
Retraction
Retracted: Cost-Aware Resource Optimization for Efficient
Cloud Application in Smart Cities

Journal of Sensors

Received 19 December 2023; Accepted 19 December 2023; Published 20 December 2023

Copyright © 2023 Journal of Sensors. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article has been retracted by Hindawi following an investi-
gation undertaken by the publisher [1]. This investigation has
uncovered evidence of one ormore of the following indicators of
systematic manipulation of the publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research reported
(3) Discrepancies between the availability of data and the

research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Manipulated or compromised peer review

The presence of these indicators undermines our confidence
in the integrity of the article’s content and we cannot, therefore,
vouch for its reliability. Please note that this notice is intended
solely to alert readers that the content of this article is unreliable.
We have not investigated whether authors were aware of or
involved in the systematic manipulation of the publication
process.

Wiley and Hindawi regrets that the usual quality checks did
not identify these issues before publication and have since put
additional measures in place to safeguard research integrity.

We wish to credit our own Research Integrity and Research
Publishing teams and anonymous and named external
researchers and research integrity experts for contributing to
this investigation.

The corresponding author, as the representative of all
authors, has been given the opportunity to register their agree-
ment or disagreement to this retraction.Wehave kept a recordof
any response received.

References

[1] P. Gupta, R. R. Kaikini, D. K. Saini, and S. Rahman, “Cost-Aware
Resource Optimization for Efficient Cloud Application in Smart
Cities,” Journal of Sensors, vol. 2022, Article ID 4406809,
12 pages, 2022.

Hindawi
Journal of Sensors
Volume 2023, Article ID 9828793, 1 page
https://doi.org/10.1155/2023/9828793

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9828793


RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
DResearch Article

Cost-Aware Resource Optimization for Efficient Cloud
Application in Smart Cities

Punit Gupta ,1 Ravindra R. Kaikini ,2 Dinesh Kumar Saini ,1 and Salma Rahman 3

1Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India
2Department of Business Administration, Sahyadri College of Engineering and Management, Mangalore, Karnataka State, India
3North South University, Bashundhara, Dhaka 1229, Bangladesh

Correspondence should be addressed to Punit Gupta; punitg07@gmail.com and Dinesh Kumar Saini; dkssohar@gmail.com

Received 21 October 2021; Revised 8 December 2021; Accepted 2 April 2022; Published 20 April 2022

Academic Editor: Pradeep Kumar Singh

Copyright © 2022 Punit Gupta et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this generation of smart computing environment, every device in the system and multple system are interconnected to each
other, which allows users to view, analyze data, and make smart decisions. Smart cities are one example of smart environments
where every device is connected and computing is performed on the cloud. In such a situation, the system requires an efficient
system to handle huge requests and deliver data. Cloud computing plays an essential role in solving this issue but suffers from
resource optimization, cost optimization, and load balancing. This work is aimed at solving the issue of resource and cost
optimization in cloud infrastructure to provide a high service rate and sustainable infrastructure to cloud applications in smart
cities. The proposed model is inspired by artificial neural networks and nature-inspired algorithm to reduce execution cost,
average start time, and finish time and to make the system power efficient at the same time to improve the utilization of the
system. The result shows that the proposed model completes more tasks in the least time and execution cost as compared to
the existing models. This showcases the smart cloud applications are cost efficient and can complete the tasks in less time.

1. Introduction

A smart city is an environment that comes with intercon-
nected systems. A smart city is a set of interconnected sys-
tems which connect and communicate with each other for
efficient solutions in a distributed environment. Cloud com-
puting provides the best platform to such an application
area, and it can provide a solution to all existing systems in
smart city speaking from a traffic light, smart health care,
smart transport system, and many more. Every system is
connected to the cloud through cloud application. In such
a scenario, cloud performance plays an important role in a
widely distributed environment. The cloud suffers from var-
ious issues like resource optimization, cost optimization,
load balancing, utilization, and power efficiency [1, 2].
Figure 1 shows the role of the cloud in smart cities with var-
ious types of systems interconnected to each other through
cloud applications. In this figure, various connected net-
works in smart cities are showcased with multiple connected

devices like mobile, smart camera, and surveillance devices
using cloud services, where all the devices are connected to
cloud and computation is done on cloud. This is a represen-
tation of huge tasks generated in smart infrastructure for
cloud services.

In order to manage such a high-task load on cloud appli-
cations in smart cities, cloud optimization plays an essential
role to serve the client with a high service rate and least cost.
The cloud is basically a distributed environment with a scal-
able, pay-per-use, and reliable computing environment.
Cloud applications are typically designed to provide real-
time computing and require an efficient and cost-effective
computing environment to provide a better, more cost-effec-
tive, and more reliable solution to the user [3–5]. The
resource allocation in a cloud computing environment plays
a vital role in improving the system’s performance and
serving users with high quality of service and the least cost.
Services in smart city environments depend on remote com-
putation and data analysis performed on the cloud. Cloud

Hindawi
Journal of Sensors
Volume 2022, Article ID 4406809, 12 pages
https://doi.org/10.1155/2022/4406809

https://orcid.org/0000-0001-7606-3014
https://orcid.org/0000-0002-1228-2469
https://orcid.org/0000-0002-5140-1731
https://orcid.org/0000-0002-4889-0431
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4406809


RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

optimization is critical for real-time services that most
e-health, smart vehicles, and many other applications rely on.

