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Haptic force feedback is an important perception method for humans to understand the surrounding environment. It can estimate
tactile force in real time and provide appropriate feedback. It has important research value for robot-assisted minimally invasive
surgery, interactive tactile robots, and other application fields. However, most of the existing noncontact visual power estimation
methods are implemented using traditional machine learning or 2D/3D CNN combined with LSTM. Such methods are difficult to
fully extract the contextual spatiotemporal interaction semantic information of consecutive multiple frames of images, and their
performance is limited. To this end, this paper proposes a time-sensitive dual-resolution learning network-based force estimation
model to achieve accurate noncontact visual force prediction. First, we perform continuous frame normalization processing on the
robot running the video captured by the camera and use the hybrid data augmentation to improve the data diversity; secondly, a
deep semantic interaction model is constructed based on the time-sensitive dual-resolution learning network, which is used to
automatically extract the deep spatiotemporal semantic interaction information of continuous multiframe images; finally, we
construct a simplified prediction model to realize the efficient estimation of interaction force. The results based on the large-
scale robot hand interaction dataset show that our method can estimate the interaction force of the robot hand more
accurately and faster. The average prediction MSE reaches 0.0009N, R2 reaches 0.9833, and the average inference time for a
single image is 6.5532ms; in addition, our method has good prediction generalization performance under different
environments and parameter settings.

1. Introduction

With the rapid development of artificial intelligence and
sensor technology, as well as the urgent demand for robots
in medical, intelligent services, and other fields, research
on intelligent robots has important value and significance
[1, 2]. Among them, sensing and estimating the force infor-
mation between the robot and the object are a key step to
realize the humanoid robot [3–5].

Haptics is one of the five perception methods that
humans use to perceive the external environment. Humans
use the tactile information obtained in the process of contact
with the outside world to determine their next behavior.

Similar to human intelligence, we hope that robots can freely
interact with the outside world like humans to obtain
dynamic or static tactile information from the outside world
and then intelligently judge the current state and execute the
next action based on the real-time state [6, 7].

How to make a robot able to grasp and release an object
stably, the accurate estimation and feedback of the force
exerted on the object by the manipulator is a crucial step.
Traditional force estimation techniques are mainly based
on hardware design. Researchers designed a clever touch
sensor and embedded it in the hands of the robot and used
hardware circuits combined with digital signal processing
algorithms to measure the interaction force between the
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manipulator and the object, thereby improving the accuracy
of manipulator operation [8].

However, such methods have many problems such as
low precision of the tactile sensor hardware, difficulty in
overcoming biocompatibility, and excessive size that affects
the flexibility of manipulator operation, which limits the
application and promotion of such methods. For example,
in the process of robot-assisted minimally invasive surgery,
the tactile force sensor embedded in the robot hand needs
to follow the scalpel into the human tissue in real time to
continuously estimate and feedback the interaction force.
There will be biological phenomena in this process. Prob-
lems such as capacitance and excessive sensor size may cause
surgical risks and the flexibility and accuracy of minimally
invasive surgical robots.

Therefore, in recent years, researchers have turned to the
use of noncontact visual information to evaluate and feed-
back the interaction force, in order to make up for the short-
comings of traditional contact force estimation [4]. This type
of method only uses cameras installed on the robotic arm or
peripheral locations to capture the operation process of the
robotic hand in real time and combines intelligent algo-
rithms to estimate and feedback the interaction force
between the robotic hand and the object. A large number
of studies have shown that this type of method discards
redundant tactile sensor devices and uses visual information
for estimation, which can well overcome the difficulties of
traditional contact force estimation methods [5, 9–21].
Therefore, research on interactive force estimation based
on noncontact visual information has gradually become
the mainstream technical direction and has great application
value and prospects in the fields of robot-assisted minimally
invasive surgery and interactive tactile robots [5, 9–23].

The current research methods for force estimation using
noncontact visual information can be roughly divided into
two categories: methods based on recurrent neural networks
and methods based on CNN+RNN/LSTM. The first type of
method based on recurrent neural network is the method
mainly used in the early stage [5, 12, 13]. This method uses
RNN or LSTM as the main body of the model and uses con-
tinuous multiframe images to estimate the force; the second
type is based on CNN+RNN/LSTM. The research idea of the
method is first use CNN (2D or 3D) to extract the deep
semantic information of a single frame image or multiple
frames of continuous images and then use RNN/LSTM to
build a depth model to achieve continuous force estimation
[15, 16, 18–21, 24].

However, the above two types of traditional methods
have the following shortcomings:

(a) Force estimation method based on RNN/LSTM: this
type of method uses the constructed deep RNN/
LSTM to predict continuous force. However, due to
the loss of information in the sequence processing
process, LSTM can only obtain high-level significant
visual information at the top level, but fails to obtain
key low-level visual information, which makes the
extracted spatiotemporal feature information insuffi-
cient and limits the force estimation performance. In

addition, when the deep RNN/LSTM network is
transmitted in the reverse direction, the training is
quite time-consuming and difficult due to multi-
frame spreading, and it is difficult to converge

(b) A force estimation method based on CNN+RNN/
LSTM: this type of method adds 2D/3D CNN to
extract the visual salient features of the image and
combines RNN/LSTM to achieve force estimation.
However, the existing 2D/3D CNN+LSTM architec-
ture method focuses on using 2D/3D CNN to extract
the important visual information of static images
with the same spatiotemporal resolution, instead of
extracting interactive information of different spatio-
temporal resolutions, which will cause the loss of
dynamic visual features. Therefore, the loss of spa-
tiotemporal information at different resolutions will
result in the inability to describe dynamically chang-
ing interactive actions, which will affect the perfor-
mance of force estimation. In addition, due to the
subsequent deep LSTM architecture, this will also
lead to time-consuming training and difficult to
converge

To this end, in response to the above-mentioned insuffi-
cient extraction of spatiotemporal information and time-
consuming training, inspired by the design of slowfast net-
work [25, 26], we propose a time-sensitive dual-resolution
learning network-based force estimation model, referred to
as TDL network, to achieve interaction force prediction.
TDL network is to construct a time-efficient dual-
resolution learning structure to extract the time and space
depth interactive semantic information of multiple consecu-
tive frame images in parallel and then use the prediction
module to achieve accurate estimation of continuous force.
The main contributions of this paper are as follows:

