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As the core technology in the field of mobile robots, the development of robot obstacle avoidance technology substantially
enhances the running stability of robots. Built on path planning or guidance, most existing obstacle avoidance methods
underperform with low efficiency in complicated and unpredictable environments. In this paper, we propose an obstacle
avoidance method with a hierarchical controller based on deep reinforcement learning, which can realize more efficient
adaptive obstacle avoidance without path planning. The controller, with multiple neural networks, contains an action selector
and an action runner consisting of two neural network strategies and two single actions. Action selectors and each neural
network strategy are separately trained in a simulation environment before being deployed on a robot. We validated the
method on wheeled robots. More than 200 tests yield a success rate of up to 90%.

1. Introduction

The robot obstacle avoidance method is a comprehensive
approach integrating multiple submethods. Generally, the
completion of robot obstacle avoidance is separated into
three parts: the leading part, the core, and the back-end part.
Among them, the algorithmic models such as robot obstacle
avoidance and path planning, equivalent to the human brain
for decision-making, serve as its core. The leading part is
used to obtain obstacle information (by a camera or a radar)
to simulate human vision. As in the human nervous system,
the back-end part is used for automatic control, which
receives signals from the brain to control the body for
actions, as shown in Figure 1. Progress in any one of these
three parts will advance the robot’s obstacle avoidance tech-
nology, allowing faster and better obstacle avoidance and
expanding in its obstacle avoidance adaptability in various
environments.

From the perspective of navigation and path planning,
most traditional obstacle avoidance methods plan one or

more paths or navigation paths based on the location of
obstacles in the current spatial environment for avoidance.
The artificial potential field method, which was proposed
by Khatib [1], tended to reach perfection following numer-
ous improvements and expansions under the efforts of many
researchers, allowing a wide range of applications. Han
introduced kinetic conditions [2], which were used to gener-
ate short and smooth routes under aerial conditions for
unmanned aerial vehicle (UAV) obstacle avoidance.

Proposed as early as 1968 [3], the A∗ algorithm also
shows extensive applications in the field of path planning
with various improvements, such as a data-driven A∗ algo-
rithm proposed by Ryo [4]. Recent years have also wit-
nessed efforts on hybrid path planning algorithms such as
[5] and various types of bionic path planning methods
applied to different scenarios [6]. However, in the obstacle
avoidance methods based on path planning, the lack of
environmental information in the unfamiliar practical
application environment is often ignored. That is also the
case for people walking, in which decisions can only be
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made according to current information acquired by vision.
Therefore, we hereby consider building a controller special-
izing in dealing with obstacles without taking path planning
into account.

2. Method

2.1. Deep Reinforcement Learning. Recent years have wit-
nessed a widespread application of model-free deep rein-
forcement learning (DRL) in the field of robots, which can
offer creative ideas and solutions for obstacle avoidance
technology. The most distinguishing feature lies in that it
enables the robot (program) to learn autonomously in the
interaction with the environment, which is quite similar to
the human growth and learning process. The concept “trial
and error” functioned as the core mechanism of reinforce-
ment learning, and “reward” and “penalty,” as the basic
means of learning, were proposed by Waltz and Fu Jingsun
in their control theory as early as 1965 [7]. Deep reinforce-
ment learning has made tremendous progress in recent
years. The DQN (Deep Q Network) algorithm proposed

and refined by Mnih et al. in 2013 and 2015 [8, 9] provided
a powerful “weapon” for reinforcement learning. This deep
reinforcement learning algorithm was employed in several
components of our controller.

However, the “trial and error” learning approach
requires a wealth of training for an effective model. None-
theless, hardware systems such as robots cannot afford a
mass of “trial and error” training for obstacle avoidance
in terms of time and economy. As a result, training in a
simulation environment emerges as a better option. Many
recent studies have demonstrated that the experience
gained from training in a simulation environment is also
applicable to a real environment [10, 11]. It is critical to
minimize the gap between the simulation environment
and reality during training in a simulation environment.
Neunert analyzed the potential causes of the gap in [12],
Li solved some of them by system identification [13],
and the DeepMind team enhanced fidelity by estimating
model parameters [11]. Enlightened by these efforts, we
rewrote the CarRacing-v0 environment based on the
OpenAI Gym simulation environment [14] to enable the
training of our selector.