The rest of this manuscript is organized as follows.
Section 2 covers the related works. Section 3 presents the
proposed cost-aware task scheduling approach and its
implementation details. Section 4 incorporates the perfor-
mance evaluation and analysis is included. Finally, Section
5 concludes the work.

2. Related Work

In this section, some of the related works from the field of
task scheduling and resource optimization are discussed.

Cloud service has properties of pay per use which makes
it a more advanced computational service [6]. The authors
used group scheduling algorithm to schedule the tasks on
the basis of their attributes with respect to the category been
divided into four parts (user, type, size, and latency). After
the tasks are divided into categories, scheduling algorithm
takes place. Scheduling algorithm is devided into two parts.
In the first part we will schedule the tasks on the basis of user
type which will depend on category, which has high weigh-
tage that will schedule first. The second part the categories
which are created in the first part will be subcategorize and
scheduling of the tasks will be done accordingly. To do so,
the authors used a matrix-based approach. The authors did
not consider the workflow which is very important in the
cloud environment [7]. The authors proposed a design for
a workflow as a service to schedule the task in a more effi-
cient manner to respond a continuous workflow execution
of the task and schedule them in an efficient manner. To
achieve the full utilization of cloud resource, the authors
proposed algorithm that has been divided into two parts

where in the first part, the authors used a workflow com-
poser which uses a workflow service to check the workflow
which interacted with the workflow scheduler to schedule
task which forwards the tasks to the VM administrator for
interaction with the clouds VM manager to schedule the
task. The authors also proposed the WFaaS (workflow as a
service) architecture to show how the tasks are being sched-
uled. With the WFaaS, the authors proposed static task
scheduling, dynamic task scheduling, adaptive task schedul-
ing, and greedy task scheduling algorithms to improve the
scheduling in the cloud [8]. The authors proposed a credit-
based scheduling algorithm which considers two factors:
one is the task length and second is the user priority to
schedule a task. The authors proposed an algorithm that
works on credit which is given to the task length and prior-
ity; a task scheduler will consider their credit value while
scheduling. During the scheduling, the task will be picked
up from both sides: front and back sides. The task length
and its credit value are being considered which are given
on the basis of priority [9]. The authors proposed a multiob-
jective task scheduling algorithm to maximize the through-
put and utilize the resource in the cloud system without
violating SLA (service level agreement). By considering other
aspects like VM availability and data center availability,
other matrices also consider their proposed work [10]. The
authors proposed a particle swarm optimization algorithm
to schedule the task to maximize the utilization of resources.
To maximize the resource utilization, the authors opt for fit-
ness value to schedule the task [11]. The authors proposed a
genetic ant colony optimization algorithm for an optimal
solution to schedule the task over the cloud with a global
search optimal solution [12]. The authors proposed a modi-
fied shortest job first algorithm which completes the last task

Mobile network

ISP network

Enterprise network

Figure 1: Cloud application service architecture for smart city applications.

2 Journal of Sensors



RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

(makespan) and optimizes the response time with utilization
of resource. Based on the average length, task scheduling
takes place and maintains load balance over the cloud.

All the above existing works discussed show that the
proposed task allocation algorithm makes optimization of
time and resource utilization using nature-inspired and
metaheuristic optimization models like ant colony, PSO,
SHC, and GA. But the cloud is a pay-per-use model which
requires cost optimization also at the same time, which is
not fulfilled by either of the proposed model. On the other
hand, some of the cost-aware algorithms are not able to find
least execution time and cost-efficient solution at the same
time. To overcome this issue, a BB-BC-based multiobjective
time and cost-efficient solution is proposed to fulfill both the
needs.

The previous work has focused only on one parameter/
objective like execution time, power, utilization, and cost
and could not be efficient when multiple parameters are con-
sidered. This work is aimed at overcoming the disadvantages
of the existing approaches and proving a global best solution
to improve the quality of service of the cloud.

3. Proposed Model

This section showcases the proposed algorithm for task allo-
cation for cloud infrastructure. The novelty of the proposed
Big Bang-Big Crunch (BB-BC) ANN cost-aware technique is
to increase the execution time, cost, and convergence rate. It
provides an optimal global solution with a fast convergence
rate, providing a cost-efficient solution for the client.

The proposed algorithm is divided into two parts:
trained model preparation and prediction. Figure 2(b) shows
the proposed architecture of ANN-inspired cost-aware BB-
BC algorithm. Figure 2(a) shows the flow of inputs from
one module to another module and how the dataset is pre-
pared for training of ANN and further testing. The trained
ANN model is used to predict the cost-efficient solution.
Figure 3 shows the working of the proposed model with all
the phases on how the complete model is implemented
and trained.