(1) In order to fully extract the depth spatiotemporal
semantic feature information of consecutive multi-
frame images, we constructed a dual-resolution
learning network. The network is designed with
two parallel 3DCNN branches for feature extraction
and interaction with different spatiotemporal resolu-
tions, so as to obtain the depth spatiotemporal
semantic features of continuous multiframe images,
which can overcome the lack of spatiotemporal
information in the traditional CNN architecture

(2) In order to improve the timeliness of interaction
force prediction, we streamlined the TDL architec-
ture. First, this paper introduces three hyperpara-
meters and reduces the number of 3D convolution
channels to compress the capacity and computa-
tional complexity of parallel dual-resolution
3DCNN. Further, we also simplify the force predic-
tion module. Two parallel global average pooling
layers and a concatenation layer are designed to fuse
the feature information of the two resolution
branches; and to improve the generalization perfor-
mance, dropout is introduced to obtain sparse
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semantic interaction information. Finally, the regres-
sion module is directly used to realize the efficient
prediction of the interaction force

(3) In order to improve the robustness of the force esti-
mation model constructed in this paper, we design a
hybrid data augmentation method to increase data
diversity for continuous multiframe interactive data

2. Related Work

Research on force estimation using computer vision
methods has become the mainstream [5, 9–21]. Through
detailed investigations, we roughly divide the current
research methods for force estimation into two categories:
methods based on recurrent neural networks [5, 12, 13]
and methods based on 2D/3D CNN+RNN/LSTM [15, 16,
18–21, 24].

The first type of method based on recurrent neural net-
works is mainly used for early-stage research ideas [12, 13].
This method uses RNN or LSTM as the main architecture
of the model and uses continuous multiframe images to esti-
mate the force. The research team built a behavior predic-
tion model based on RNN and predicted the recorded
hand motion video data through RNN, including scoop, stir,
wash, wipe, and other actions. The results on the two data-
sets show that the proposed RNN model can accurately pre-
dict behavior in real time [12]. The research team proposed
an LSTM-based interaction force prediction method. This
method is to construct multiple parallel LSTM networks
and extract the continuous interactive image features of each
time stamp; the extracted features are averaged to obtain the
fused interactive features; then, a regression is used to pre-
dict the interaction force. Based on the dataset constructed
by the team, the effectiveness of the proposed method is
evaluated [13].

The second method based on 2D/3D CNN+RNN/LSTM
is the main technical method currently used. The research
idea is as follows. First, a CNN (2D or 3D) network is con-
structed to extract the deep semantic information of a single
frame image or multiple frames of continuous images; then,
RNN/LSTM was introduced to build a depth model to
achieve continuous force estimation.

The research team built a force estimation model based
on 2DCNN+LSTM, which is composed of a 2DCNN and
multiple LSTM networks, and its CNN architecture consists
of three convolutional layers and pooling layers. The input
of the model is a single-frame gray image of 128 multiplied
by 128, and the output is the predicted interaction force.
Experimental results show that the force prediction model
using this model has better force prediction performance
[18]. The researchers constructed a large-scale robot hand
interaction scene dataset, which includes interaction scenes
images under different interaction conditions. Based on this,
the researchers proposed a force estimation model that com-
bines deep learning and attention mechanism. The model
uses 3DCNN as the backbone network and introduces an
attention mechanism to improve feature extraction capabil-
ities; furthermore, multiple LSTMs are used to predict the

interaction force of multiple continuous images [19]. The
research team designed a new method based on visual mea-
surement to estimate the contact force of the machine, and
at the same time, it was able to identify the grasped material.
In this work, neuromorphic camera technology and tactile
sensors are introduced to collect data on interactive scenes.
On this basis, a joint discrimination method based on
time-delay deep neural network (TDNN) and Gaussian pro-
cess (GP) is proposed, which realizes the prediction of con-
tact force and the identification of grasped materials. The
experimental results show that the mean square error of
using TDNN and GP methods to predict the contact force
is 0.16N and 0.17N, respectively, and the average recogni-
tion accuracy of materials is 79.17% [20]. Furthermore, the
team proposed a deep model fused with convolutional neu-
ral network and long- and short-term memory network.
Experimental results show that the contact force can be pre-
dicted by the depth model to obtain a mean square error of
0.1N, and it can be estimated every 10 milliseconds [21]. In
addition, the research team built an optical flow fully con-
nected deep neural network to predict the contact force in
the three-dimensional direction [27].

3. Methods

The technical framework that is proposed in this paper is
illustrated in Figure 1. Our method includes three main
steps: performing continuous frame normalization process-
ing on the robot running video collected by the camera, con-
structing a deep semantic interaction model based on the
TDL network and automatically extract deep fusion spatio-
temporal semantic information, and building a streamlined
predictive model to achieve efficient estimation of the inter-
action force of the robot. In the following sections, we will
describe these three steps in detail.

3.1. Definition and Enhancement of Perception Data. The
purpose of this paper is to use the continuous multiframe
images captured by the camera to estimate the interaction
force of the sensor from the perspective of computer vision.
Therefore, we use a large-scale sensor interaction force data-
set as the research object [19].

The dataset is a data acquisition system composed of an
electric probe system [19]. During the interaction between
the probe and the object, the interaction image is recorded
and captured by a high-resolution camera, and the interac-
tion force is recorded at the same time. The data acquisition
system uses an RC servo motor connected to the translation
stage to control the movement of the probe. The rod-type
tool installed on the translation stage will automatically
move up and down to exert interactive force on the object.
The research team measured the interaction force between
the tool tip and the interactive object through a load cell
(BCL-1L, CAS), and the force recorded by this sensor was
used as the true value of the interaction force. At the same
time, a high-resolution camera (Chameleon3, CM3) was
used to simultaneously collect interactive images between
the probe and the object. Further, a corresponding relation-
ship between the image and the interaction force is
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established, that is, each frame of image corresponds to a
standard ground truth of the interaction force.

