcÞ
− ζðdf+dcÞ� is the immediate reward earned by the system
when a task is processed by the remote cloud. Here, ζdf

and dζc are the cost of transfer expense. ζdc denotes the cost
of transferring the task to the RC and receiving the result
from the cloud. Remote cloud has a very large computation
capability so the computation energy and time are not con-
sidered and have not affected the energy of the VFC system.
But the delay is very large, so it is not a wise decision to
transfer the task to the RC.

(3) a = −1, e = fD1,D2,⋯,DMR
, C+1g. For the events of the

arrival of the vehicle and the task’s departure, there is no
income as the system takes no action.

(4) a = −1, e = fC−1g,∑MR
i=1 i:ni < R. The system does not gain

any reward when the vehicle departs the system and there
are enough RUs to be allocated.

(5) a = −1, e = fC−1g,∑MR
i=1 i:ni = R. When the vehicle departs

the VFC system and all the RUs already occupied and process-
ing a task at this moment, the departure of the vehicle disturbs
the processing, and the system has to pay a penalty of η:

4.3.2. Cost. To formulate the long-term cost, the discounted
cost model is used from [28].Gðs, aÞ is the expected dis-
counted cost of the system during the duration when the
state is transitioned from one state to another by taking an
action and defined as

G s, að Þ = k s, að Þρ s, að Þ, ð7Þ

where ρðs, aÞ is the expected service time when system
state s is changed to next state s′ by taking an action a; this
is assumed to be exponentially distributed according to [28]

G s, að Þ = k s, að ÞEa
s

ðτ
0
e−αtdt


 �
= k s, að ÞEs

a
1 − e−ατ

α


 �
= k s, að Þ
α + σ s, að Þ ,

ð8Þ

where kðs, aÞ is the expected service time’s cost rate for
the state s and action a that is characterized as a function
of total occupied RUs, i.e.,

k s, að Þ = 〠
MR

i=1
i · ni: ð9Þ

α is the factor of discount, and σðs, aÞ is the expected
event rate of the system for the state s and action a that
can be calculated by adding all the rates of arrival and depar-
ture of vehicles and task requests. The arrival and departure
rate of the vehicle is λc and μc, respectively, while the arrival
rate of the request of task and departure rate of the task
request depends on the various events and actions of the sys-
tem calculated as below.

(1) a = i, e = T . With the arrival of the task request in the
VFC system, the system assigns i RUs for the task
processing.Rλc is the arrival rate of the task, and the rate
of departure for the task request is ð∑MR

j=1 jnj + iÞuh because

the allocated number of RUs is ð∑MR
j=1 jnj + iÞ, under action i.

(2) a = −1, e =Di. The system takes no action when a task
departs from the system which is allocated by i RUs. The
task request arrival rate is Rλc, while the departure rate of
the task is ð∑MR

j=1 jnj − iÞuh.

(3) a = −1, e = C−1. When the vehicle leaves the VFC system,
no action is taken by the system but the available number of
vehicles decreased by 1; hence, ðR − 1Þλc is the task request
arrival rate, while the departure rate of tasks is ð∑MR

j=1 jnjÞuh.

Table 2: Values of parameters in the VFC system.

Parameter Value Parameter Value

Pc 4.4W βe 2

Pt 1.8W βd 2

df 2ms α 0.1

dc 4ms K 6-14

ωe 0.7 MR 3

ωd 0.3 ζ 2

η 18 θ 10

λh 2-9 λc 9

μh 8, 16 μh 8
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(4) a = −1, e = C+1. The system takes no action while the
vehicle arrives, but there is an increment in the available
number of vehicles by 1; hence, ðR + 1Þλc is the task
request arrival rate, while the departure rate of tasks is ð
∑MR

j=1 jnjÞuh.