Although training without any human guidance can
yield a better model [15], training and learning with human
guidance in their directions are more efficient. Furthermore,
existing deep learning algorithms and neural networks are
less effective when learning multiple strategies simulta-
neously [16]. The separate training of subaction strategies
and selector strategies [17, 18] were a general approach in
Behavior-Based Robotics [19], making the model training
more efficient.

Based on the challenges discussed above and the efforts
of previous researchers, an obstacle avoidance controller
with a hierarchical structure was proposed in this paper.
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Make a decision

Motion control 
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Figure 1: Three main components of robot obstacle avoidance technology and their corresponding robot components (our wheeled robot
on the left).
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Figure 2: Robot completed obstacle avoidance task.
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It only selected the information observable from the
robot’s current viewing angle as input, without considering
path planning, allowing it to handle situations closer to
people’s progress in reality. To avoid obstacles, we decom-
posed an obstacle avoidance action into multiple subac-
tions to train a DQN-based action selector to select and
run appropriate actions, including Turn Left, Turn Right,
Gas, and Stop. We deployed this method on a wheeled
robot, as illustrated in Figure 2, and carried out more than
200 experiments in the real physical environment by
arranging artificial obstacles, with the success rate of obsta-
cle avoidance hitting 90%, demonstrating the effectiveness
of the controller.

2.2. Overview. Unlike traditional path planning methods, we
adopted a controller to avoid obstacles. Figure 3 presents the
general framework of the controller. The action selector,
along with the following four action runners, served as the
core of the whole framework. Based on the DQN algorithm,
the action selector made decisions based on the information
in the environment and the ongoing actions in the current
cycle. The action selector sent an action decision to the
action runner for running in each running cycle.

We decomposed the obstacle avoidance action into four
subactions: Turn Right, Turn Left, Gas and Braking. Among
them, the subactions of Turn Right and Turn Left were also
based on the DQN algorithm and determined the deflection
angle in this direction based on the decision of the neural
network. The subactions of Gas and Braking, as single
actions, required no manipulation with the model and ran
the selector’s command directly upon receipt. The action
selector and each action were separately trained in parallel
in our rewritten simulation environment, making the design
of complex loss functions unnecessary and parameter tuning
and error finding more convenient.

2.3. Simulation Environment. In the CarRacing environment
of OpenAI Gym [14] (Figure 4(a)), the designed task object

was for the racing car Agent to pass through the entire track
as quickly as possible, without crossing the track or the
boundary. In pursuit of perfection, the modeling for the sim-
ulation of the Gym involved the friction of the site, the
wheels of the racing car, the ABS sensors, etc. On this basis,
we improved the CarRacing simulation environment, which
was called Car2D.

Inspired by [11–13], we readjusted the physical model
of CarRacing (friction, mass of the wheeled robot, etc.)
and added random noise to bring it closer to the actual
conditions of our physical robot (Figure 4(b)) and the test
site. The original road generation program is unsuitable
for a single obstacle avoidance task training as it generates
a complete circular road instead of obstacles. We also
rewrote the part about road generation and added the
obstacle generation function, with which the shape, num-
ber, and location of obstacles could be accompanied by
random noise generation (Figures 4(c) and 4(d)). Ran-
domization in Car2D could enhance the robustness of
the training object, narrowing the gap between the simula-
tion environment and the real environment, as has been
demonstrated by studies [10, 20, 21].

For the performance of the four subactions of the robot
in the simulation environment, we completed the design
based on the physical model of the real environment. Each
time running the Gas action command was run, the Agent
would provide the robot with equal power to move forward,
with the maximum speed reached when the action lasted for
several consecutive cycles. The power would be gradually
lost due to ground friction if the action stopped. The car
would lose power due to running the Braking action com-
mand, with the braking distance determined by the car’s
mass and the elaboration of the physical model.

The task object for obstacle avoidance required no long
runway or various curves; thus, only a limited straight run-
way was generated in Car2D. According to the set condi-
tions, the environment sent a stop signal to stop this
training and restart a new episode (Figure 5). Each cycle
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Figure 3: Framework of controller.
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Car2D would present an RGB image generated according to
the limited viewing angle in front of the Agent and add ran-
dom noise before providing it to the controller.