In addition, in order to increase the richness of the data-
set, four objects composed of materials with different stiff-
ness were selected, namely, sponge, paper cup, tube, and
stapler, as shown in Figures 2(a)–2(d). Further, in order to
increase the performance diversity of interactive images
under different environmental conditions, four different
angles of pressure must be applied to each type of object,
which are 0°, 10°, 20°, and 30°, respectively. In addition,
three different levels of light intensity are applied to the
image scene of each type of object, which are, respectively,
350, 550, and 750 lux. The interactive images under different
environmental conditions are shown in Figures 2(a)–2(d).

Therefore, for 4 types of objects, the camera collects
interactive images of each type of object under different
environmental conditions (4 types of angles, 3 types of light
intensity) at a frame rate of 120 fps. A total of 17 groups of
interactive images are collected, each with approximately
500 consecutive images. Finally, the dataset collected a total
of 17 × 500 × 4 × 3 ≈ 400000 continuous interactive
images [19].

In order to effectively characterize continuous multi-
frame data, we first define the data source to be processed
in this article. To this end, we construct a four-
dimensional coordinate system, namely, x, y, z, and t,
where x, y, and z represent the pixel values of the R, G,
and B channels of the collected interactive image and t
represents the time stamp. Therefore, each image can be
represented as follows:

X = x t1ð Þ, x t2ð Þ,⋯, x tNX

� �� �T , ð1Þ

where NX represents the size of a certain group of contin-
uous datasets, that is, the time step. The value of NX in
each group of datasets may not have the same length,

which is about 500. This paper includes 4 × 17 × 4 × 3 =
816 continuous datasets. Then, the data of each time stamp
t is the image data of rgb, expressed as xðtÞ, as shown in
Equation (1).

Taking into account the difference in pixel fluctuations
of different images collected and in order to facilitate the
fusion of multiple consecutive images, we use standard
deviation normalization to preprocess the dataset X and
normalize X to the standard distribution range. Then, we
normalize the data at each time step t as nðtÞ, which is
defined as follows:

Xn = n t1ð Þ, n t2ð Þ,⋯, n tNX

� �� �T , ð2Þ

where nðtÞ in Equation (2) is each rgb image after normal-
ization. Further, in order to extract contextual features
between interactive images and reduce the negative impact
of noise, we use time window Δt to window the original
time series image data, and the windowed data is
expressed as

Xn Δtð Þ = n Δtð Þ, n Δt + λð Þ,⋯, n Δt + kλð Þð ÞT , ð3Þ

where Δt represents the length of the window and λ rep-
resents the moving step length of the sliding window, that
is, the sliding time length of each time window. k is the
time multiple of the moving step, that is, represents the
k-th time window data. Therefore, this article uses the
above-mentioned windowed data as the basic unit for fea-
ture extraction and interaction force prediction.

In addition, in order to improve the robustness of the
force estimation model, we adopt a hybrid data augmenta-
tion method. Specifically, it includes the standardization of
input data (mean is 0, input data divided by standard devia-
tion), the random rotation angle of the image (set to 0.15 in
this paper), the horizontal offset ratio of the image (set to

Lateral connections
Force prediction 

Lateral connections

Time

Channel

Height, Width

Interactive scene pathway (3DCNN)

Interactive action pathway (3DCNN)

Predicted force

Figure 1: Schematic diagram of our proposed method, which includes three processing steps: (a) performing continuous frame
normalization processing on the robot running video collected by the camera; (b) constructing a deep semantic interaction model based
on the TDL network and automatically extract deep fusion spatiotemporal semantic information; (c) building a streamlined predictive
model to achieve efficient estimation of the interaction force of the robot.
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0.125), and the vertical image offset amplitude ratio (set to
0.125). Therefore, for the windowed data XnðΔtÞ, the afore-
mentioned hybrid data augmentation method is used to
diversify the input data, and the enhanced data is used to
train the deep network to improve the robustness.

3.2. Deep Spatiotemporal Semantic Feature Extraction Based
on TDL Network. Based on the windowed time series image
data created in the previous section, we need to construct an
effective feature extractor to extract the semantic informa-
tion of continuous image sequence data and then realize
the prediction of interaction force.

The overall framework of the proposed method is shown
in Figure 1, which mainly includes the following three parts:
a normalized processing module for windowing perceptual
data (as described in Section 3.1), which performs window-
ing and data augmentation on the original perceptual video
data; depth spatiotemporal semantic feature extraction mod-
ule based on dual-resolution channel, which is used to
extract significant semantic feature information; and time
sensitivity prediction module for fast and accurate interac-
tion force prediction.

Therefore, in this section, we will introduce the TDL net-
work constructed in this paper in detail. The core part is the
deep spatiotemporal semantic feature extraction module
based on dual-resolution channels, which is used to extract
deep interactive semantic features. The content described
in this section is also the main contribution of this article.

3.2.1. Dual-Resolution Learning Mechanism. Inspired by the
inherent mechanism of primate visual system and related
research in video recognition field [25, 26], this project inno-
vatively introduces dual-resolution path mechanism into
force estimation field.

The biological study of retinal ganglion cells in the visual
system of early primates found that 15-20% of retinal gan-
glion cells were small cells, called magnocellular (M-cells),
and 80% were are smaller cells, called parvocellular (P-cells).
M-cells run at a relatively high time frequency and can
respond to rapid time changes, but are not sensitive to spa-
tial details or color. In contrast, P-cells can capture the basic
invariable spatial details and colors, but have low temporal
resolution and slow response to stimuli. Based on the differ-
ence of response of M-cells and P-cells to different charac-
teristics, the research team in the field of video recognition
proposed the slowfast network, which uses two channels
with high and low resolution to simulate the biological
mechanism of M-cells and P-cells and constructs a deep
learning model to realize the classification of video clips
[25, 26].

Therefore, this paper draws on the above-mentioned
high- and low-resolution ideas and constructs an efficient
time-sensitive dual-resolution learning (TDL) network for
the dynamic prediction problem faced by the cutting-edge
interaction force of the robotic hand. The network designs
two processing channels with different resolutions and uses
them, respectively. The 3DCNN network performs deep
semantic feature extraction and feature interaction between
the two channels in the process, as shown in Figure 1.