The expected service rate σðs, aÞ for different events and
action is calculated as

σ s, að Þ =

Rλc + μc + λc + 〠
MR

j=1
jnj + i

 !
uh, e = T , a = i,

Rλc + μc + λc + 〠
MR

j=1
jnj − i

 !
uh, e =Di, a = −1,

R + 1ð Þλc + μc + λc + 〠
MR

j=1
jnj

 !
uh, e = C+1, a = −1,

R − 1ð Þλc + μc + λc + 〠
MR

j=1
jnj

 !
uh, e = C+1, a = −1:

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
ð10Þ

4.4. Transition Probability. The transition probability is the
probability of going from the current state s to the future
state s′ after taking an action has been taken [21]. We have
used the generalized SMDP transition probabilities [21];
however, the proposed work has an additional state for
remote cloud computing.

The transition probability in the system of VFC can be
explained by the ratio between the sum of all the events
and the next event rate. The transition probability is denoted
as Pðs′js, aÞ and formulated as below:

(1) s = ðR, n1,⋯:,nN , TÞ, a = i

P s′ ∣ s, a
� 


=

Rλh
σ s, að Þ , s′ = R, n1,⋯:,ni + 1,⋯:,nMR

, T
� �

,

ni + 1ð Þiμh
σ s, að Þ , s′ = R, n1,⋯:,ni + 1,⋯:,nMR

,Di

� �
,

nj jμh
σ s, að Þ , i ≠ j s′ = R, n1,⋯:,ni + 1,⋯:,nMR

,Dj

� �
,

λc
σ s, að Þ , s′ = R, n1,⋯:,ni + 1,⋯:,nMR

, C+1
� �

,

μc
σ s, að Þ , s′ = R, n1,⋯:,ni + 1,⋯:,nMR

, C−1
� �

:

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
ð11Þ

(2) s = ðR, n1,⋯:,nN , TÞ, a = 0

ð P s′ ∣ s, a
� 


=

Rλh
σ s, að Þ , s′ = R, n1,⋯:,ni,⋯:,nMR

, T
� �

,

niiμh
σ s, að Þ , s′ = R, n1,⋯:,ni,⋯:,nMR

,Di

� �
,

λc
σ s, að Þ , s′ = R, n1,⋯:,ni,⋯:,nMR

, C+1
� �

,

μc
σ s, að Þ , s′ = R, n1,⋯:,ni,⋯:,nMR

, C−1
� �

:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð12Þ

(3) s = ðR, n1,⋯:,nN ,DiÞ, a = −1

P s′ ∣ s, a
� 


=

Rλh
σ s, að Þ , s′ = R, n1,⋯:,ni − 1,⋯:,nMR

, T
� �

,

ni − 1ð Þiμh
σ s, að Þ , s′ = R, n1,⋯:,ni − 1,⋯:,nMR

,Di

� �
,

nj jμh
σ s, að Þ , i ≠ j s′ = R, n1,⋯:,ni − 1,⋯:,nMR

,Dj

� �
,

λc
σ s, að Þ , s′ = R, n1,⋯:,ni − 1,⋯:,nMR

, C+1
� �

,

μc
σ s, að Þ , s′ = R, n1,⋯:,ni − 1,⋯:,nMR

, C−1
� �

:

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

ð13Þ

(4) s = ðR, n1,⋯:,nN , C−1Þ, a = −1

P s′ ∣ s, a
� 


=

R − 1ð Þλh
σ s, að Þ , s′ = R − 1, n1,⋯:,ni,⋯:,nMR

, T
� �

,

niiμh
σ s, að Þ , s′ = R − 1, n1,⋯:,ni,⋯:,nMR

,Di

� �
,

λc
σ s, að Þ , s′ = R − 1, n1,⋯:,ni,⋯:,nMR

, C+1
� �

,

μc
σ s, að Þ , s′ = R − 1, n1,⋯:,ni,⋯:,nMR

, C−1
� �

:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð14Þ

(5) s = ðR, n1,⋯:,nN , C+1Þ, a = −1

P s′ ∣ s, a
� 


=

R + 1ð Þλh
σ s, að Þ , s′ = R + 1, n1,⋯:,ni,⋯:,nMR

, T
� �

,

niiμh
σ s, að Þ , s′ = R + 1, n1,⋯:,ni,⋯:,nMR

,Di

� �
,

λc
σ s, að Þ , s′ = R + 1, n1,⋯:,ni,⋯:,nMR

, C+1
� �

,

μc
σ s, að Þ , s′ = R + 1, n1,⋯:,ni,⋯:,nMR

, C−1
� �

:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð15Þ
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The state transition diagram is shown in Figure 3 which
shows the state transition process takes current state s = ð
10, 1, 1, 1, TÞ and shows it transitioned to the next states
for different actions and events with the transition probabil-
ity [21].