2.4. Action Selector. As the core component of the control-
ler, the action selector was implemented based on the
DQN algorithm. Compared with the Q-Learning algorithm
[22], this algorithm approximated the value function with
a convolutional neural network and leveraged the experi-
ence reply mechanism to improve the efficiency of the
neural network. In addition, a neural network called the
Main Net was introduced to the DQN algorithm to gener-
ate the current Q value and a Target Net with the same
structure as the Main Net was introduced to generate the

target Q value. The parameters of Main Net were copied
to Target Net every certain number of iterations. By
reducing the correlation between the current Q value and
the target Q value, the stability of the algorithm has been
improved. The pseudocode of the DQN algorithm is pro-
vided in Algorithm 1 [23]. For a detailed description of
DQN, please refer to [8, 9, 24], as only the relevant details
of this model are presented here.

In each running cycle, the action selector makes action
decisions based on the environment observed by the Agent
and the actions performed in the previous running cycle.
The direct use of the RGB image in the simulation envi-
ronment as the input of the selector would make it tough
to apply the model to the real physical environment. For

(a) (b)

(c) (d)

Figure 4: (a) OpenAI Gym CarRacing; (b) Our wheeled robots; and (c, d) Randomly generated obstacles on tracks.

Figure 5: An episode in training, with the obstacle in white, the end of the road in red, and the viewpoint following the Agent, where the car
hit the obstacle, terminating this episode.
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the same input of the model in the real physical environ-
ment and the simulation environment, we processed the
RGB image from the camera in front of the robot as a
matrix describing the position of the obstacles, denoted
as M. The subactions of Turn Left and Turn Right were
mutually exclusive; thus, only 12 states were available for
the action space of the action selector. We used a one-
dimensional vector with a length of 3 to describe the
actions run in the previous cycle, denoted as a. Therefore,
the state space of the running cycle t was characterized as
follows:

St =Mtat−1, ð1Þ

Table 1 presents the symbols and rewards terms. The
reward function was denoted as R, indicating that the
rewards obtained by St ⟶ St′ through the action at , which
was defined as follows:

Rt St , at , St′
� �

= rd + rc + ro + rt + ra + rs: ð2Þ

Distance reward encouraged the Agent to move for-
ward as much as possible; the obstacle collision penalty
was implemented for hitting an obstacle; the off-the-track
penalty was implemented for crossing the boundary; the
time penalty encouraged the Agent to avoid obstacles as
quickly as possible to prevent them stopping in place;
the obstacle avoidance reward was implemented for suc-
cessful obstacle avoidance; and the speed reward was
implemented for the throttle action under the premise of

Table 1: Symbols and rewards terms.

Symbols

t Running cycle

at Set of actions at tth cycle

P Position set of agent at tth cycle

xt , yt
Agent’s central coordinates at tth

cycle

r Reward

O Position set of the obstacle

T Position set of the track

E Position set of the end

K Constant

∅ Empty set

Rewards terms

Distance reward rd = Kd yt − yt−1ð Þ
Obstacle collision penalty rc = Kc if P ∩O ≠∅,otherwise 0
Off the track penalty ro = Ko if P ∩ T ≠∅,otherwise 0
Time penalty rt = Ktt

Obstacle avoidance
reward

ra = Kaif P ∩ E ≠∅,otherwise 0

Speed reward rs = Ks if at = gas, otherwise 0

Input: Pixels and reward
Output: Q action-value function
Initialization
Initialize replay memory space D
Initialize the Q network (action-value function) Q with random weights θ
Initialize target network (action-value function) Q̂ with weights θ− = θ
1: Forepisode = 1 toMdo
2: Initialize sequence s1 = fx1g and preprocessed sequence ϕ1 = ϕðs1Þ
3: Fort = 1 toT do
4: Following ϵ − greedy policy, select

at =
a random actionwith probability ϵ

arg maxaQðϕðstÞ, a ; θÞ otherwise

(

5: Run action ai in an emulator and observe the reward rt and image xt+1
6: Set st+1 = st , at , xt+1 and preprocess ϕt+1 = ϕðst+1Þ
7: Store transition ðϕt , at , rt , ϕt+1Þ in D
8: Sample random minibatch of transitions ðϕj, aj, rj, ϕj + 1Þ from D