For the continuous video data captured by the camera,
its essence is the image data of continuous framing, as
shown in Equation (1). In order to be able to obtain better
context information, we have carried out windowing pro-
cessing to obtain the original continuous windowed image
data to be processed, as shown in Equation (3).

Through a large number of early experimental studies,
we found that it is difficult to obtain better prediction results
if the windowed interactive image data is processed as a
whole object by purely using machine learning or deep

(a) (b)

(c) (d)

Figure 2: Image examples of the interactive force image dataset used in this paper: (a) sponge (0°, 350 lux); (b) paper cup (10°, 350 lux); (c)
tube (20°, 550 lux); (d) stapler (30°, 750 lux), where 30° represents the pressure angle and 750 lux represents the light intensity.
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learning methods. The main reason is that when the contin-
uous interactive image data is predicted as a whole, it is a
symmetrical processing method, that is, the dynamic time,
the width, and height of the image are treated equally, and
the change process of the image characteristics over time is
not described. In short, it does not perform differentiated
processing and analysis of time and space characteristics,
so it does not achieve better prediction results.

However, force prediction is a regression problem based
on three-dimensional coordinate system, that is, as time
changes, the spatiotemporal characteristics will also change.
From a more essential point of view, with the time migra-
tion, there are significant differences in the class semantics
and action change degree in the continuous sequence
images. For example, as shown in Figure 1, in a windowed
multiframe continuous image sequence, with the change of
time, the class attribute of the image has not changed greatly,
and it has always been the interaction scene between a cer-
tain type of medium and the cutting edge of robotic hands.
In contrast, the interaction action between the cutting edge
of the robotic hand and the medium is continuously and
rapidly changing. Therefore, different processing methods
need to be adopted for interactive scenes and interactive
actions in order to improve the information capture
capability.

For this reason, different from the traditional force pre-
diction of continuous interactive image data as a whole, this
paper adopts dual-resolution channel sampling for interac-
tive scenes (semantic class attributes) and rapidly changing
interactive actions, as shown in the leftmost side of
Figure 1. The sampling channel for the interactive scene is
called the interactive scene channel, that is, interactive scene
pathway. The windowed data is sampled with a lower time
sampling frequency, and the interactive images with a large
time interval and low frame rate are extracted as the descrip-
tion data of the interactive scene.

To this end, we introduce the hyperparameter α, which
is used to control the sampling frequency of the interactive
scene channel, that is, an image is extracted every α time
interval, which is defined as follows:

Xscene
Δt
α

� �
= Xn 1ð Þ, Xn 1 + αð Þ,⋯, Xn 1 + Δt − αð Þð ÞT , ð4Þ

where Δt is the original windowed data; we use the above
formula to complete the equal interval low-frequency sam-
pling of the original windowed data, and the length of each
interactive scene data sample is Δt/α.

The sampling channel for fast changing interactive
actions is called the interactive action channel, i.e., interac-
tive action pathway. The windowed data is sampled at a
higher time sampling frequency to extract high frame rate
interactive action images with small time interval as the
description data of fast changing interactive actions.

To this end, we introduce the hyperparameter β, which
is used to control the sampling frequency of the interactive
action channel, that is, to sample an image every α/β time
interval. Different from the previously set hyperparameter

α, this parameter is a proportional parameter, which can
ensure a dynamic proportional relationship between the
interactive scene and the interactive action channel. The def-
inition of hyperparameter β is as follows:

Xaction Δt ⋅
β

α

� �
= Xn 1ð Þ, Xn 1 + α

β

� �
,⋯, Xn 1 + Δt −

α

β

� �� �T

,

ð5Þ

where Δt is the original windowed data. We use the above
formula to complete the equal interval high-frequency sam-
pling of the original windowed data, and the length of each
interactive action data sample is Δt/ðα/βÞ = Δt · β/α. The
action continuity of the interactive action can be preserved,
and the amount of data can be reduced, which can be
extracted in this way.

Through the differential resolution sampling of the two
channels, the personalized description of the original win-
dowed data can be obtained, which is different from the tra-
ditional force prediction method.

3.2.2. Spatiotemporal Interaction Feature Extraction Based
on Time-Sensitive Dual-Resolution Learning with 3DCNN.
Based on the dual-resolution sampling channels constructed
in the previous section, namely, the interactive scene chan-
nel and the interactive action channel, we design two
deformable 3DCNN to extract the deep semantic features
of the two resolution channels. In addition, in the forward
extraction process, a horizontal connection strategy is added
to share and interact with the feature information of the two
channels, thereby obtaining richer deep semantic interaction
features, as shown in Figure 1.

First, we construct two symmetrical 3DCNN networks
with the same depth and extract the channel features with
resnet3D-50 as the backbone network [2, 28, 29]. The
resnet3D-50 model has been restructured and streamlined.
In order to reduce the channel capacity and increase the for-
ward inference speed, we have modified the number of
channels of each convolution bottleneck of the resnet3D net-
work, that is, the number of filters, and we have reduced it
by a factor of 2. Therefore, the paper includes two models;
one is based on the original resnet3D-50 as the backbone
model, and the other is a simplified model of resnet3D-50.
In the subsequent experimental sections, we also compared
the performance of the simplified model with the original
model. Furthermore, we adjust the channel level of the back-
bone network. Because of the large number of frames in the
interactive action channel, if the number of channels
designed by the backbone network is too large, the speed
of feature extraction will be too slow and it is difficult to
obtain real-time requirements. Therefore, we need to sim-
plify the feature channel dimension of interactive action
channel to improve the efficiency of feature extraction.

To this end, we introduce a hyperparameter γ to control
the channel ratio of interactive scene channels and interac-
tive action channels in the backbone network. Through the
introduction of this hyperparameter γ, the number of inter-
active action channels can be dynamically adjusted, greatly
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reducing the amount of calculation of interactive action
channels and increasing the inference speed. For example,
when we set γ = 1/8 and the number of feature channels in
a certain layer of the interactive scene channel is 64, the
number of feature channels in the corresponding interactive
action channel is 64 · γ = 8. Moreover, the introduction of
hyperparameter γ can adaptively adjust the channel struc-
ture of the model instead of manual adjustment, which has
good generalization performance.