5. Solution

The solution of the above SMDP problem is presented in
this section and find the solution to magnify the reward of
the VFC system in a long term; by this we save energy and
minimize the processing time. To solve the problem, value
iteration algorithm is adopted. In the value iteration algo-
rithm, Bellman optimal equation [21, 29] is used. In every
iteration of all the states, maximum value function VðsÞ is
calculated for each action, i.e.,Λϵf−1, 0, 1, 2,⋯,MRg.
When VðsÞ of every state is converging, the step is termi-
nated. The Bellman optimal equation is shown below:

VM+1 sð Þ =max
a∈Λ

R s, að Þ + γ〠
s′∈S

P s′ ∣ s, a
� 


Vm s′
� 
" #

: ð16Þ

Here, γ = σðs, aÞ/ðα + σðs, aÞÞ and known as discount
function.

To transform the continuous-time semi-Markov deci-
sion process into a discrete-time process, a new parameter
is defined x = Kλh + λc + μc + K ·MR · μh to normalize the
reward, discount factor, and transition probabilities. The
normalized equations are shown below.

R̂ s, að Þ = R s, að Þ α + σ s, að Þ
α + x

,

P̂ s′ ∣ s, a
� 


=
1 − 1 − P s ∣ s, að Þ½ �σ s, að Þ

x
, s′ = s,

P s′ ∣ s, a
� 


σ s, að Þ
x

, s′ ≠ s,

8>>><>>>:
bγ = x

x + α
:

ð17Þ

Thus, after normalization, the Bellman optimal equation
becomes

V̂m+1 sð Þ =max
a∈Λ

R̂ s, að Þ + bγ〠
s′∈S

P̂ s′ s, aj
� 


V̂m s′
� 
" #

: ð18Þ

Initially, the value function of all states was set to zero.
Now, by Equation (18), the normalized value function of
states is calculated by using values from the previous itera-
tion. For example, the maximum value function V̂m+1ðsÞ in
m + 1th iteration is calculated by using the mth iteration.
For finding the optimal policy π∗, the absolute difference
between two succeeding iterations is computed for each
state, i.e., kV̂m+1 − V̂mk. The algorithm is stopped when the
maximal absolute value is lower by the threshold ϵ = θð1 −

bγÞ/2bγ and optimal scheme π∗is obtained.

π∗ sð Þ =max
a∈Λ

R̂ s, að Þ + bγ〠
s′∈S

P̂ s′ s, aj
� 


V̂m s′
� 
" #

: ð19Þ

If the threshold is greater than the maximum absolute
value, the algorithm goes into the next iteration and con-
tinues till the optimal scheme of offloading is obtained.
The pseudocode of the VIA is presented in Algorithm 1.

6. Simulation Results

The performance of our proffered scheme of task offloading
has been evaluated in this section by conducting trials and
getting experimental results. For the comparison, we com-
pare our proposed scheme with the greedy algorithm (GA),
which constantly tries to assign the maximum number of
RUs to offload the task for processing [28]. We used the
MATLAB R2019b tool for the experiments.

The parameters that have been used in the evaluation are
exhibited in Table 2. The maximum number of RUs that can
be assigned to the task for processing isMR = 3; i.e., 1, 2, or 3
RUs can be assigned to task requests according to the avail-
ability of resources in the VFC system.

Action 1, action 2, and action 3 denote the number of
assigned RUs to the tasks, while action 0 is the special scenario
of sending the service request to the RC. For evaluation, differ-
ent parameters are adjusted, for example, the number of max-
imum available vehicle K in the system of VFC, the arrival rate
of the task requests λh, and service rate μh.