9: Set yj =
rj if episode terminates at step j + 1

rj + γ maxa′ Q̂ðϕj+1, a′ ; θ−Þ otherwise

(

10: Calculate the loss (Perform a gradient descent step on)
ðyi −Qðϕj, aj ; θÞÞ2

11: Train and update weights θ of Q
12: End
13: End

Algorithm 1: DQN.
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successful obstacle avoidance for another reward, encour-
aging the Agent to move as fast as possible. It is important
to note that the multiple rewards and penalty mechanisms
we designed were not superimposed on the Agent at the
same time. We adopted the idea of curriculum learning
(CL) [25], in which the training started with simple, sin-
gle, and small obstacles, and the current episode was not
stopped even after hitting an obstacle. After the Agent
was capable of completing small task objects, the task dif-
ficulty would be increased, such as by increasing the area
and number of obstacles or by randomizing the location
of obstacles.

The score function of the current state was denoted as
QðS, aÞ, which evaluated the current action taking the future
state into account, indicating the expectation of the sum of
the rewards obtained by the Agent after running the action

a in the state S until the end of the current episode. For
the state St , and the action At run, there exists:

Q s, að Þ = E Rt + γRt+1 + γ2Rt+2+⋯ At = a, Stj = s,
� �

, ð3Þ

where E represents the expectation, γ, the discount factor ðγ
∈ ð0, 1ÞÞ, which was used to measure the degree of influence
of future rewards and current rewards on the Q value. The
closer γ was to 1, the greater the influence of future rewards,
and γ = 0:85 was taken for training. The optimal value action
function of Q was denoted as Q∗, and there exists:

Q∗ s, að Þ =maxE Rt + γRt+1 + γ2Rt+2+⋯ At = a, Stj = s,
� �

,
ð4Þ

then the state transition equation can be obtained:

Q s, að Þ⟵Q s, að Þ + α TargetQ −Q s, að Þ½ �, ð5Þ

where α is the decay learning rate of γ. TakingQ as a label, the
loss function of network training can be obtained:

L θð Þ = E TargetQ θð Þ −Q s, a, θð Þ�2�� �
, ð6Þ

where TargetQ can be expressed as follows:

TargetQ θð Þ = R s, a, s′
� �

+ γmaxQ s′, a′, θ
� �

: ð7Þ

Figure 6 provides the structure of the deep convolutional
neural network used in our Main Net, and the Target Net
had an identical structure and different parameters. Different
from the structure of general DQN algorithms, we inserted a
Dropout layer in the last fully connected layer, which was only
enabled during training and not when the model was in use.

2.5. Action Runner. In the action runner, only two actions,
“Turn Right” and “Turn Left,” which provided the deflection
angle of the robot, required training. The two were also based

Figure 7: Self-built wheeled robot.
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Figure 6: Network structure of selectors.

6 Journal of Sensors



on the DQN algorithm, with the same characteristics of the
space state of the input as the action selector, thus not elabo-
rated here. However, the action space had a total of 36 states,
which were categorized from 0° to 180° by a step length of 5°
. Experimental experience showed that the deflection angle
exceeding 180° would cause the robot to move in the opposite
direction and eventually leave the runway.

3. Results and Discussion

This section presents the experimental results in the real
environment and an analysis of the drawbacks of the model.

(a) Experiment Setting

We used a self-built wheeled robot, as shown in Figure 7,
to validate the model. The model employed STM32F4 for
the chip of the driver board, Raspberry Pi 4B for the upper
computer, and ubuntu 18.04 for the system of the upper
computer. An infrared camera and two independent infra-
red distance meters were applied to collect environmental
characteristics. The matrix for the position description of
the obstacle was constructed mainly through the identifica-
tion and ranging of obstacles.

Tests showed that the configuration of the running fre-
quency during training and verification in the simulation
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Figure 8: Rewards curve for a model trained at 37Hz for 5,600 rounds and validated 100 times at 90Hz and 37Hz.
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2.7s2.3s2.1s2.0s1.9s1.8s1.3s

Figure 9: Wheeled robot avoiding irregular obstacles with the controller.
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Figure 10: Wheeled robot avoiding multiple obstacles with the controller.
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environment directly affected the success rate of obstacle
avoidance. Figure 8 shows the rewards curve for a model val-
idated 100 times at 90Hz and 37Hz, which was trained at
37Hz for 5,600 rounds.