Cl
Xaction

= γ ⋅ Cl
Xscene

, ð6Þ

where Cl represents the number of feature channels corre-
sponding to the lth layer, that is, the number of convolution
kernels.

Finally, we introduce the lateral connections strategy,
that is, in the middle layer of the backbone network of the
upper and lower branches, we introduce a feature interaction
module, that is, the features of interactive action channels
are convoluted and integrated into the features of interactive
scene channels for feature interaction, so as to improve the
feature correlation between different channels. The specific
process of the lateral connection strategy is as follows. We
use 3D convolution to extract features of interactive action
channels, the size of the convolution kernel is set to 5 × 1
× 1, and the number of channels is set to 2γCl

Xscene, stride
= β. After 3D convolution feature extraction, the feature
map of the interactive action channel is integrated into the
feature map of the interactive scene channel by using the
concatenation operation, so as to realize the feature interac-
tion of the two parallel channels, as shown in Figure 1.

After the double branch feature extraction channel is
completed, we use the global average pooling layer to fuse
the extracted features at the end of each branch to obtain
the global semantic feature information.

3.3. Interaction Force Estimation Based on Time-Sensitive
Prediction Module. Based on the extracted deep semantic
information, we constructed a lightweight interactive predic-
tion module. First, we design a concatenation layer to fuse
the features extracted from the two-channel 3DCNN net-
work to obtain global semantic features with dual resolution;
furthermore, a dropout layer is added to sparse the above
features to improve the generalization performance of the
model; finally, a fully connected regression layer is con-
nected to predict the interaction force, where the activation
function is set to the sigmoid function. Among them, the
input of fully connected regression layer is the final sparse
feature, its dimension is concatenation feature dimension,
and the output is prediction interaction force and its dimen-
sion is 1. The activation function is set in this way because
the normalized range of the interaction force is ð0, 1Þ, and
the range of sigmoid is also ð0, 1Þ, which is more suitable.
It should be noted that this paper inputs continuous multi-
frame images as a sample into the constructed network,
and the output is the interaction force corresponding to
the last image in the continuous multiframe images.

4. Experimental Results

In this section, we implement a series of experiments to eval-
uate the effectiveness of our proposed time-sensitive dual-
resolution learning network-based force estimation method.
The hardware environment of all the verification experi-
ments is a desktop workstation running Windows 10 64-
bit, equipped with Intel (R) Core (TM) i5-7500 CPU @
3.40GHz, GeForce RTX2080 Ti 11G GPU, 48G RAM.

4.1. Datasets and Hyperparameter Configuration. This paper
uses a large-scale force estimation dataset to conduct a series
of verification experiments. As mentioned in Section 3.1, this
paper uses a large-scale open source robotic hand interaction
dataset to verify the performance of our method. There are
four different contact media in this dataset, namely, sponge,
paper cup, tube, and stapler. In addition, in order to increase
the diversity of data, the interactive scene between the robot
hand and the medium was collected and built a dataset from
4 different angles and 3 different light conditions. To this
end, as described in Section 3.1, we obtain 400000 continu-
ous interactive images through the cleaning of the dataset,
in which there are 100,000 images for each contact medium,
which is the original robotic interaction image dataset cre-
ated in this paper.

Further, based on the above-mentioned original interac-
tive image dataset, we use the windowing method described
in Section 3.1 to obtain continuous windowed data. There-
fore, a windowed interactive image dataset is established,
which is used to verify the performance of our method. Each
sample in the dataset can be expressed as shown in Equation
(3), where Δt is the size of the window, that is, the number of
frames contained in a sample.

In order to evaluate the performance of our method in
this paper more scientifically, a training-validation-test strat-
egy is used, that is, the training set is used for iterative train-
ing of the model, and the relevant parameters are updated;
the verification set is used to verify the performance of the
model online so that the relevant model parameters can be
adjusted in time to make the training more effective; finally,
the test set is used to evaluate the overall performance of the
trained model, including evaluation from a variety of indica-
tors. Therefore, we randomly divide the original windowed
interaction dataset into 10 groups: 8 groups are randomly
selected as the training set, 1 group is used as the validation
set, and the remaining 1 group is used as the test set.

The verification experiment in this paper has the follow-
ing unified settings: we scale the original image input size to
112 × 112 × 3; the output label dimension is set to 1; the win-
dow length Δt of each sample is set to 16, and we also com-
pared the model performance when Δt = 32; the backbone
architecture of 3DCNN is set to resnet3D-50; the loss func-
tion of the model is set to mean square error; the optimizer is
set to adam; the training epochs are set to 200; the learning
rate is set to 0.001; the batch size is set to 32. In addition,
α, β, and γ are three important hyperparameters. We have
carried out different settings, and the comparison of experi-
mental results can be seen in detail below. In the end, these
three hyperparameters are set to α = 16, β = 8, and γ = 1/8.
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4.2. Evaluation Measures. In order to effectively evaluate and
compare the force estimation performance of different
methods, this paper uses the following mainstream indica-
tors to evaluate the predictive performance of all force esti-
mation methods, namely, RMSE, MAE, MSE, and R2. The
calculation method is defined as follows:

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

〠
M

m=1
prem − gtmð Þ2

s
, ð7Þ

MAE = 1
M

〠
M

m=1
prem − gtmj j, ð8Þ

MSE = 1
M

〠
M

m=1
prem − gtmð Þ2, ð9Þ

R2 = 1 − MSE pre, gtð Þ
Var gtð Þ , ð10Þ

where prem represents the predicted interaction force of the
mth sample and gt represents the ground truth of the mth
sample, which is the label. M is the total number of samples
in the test set, and var ð•Þ represents the variance of the sam-
ple set.

These indicators are used to describe the performance of
regression problems, but there are some differences in these
indicators, which can describe the performance of the model
from different angles. Therefore, through the statistical
results of the above indicators, the force prediction perfor-
mance of the model can be described more comprehensively.
In addition, we calculate the average inference time of the
statistical model, which is the average time for the model
to predict the interaction force of each sample image.