Figure 4 illustrates the relationship among the maximum
number of vehicles K supported by the VFC system and
transition probabilities of the different actions taken by the
system when the request arrival rate λh = 2 and service rate
μh = 8. It is depicted from the figure that when the number
of vehicles in the VFC system is low the transition probabil-
ity for action 2 and action 3 is lower than the transition
probabilities of action 0 and action 1. This is because when
the number of vehicles is less the available resources in the
form of RUs are also less and the VFC system allocates a
smaller number of RUs to the task request. With the incre-
ment of the number of vehicles in the system, a decreasing
trend in the transition probability of actions 0, 1, and 2
and an increase in the trend for action 3 can be seen. The
system mostly assigns three RUs to the arriving requests to
enhance the expected reward in the long term.

Figure 5 shows the comparison of our proposed scheme
of SMDP-based algorithm with the GA scheme when λh = 2
and service rate μh = 8. It can be observed that with the
increment in the number of vehicles in the VFC system
the expected reward of the VFC system increases since with
the increase in the maximum number of vehicles the num-
ber of the completed tasks increased, and as a result, reward
increased. The SMDP-based scheme has 19% improved per-
formance in terms of reward than the GA as shown from the
figure. This is because the GA tries to allocate maximum
RUs without taking into account the expected reward of
the VFC system.
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Figure 6 depicts the relationship among the requests of
the task arrival rate of λh and the transition probabilities of
the actions taken by the system, when K = 10 and service
rate μh = 8. It could be noticed from the figure that the tran-
sition probability of action 3 is higher than all other actions
when the task arrival rate is low because there is abundant
computation capability in VFC. The system tries to assign
the utmost number of RUs to the requested task to increase
the long-term expected award. With the increase in the rate
of the task, arrival requests in the transition probabilities of
action 1 start increasing while for action 3 there is a decreas-
ing trend because the VFC system starts taking conservative
decisions according to the available resources and to get the
maximum reward taking action 1 or 2 by this complete more
tasks without transferring the requests to the RC. The tran-
sition probability of action 2 shows random behavior; in
the beginning, it starts increasing and after some time shows
the decreasing trend and at the end start increasing again
according to the optimal policy to improve the expected
reward.

Figure 7 demonstrates the relationship between λh and
long-term reward of SMDP and compares it with the GA
when K = 10 and service rate μh = 8. The long-term expected
reward shows an increasing trend with the increase in the
rate of task arrival request because with the increment in
the number of tasks request the completed task also
increased, and as a result, long-term expected reward
increases. Moreover, it can be conceivable from the figure
that our proposed methods outperform the GA.

Figure 8 shows the comparison of the long-term reward
of the system when μh changes from 16 to 8. It can be per-
ceived from the figure that the expected reward for μh = 8
is lower than that for μh = 16 because the number of tasks
computed is less when the rate of service is low. Moreover,
when the service rate is high, processing of tasks by RUs is
faster; as a result, the number of available RUs increases,
and more tasks can be offloaded and gain more reward.

In Figure 9, there is a comparison of our proposed
scheme of SMDP-based algorithm with the GA scheme
when λh = 2 and service rate μh = 16. It can be seen that
our proposed scheme outperforms the GA and shows a sim-
ilar trend as in Figures 5 and 7.

In this section, we present the performance of our work
with the help of different experiments. We see that the pro-
posed algorithm exhibits superior performance than the GA
and gains more reward under different parameters; i.e., vary-
ing maximum numbers of vehicles in the VFC system, dif-
ferent service rates, and different rates of the task request,
our scheme outperforms in all the cases.

7. Conclusion and Future Work

In this paper, we propose an optimal energy-aware task off-
loading technique for the Internet of Vehicles. When a vehi-
cle with the task request arrives, the system decides for the
allocation of computational resources, i.e., RUs, and divides
the task according to the decision. We use parallel comput-
ing and save energy and minimize time delay for our VFC

system and formulate the problem as an infinite horizon
SMDP. The Bellman optimal equation is used in value itera-
tion algorithm to get an optimal policy that amplifies the
long-term expected reward that saved energy and time in
this problem. The proposed scheme demonstrates the
improved performance of the greedy algorithm as estab-
lished by the substantial numerical results. In the future,
we aim to consider mobility of the vehicles and dynamic
wireless connectivity in task offloading.
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