It can be seen from the curve that the same model
accomplished the obstacle avoidance task in most cases
when running at 90Hz but failed at 37Hz. This means that
the model has to be run enough times in a second for the
robot to have a coherent obstacle avoidance action. Finally,
we set the training and testing frequency in the simulation
environment to 90Hz to ensure training efficiency while
preventing the actions of the Agent from oscillating. When
tested in a real environment, the controller would see its
actions oscillate as it runs too fast. Therefore, we had the
hard front-end hardware on the wheeled robot that provided
environmental information run at a frequency of 55Hz to
monitor obstacles in real-time. The running frequency of
the controller was set to 30Hz to allow for a smoother run-
ning of the robot and avoid oscillations.

As the deployed model failed to play its full role due
to the limitation of computing power, we quantified the

model to improve its running efficiency with reference to
some methods introduced or mentioned in [26–28]. Dur-
ing the test, the robot was set with a fixed initial speed,
and the obstacle avoidance controller was activated when
an obstacle was identified to control the robot to avoid
the obstacle.

Both the models used in the simulation environment and
during the training were written in Python, but most of the
programs for the robot were written in C++ and C languages
to improve the efficiency of the model.

(b) Experimental Results

To validate the effectiveness of the controller, we con-
ducted the test in three cases: a single obstacle, multiple
obstacles (Figure 9), and irregular obstacles (Figure 10), with
a total of 75 different obstacle positions. In more than 200
tests, successful obstacle avoidance was observed in most
cases for multiple or irregular obstacles, with a success rate
of up to 90%.

Unlike in our simulation environment, there existed no
road limitations for some robot tasks in the real environ-
ment, such as in wild meadows and deserts. To test the
generalization ability of the controller, we removed the road
restrictions from the real environment and conducted the
test 100 times, in which the controller also completed the
obstacle avoidance task, with a success rate hitting 91%.
However, there were several times when the obstacle avoid-
ance effect failed to meet the expectations. In the case of a
small gap between two obstacles, a farther path instead of
passing through the gap would be the option (Figure 11
top half), similar to some performance in the simulation
environment with small or few obstacles (Figure 11 bottom
half). It seemed that when conditions permitted, the con-
troller would leverage the drivable space furthest and stay
away from obstacles as much as possible. We set 20 differ-
ent ratios of obstacles to the width of the road in the sim-
ulation environment, each tested 100 times. Figure 12
shows the curve for the success rate of obstacle avoidance.

6.4s 7.1s 7.8s 7.9s

Figure 11: Large angular deviation for obstacle avoidance rather than crossing gaps. Agents run similar actions in the simulation
environment.
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It can be seen that the success rate of obstacle avoidance
became lower with the increase in the ratio of the obstacle to
the road width. The obstacle avoidance failed when the
Agent could not pass through the gap between obstacles,
with a success rate of 90%. Our idea was validated.

4. Conclusion

This paper proposed a hierarchical controller for robot
obstacle avoidance in progress, which enabled the robot to
avoid obstacles without path planning flexibly. By decom-
posing the obstacle avoidance control task into multiple sub-
actions of GAS, Turn Left, Turn Right, and Braking, an
action strategy could be decomposed into multiple strategies
for separate training. The idea of curriculum learning (CL)
was used to improve training efficiency. With the limited
information in front, our controller brought us a step closer
to the real action of people dealing with unknown
environments.

The controller was trained in a simulation environment
before being deployed on a wheeled robot, producing satis-
factory results with consistent performance compared with
the simulation environment. Wheeled robots deployed with
controllers yielded a success rate of up to 90% in more than
200 obstacle avoidance tests. It also applies to an environ-
ment similar to the wild without road restrictions, exhibiting
good performance.

The controller was less effective in the case of dense
obstacles with small gaps. More adjustments in running
may be required for dynamic obstacles to yield better results.
For these cases, traditional obstacle avoidance methods may
outperform our controller when complete environmental
information is available. We will make more efforts to solve
problems and improve the controller.
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