4.3. Experimental Results of Force Estimation Based on TDL.
In this section, we evaluate the performance of our proposed
force estimation method. The loss in Figure 3 is the MSE
value between the predictive force and the ground truth. It
can be seen from Figure 3 that with the increase of iteration
epochs, the MSE loss of the model on the training set has
been showing a downward trend, and the loss value on the
verification set also shows the same trend, which indicates
that the model can converge on the data and is effective
for the prediction of interaction force. In Figure 3, there is
an obvious fluctuation around 130 epochs, which may be
caused by bad data and has no effect on the training of the
whole model.

4.4. Comparison with State-of-the-Art Force Estimation
Methods. In order to evaluate the effectiveness of the pro-
posed method, we verify the proposed method on a com-
plete dataset and compare it with the state-of-the-art force
estimation methods [2, 18, 19, 24, 30]. Table 1 shows the
comparison results of force prediction performance between
the proposed method and the state-of-the-art force estima-
tion methods. The main results are as follows:

(1) First, we compare the performance of the method in
this paper with the existing state-of-the-art force
estimation methods and observe (a) to (e) and (g).
The time window length of various methods in the
experiment is Δt = 32, and the total amount of data
is 400000 images. The ratio of training, verification,
and testing is 8 : 1 : 1. The three hyperparameters of
our method are set to α = 16, β = 8, and γ = 1/8,
and training epochs are 200. It should be noted that
the methods (a) to (d) are reproduced according to
the methods in the references and the experimental
results obtained on our dataset using these methods.
Regarding the results of method (e), we directly
quoted the best results in the references and did
not reproduce. The R2 index was not calculated in
the references. Therefore, we did not analyze the R
2 index of method (e). The results show that our
method obtains the best prediction accuracy perfor-
mance, with RMSE, MSE, MAE, and R2 indicators
reaching 0.0397, 0.0243, 0.0016, and 0.9725, respec-
tively. Compared with the best force estimation
method (e) (3DCNN+Attention+LSTM) [19], our
method reduces RMSE, MSE, and MAE by 0.0558,
0.0075, and 0.0069, respectively

In addition, we compared the average inference time of
each sample, and our method (g) is faster than method (e),
which is nearly 35 times faster. Compared with the tradi-
tional VGG19, Resnet, VGG+LSTM, and Resnet+LSTM
methods, our method does not increase too much computa-
tional consumption. Therefore, combining the above results
shows that our method has better force estimation
performance.

(2) Further, we compared the effects of different sample
sizes on the performance of our method and
observed (f) and (g). We changed the total amount
of data and randomly selected 40000 images. The
ratio of training, validation, and testing was 8 : 1 : 1.
The three hyperparameters are set to α = 16, β = 8,
and γ = 1/8, and training epochs are 200. Comparing
the results, it can be found that after the data volume
is increased by 10 times, our method reduces the
RMSE, MSE, and MAE indicators by 0.0084,
0.0087, and 0.0007, and R2 increases by 0.0007. This
result shows that the increase in the amount of data
is positive for the improvement of model perfor-
mance. Therefore, this paper uses 400000 images as
the original sample set for subsequent experimental
evaluation

(3) Finally, we compared the simplified model and the
original resnet3D-50 as the backbone of the model
effect; observe (g) and (h). The length of the time
window is Δt = 32, the total amount of data is set
to 400000, and the ratio of training, verification,
and testing is 8 : 1 : 1. The three hyperparameters
are set to α = 16, β = 8, and γ = 1/8, and training
epochs are 200. By comparing (g) and (h), it can be
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found that the simplified model’s prediction accu-
racy has been improved. The three indicators of
RMSE, MSE, and MAE are reduced by 0.00840,
0.00590, and 0.0006, respectively, and R2 is increased
by 0.0108. Moreover, the average inference speed for
each sample is increased by 0.003 seconds. This
result shows that the streamlined network we
designed can also learn the semantic features of the
interactive scene well, the prediction is more accu-
rate, and it also has a faster prediction speed

(4) In addition, we compared the impact of shortening
the time window Δt on the performance of the
model. The results are shown in (h) and (i). It can
be found that when the length of the time window
is reduced doubled, that is, Δt = 16, the prediction
performance of our method is further improved,
with improvements in MSE, MSE, MAE, and R2

indicators, and the inference speed is accelerated by
0.002 s. This result shows that in order to better
implement real-world applications in the future, we
can further streamline the length of the time win-
dow, increase the speed of inference, and have the
same prediction accuracy

4.5. Comparison with State-of-the-Art Spatiotemporal
Methods. The prediction of the interaction force between
the robotic hand and the contact medium is the core prob-
lem to be solved in this paper. In essence, this problem also
belongs to the video behavior analysis, that is, we perform
spatiotemporal analysis for continuous multiframe images
to realize the prediction of interaction force. Therefore, we
investigated the latest spatiotemporal analysis methods in
the field of video behavior analysis and applied these
methods to the force prediction problem studied in this
paper [25, 28, 29, 31, 32]. It should be noted that these
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Figure 3: MSE loss curves of the proposed method on the training set and the validation set versus the number of epochs.

Table 1: Comparison results with state-of-the-art force estimation methods.

ID Method RMSE MAE MSE R2 Inference time (s)

(a) VGG19 (Δt = 32, 400000 images) 0.2201 0.1969 0.0484 -0.0279 2:0052e − 3
(b) Resnet (Δt = 32, 400000 images) 0.2197 0.1914 0.0483 -0.0215 0:9593e − 3
(c) VGG+LSTM (Δt = 32, 400000 images) 0.2161 0.1825 0.0467 -0.0026 2:0421e − 3
(d) Resnet+LSTM (Δt = 32, 400000 images) 0.2182 0.1840 0.0476 -0.1165 1:3578e − 3
(e) 3DCNN+Attention+LSTM 0.0955 0.0312 0.0091 — 3:4204e − 1
(f) Our method (Δt = 32, 40000 images) 0.0480 0.0329 0.0023 0.9718 9:8222e − 3
(g) Our method (Δt = 32, 400000 images) 0.0397 0.0243 0.0015 0.9725 9:8482e − 3
(h) Simplified version of our method (Δt = 32, 400000 images) 0.0313 0.0183 0.0009 0.9833 6:5532e − 3
(i) Simplified version of our method (Δt = 16, 400000 images) 0.0295 0.0185 0.0008 0.9850 4:5861e − 3
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current spatiotemporal analysis methods are mainly used to
classify the types of video content, which belong to the clas-
sification problem, and the interaction force prediction that
this article focuses on belongs to the regression problem.
Therefore, we adjusted the final densely connected layer of
these comparison methods to predict the interaction force.

The length of the time window is Δt = 32, the total
amount of data is set to 400000, and the ratio of training,
verification, and testing is 8 : 1 : 1. The three hyperparameters
are set to α = 16, β = 8, and γ = 1/8, and training epochs are
200. The comparison results between the method in this
paper and the state-of-the-art spatiotemporal analysis
methods are shown in Table 2. C3D-Desnet3D uses Des-
net3D as the backbone network. T3D-EfficientnetB0 and
T3D-Resnet50 indicate that the backbone network is differ-
ent. Resnet50 and EfficientnetB0 are currently the best-
performing feature extraction networks, which are usually
used as backbone networks to concentrate in other task
frameworks. In the process of experimental comparison,
we introduce it into the force estimation problem. In the
process of experimental comparison, we introduce it into
the force estimation problem.

Compared with C3D-Desnet3D, T3D-EfficientnetB0,
and T3D-Resnet50 methods, our method reduced the
RMSE, MAE, and MSE indicators by an average of 0.1076,
0.0540, and 0.0205, respectively, and the R2 indicator
increased by 0.3654 on average. The inference time is also
shorter, with an average acceleration of 0.0187 seconds. In
addition, compared with the simplified version of our
method, the RMSE, MAE, and MSE indicators are reduced
by an average of 0.1159, 0.0600, and 0.0211, respectively,
and the R2 indicator is increased by an average of 0.3762.
The inference time is also shorter, with an average accelera-
tion of 0.0220 seconds. Therefore, the results show that our
method is more suitable for the prediction of the interaction
force, with better prediction accuracy and faster inference
speed than the most advanced spatiotemporal analysis
methods.

4.6. The Influence of Different Contact Media on the
Performance of Our Method. Different contact media have
different materials, which will cause different deformations
after the tip of the robotic hand touches. From a visual point
of view, the predicted force will also be different, which also
increases the difficulty of interactive force prediction. To this
end, we evaluated the interaction force prediction perfor-
mance of the method proposed in this article under different
media conditions. The length of the time window is Δt = 32.

The three hyperparameters are set to α = 16, β = 8, and γ =
1/8, and training epochs are 200.

The statistical results are shown in Table 3. For the four
different materials of paper cup, sponge, stapler, and tube,
the average values of RMSE, MAE, MSE, and R2 of the inter-
action force predicted by our method are 0.0347, 0.0205,
0.0012, and 0.9814, respectively. The results show that the
method proposed in this paper has stable applicability to dif-
ferent media and shows good generalization performance.

4.7. The Influence of Different Hyperparameters on the
Performance of Our Method. The three parameters α, β,
and γ are the key hyperparameters that control our method.
For this reason, we compare the robustness of the model
under different hyperparameter conditions. We set multiple
sets of conventional α, β, and γ and retrained and evaluated
the models we built. From the results in Table 4, it can be
seen that under different hyperparameter settings, the model
performs well and stable on the four indicators, without
much change and fluctuation. The results show that the
method proposed in this paper is robust and can adapt to
different hyperparameters.

In addition, during the experiment, we found that when
the three parameters of α, β, and γ are 8, 8, and 1/8, respec-
tively, the prediction effect is the best, but at the same time, it
also consumes inference time. Therefore, in consideration of
the balance of accuracy and speed, this paper sets the three
parameters of α, β, and γ to 16, 8, and 1/8, respectively, for
the experimental verification in this paper.

4.8. Visualization Results of Predicted Interaction Force. In
order to show the force prediction effect of our method more
intuitively, we visualize the force prediction results of 100
consecutive frames of the interactive force image, as shown
in Figure 4. In Figure 4, the horizontal axis is the number
of each predicted frame, the range is 0 to 100, the vertical
axis is the normalized predicted interaction force, the range
is 0 to 1, and the unit is N. From the change trend in
Figure 4, it can be found that the results of the interaction

Table 2: Comparison results with state-of-the-art spatiotemporal methods.

Method RMSE MAE MSE R2 Inference time (s)

C3D-Desnet3D (Δt = 32, 400000 images) 0.1541 0.0929 0.0237 0.5797 5:3426e − 2
T3D-EfficientnetB0 (Δt = 32, 400000 images) 0.1652 0.0768 0.0273 0.4491 1:6993e − 2
T3D-Resnet50 (Δt = 32, 400000 images) 0.1225 0.0652 0.0150 0.7926 1:5352e − 2
Our method (Δt = 32, 400000 images) 0.0397 0.0243 0.0015 0.9725 9:8482e − 3
Simplified version of our method (Δt = 32, 400000 images) 0.0313 0.0183 0.0009 0.9833 6:5532e − 3

Table 3: The influence of different contact media on the
performance of our method.

Contact media RMSE MAE MSE R2
Paper cup 0.0381 0.0208 0.0014 0.9821

Sponge 0.0334 0.0205 0.0011 0.9798

Stapler 0.0332 0.0186 0.0011 0.9803

Tube 0.0342 0.0222 0.0012 0.9837
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force predicted by the method here are basically consistent
with the ground truth, and the difference is small, indicating
that the prediction performance of the method is better and
can well capture the change of the interaction force.

4.9. Ablation Experiments. In this section, we completed a
series of ablation experiments to verify the effectiveness of
our proposed method. The main innovation of our method
is the construction of two resolution parallel processing
pathways (interactive scene pathway and interactive action
pathway), which is also the main difference from the tradi-
tional single-link CNN architecture method. In addition,
we have carried out a lightweight design of the network to
improve the timeliness; and in the network training stage,
we designed a hybrid data augmentation to improve the
robustness of our method.

Therefore, in order to verify the effectiveness of our
method, we conducted a detailed ablation verification of
each part of our innovative strategy. The ablation experi-
ments include a CNN network with only interactive scene
pathway, a CNN network with only interactive action
pathway, a lightweight design strategy for the network,
and a hybrid data augmentation strategy. Our training

dataset and test dataset division and hyperparameter set-
tings all adopt the unified standard described in Section
4.1. In terms of evaluation indicators, we selected a more
balanced R2 indicator that reflects the accuracy of the
interaction force prediction and the average inference time
of a single image that reflects the prediction speed of the
interaction force.

The results of the ablation experiments are shown in
Table 5. Among them, method (1) represents a CNN net-
work with only interactive scene pathway, which is the
upper part of our method shown in Figure 1; method (2)
represents a CNN network with only interactive action path-
way, which is the lower part of our method shown in
Figure 1; method (3) represents the CNN architecture fused
with dual-resolution pathways, which is an integral part of
our method shown in Figure 1; method (4) means adding
a hybrid data augmentation strategy to the CNN architec-
ture fused with dual-resolution pathways; method (5) indi-
cates that the CNN architecture fused with dual-resolution
pathways is added with a hybrid data augmentation strategy,
and a lightweight design is carried out. This is the final sim-
plified model TDL proposed in this paper. The detailed anal-
ysis results are as follows:

Table 4: The influence of different hyperparameters on the performance of our method.

Model RMSE MAE MSE R2
Alpha = 4, beta = 1/8, tau = 16 0.0472 0.0288 0.0022 0.9733

Alpha = 8, beta = 1/8, tau = 16 (baseline) 0.0523 0.0332 0.0027 0.9650

Alpha = 2, beta = 1/8, tau = 16, batch size = 32 0.0704 0.0446 0.0049 0.9446

Alpha = 16, beta = 1/8, tau = 16, batch size = 32 0.0596 0.0404 0.0035 0.9567

Alpha = 8, beta = 1/4, tau = 16, batch size = 32 0.0455 0.0284 0.0021 0.9739

Alpha = 8, beta = 1/2, tau = 16, batch size = 32 0.0568 0.0346 0.0032 0.9639

Alpha = 8, beta = 1/16, tau = 16, batch size = 32 0.0401 0.0272 0.0016 0.9794

Alpha = 8, beta = 1/8, tau = 8, batch size = 16 0.0359 0.0228 0.0013 0.9841

Alpha = 8, beta = 1/8, tau = 32, batch size = 32 0.0503 0.0366 0.0025 0.9701
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Figure 4: Visualized results of predicted interaction forces.
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(a) The comparison results of methods (1), (2), and (3)
show that when we use (1) or (2) alone, the accuracy
of R2 is significantly lower than that of method (3).
This result verifies the effectiveness of our dual-
resolution processing pathways

(b) Comparing the results of methods (3) and (4), it can
be seen that in the training phase, adding the hybrid
data augmentation strategy we designed, that is,
method (4), its R2 increased by 0.0112. This result
shows that the hybrid data augmentation strategy
can effectively improve the accuracy of interaction
force prediction

(c) Comparing the results of methods (4) and (5), it can
be seen that when we introduce a lightweight design
strategy, that is, method (5), which is our proposed
TDL network, its R2 has increased by 0.0108. In
addition, the inference time of our method is short-
ened by 0.0033 s compared with method (4). This
result shows that the TDL network proposed in this
paper not only has the highest interaction force pre-
diction accuracy but also has a faster interaction
force prediction speed

In summary, the results of a series of ablation experi-
ments show that the various innovative designs of the TDL
network proposed in this paper are effective in terms of
interaction force prediction.

5. Discussion and Conclusions

Real-time estimation of tactile force and appropriate feed-
back has important research value for robot-assisted mini-
mally invasive surgery, interactive tactile robots, and other
application fields. Compared with traditional contact tactile
sensors, which are restricted by biocompatibility or excessive
sensor size, force estimation and feedback through noncon-
tact visual information has become a mainstream solution.
However, the existing noncontact visual ability estimation
methods are all implemented using traditional machine
learning or 2D/3D CNN combined with LSTM. These
methods are difficult to fully mine the contextual temporal
and spatial interaction semantic information of multiple
consecutive image frames, and their performance is limited.

Therefore, this paper proposes a noncontact visual force
estimation method based on a time-sensitive dual-resolution
learning network (TDL) to achieve accurate and rapid pre-
diction of the interaction force. First, the continuous robot
hand interactive video collected by the running camera is
framed, windowed, and normalized. Furthermore, this paper
constructs a deep semantic interaction model based on a
time-sensitive dual-resolution learning network and auto-
matically extracts the deep fusion spatiotemporal semantic
information of consecutive multiple frames of images.
Finally, we design a simplified interaction force prediction
module to achieve efficient prediction of interaction force.

According to the experimental results on the large-scale
robot hand interaction dataset, our method can estimate
the interaction force of the robot hand more accurately than
the traditional interaction force prediction method or
advanced spatiotemporal analysis method. At the same time,
it did not bring more time consumption, and the inference
time was shorter. The average prediction MSE reaches
0.0009N, R2 reaches 0.9833, and the average inference time
for a single image is 6.5532ms. In addition, through experi-
ments under different hyperparameter conditions, experi-
ments under different contact media conditions, and
ablation experiments, the above results show that our
method can still capture the interactive features well, has sta-
ble predictive performance, and shows good generalization
performance. In the future, we will consider conducting ver-
ification experiments on our proposed algorithm in more
real interactive scenarios, including some interactive scenar-
ios in microsurgery. In addition, automatic deep learning is
widely used in many fields [33–35], and in the future, it
can be considered to be introduced into our model
optimization.
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Table 5: Comparison results of ablation experiments.

Method
Interactive scene

pathway
Interactive action

pathway
Lightweight network

design
Hybrid data
augmentation

R2 Inference time
(s)

(1) √ 0.9268 8:2443e − 3
(2) √ 0.8224 6:9621e − 3
(3) √ √ 0.9613 9:8482e − 3
(4) √ √ √ 0.9725 9:8482e − 3
(5) √ √ √ √ 0.9833 6:5532e − 3
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