The proposed model is divided into 4 parts:

(i) Data preparation

(ii) Training

(iii) Testing

(iv) Prediction

(1) Data preparation

The BB-BC algorithm is a search-based heuristic optimi-
zation algorithm that selects the object on a fitness criterion
for further processing. The algorithm is aimed at designing
an optimized schedule for the tasks with a least cost.

The BB-BC consists of five phases:

3.1. Phase I (Initial Population). Initial population is the set
of a random selection from the raw dataset. Every element

Big-bang big crunch

Evalute
fitness

Create
initial

population

False

Selection

Crossover
Mutation

Big crunch

TrueStopping
condition Scheduling

(a)

SWF log file BB-BC scheduling algorithm Optimimzed schedule/dataset

80% dataset

20% dataset
(testing)

Machine
learning (ANN)

ANN trained
model

Pridiction
Cloud load
balancing

(b)

Figure 2: (a) The proposed BB-BC algorithm block diagram with various phases. (b) The proposed model architecture using the BB-BC and
ANN model.

3Journal of Sensors



RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

of the set is characterized with some parameters. While
deciding the initial population, the diversity and population
size should be kept in mind. The population size is a random
vector. The initialization can be done in two ways:

(1) Random initialization: the solution is given ran-
domly without prior knowledge

(2) Heuristic initialization: the solutions are given on
some prior known factors; this may cause the simi-
larity and less diversity in the solution

After the initial population is determined, a predefined
fitness function is applied to the initial population.

3.2. Phase 2 (Parent Selection). Selection is the most complex
part of a genetic algorithm as if we select the fittest possible
solution; it may not let any other solution to be selected,
hence a premature convergence. Having a diversified set of
solution is necessary for a successful BB-BC. There are vari-
ous ways to select the solution.

(a) Fitness proportionate selection

In this method, every solution can become a parent with
the probability proportional to its fitness. Hence, the fitter
solutions will have higher chances of selection. Two possible
models for this type of selection are as follows:

(1) Roulette wheel selection: a fixed point is defined on
the circumference of the wheel. After the rotation
whichever the region stops in front of the point is
elected as a parent. The greater fitness solution will

cover a large region; hence, it will have high chances
of selection

(2) Stochastic universal sampling: we will have multiple
fixed points; therefore, all the parents will be chosen
at one spin

(b) Tournament selection

In an n-way tournament selection, n individual solutions
are selected from the population. Process is repeated until
the fittest parent is selected. This method can work with neg-
ative values too.

(c) Rank selection

When the fitness of the individuals is very close to each
other, the fitness value is not taken into considerable as all
the sets have the same fitness value. The higher ranked is
preferred.

(d) Fitness function

For a parent selection, a predefined function is applied to
every solution that is the fitness function. The selection of
the individual is based on the fitness score. The fitness func-
tion should be fast enough to calculate the fitness of the
given solution as we may have to repeat it multiple times
until an optimal solution is found. Fitness may be exact or
approximate which depends on the case.

The training set has a following features: task ID,
expected cost, execution of all virtual machines, and finally

Fa
lse

(a
dj

us
t w

ei
gh

t)

Task scheduling using trained model

True

Convergence
condition

Error back propagation and correction

Training neural model with training
dataset

Training dataset preparation using BB-BC
algorithm

Artificial neural model designing

Initialization

80%

20%

Figure 3: Flowchart of the proposed resource allocation technique.

4 Journal of Sensors



RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

the actual output (i.e., the VM selected for allocation). The
features of the training dataset help the ANN model to
map the BB-BC algorithm’s behavior. Equation (1) is used
by BB-BC to evaluate the fitness of each population, where
cost used in fitness function is evaluated for each task as
given in Equation (2). Cost function requires cost of individ-
ual resource of RAM, MIPS (cost_mips), processor (cost_
pe), and bandwidth (cost_bw). The total sum of resources
used defines the total cost of the resources.

fitness valuei = 〠
j=n

j=1
α ∗ utilizationj + β ∗ total execution timej

+ γ ∗ costi,
ð1Þ

costi = network delayi + task completion timei × cost per unitð Þ,
cost ram = ram size × costperram,

cost mips = mips × costpermips,

cost pe = numberofpes × costpersecond,

cost bw = bw × costperbw,

cost per unit = cost ram + cost mips + cost pe + cost bw, ð2Þ
where α + β = 1:

Total execution time = 〠
n

i=1

Task lengthi
MIPSj

+ Network delayi,

ð3Þ

xc =
∑i=N

i=1 1/f ið Þxi
∑i=N

i=1 1/f i
: ð4Þ

Equation (1) defines the fitness function which is the
summation of computational cost and the execution time
in a proportion defined by α and β, where sum of α and β
is 1. Equation (2) defines the function to evaluate the execu-
tion time used in Equation (1) for fitness evaluation, where
the execution time is the sum of time required to complete
the task and network delay.

3.3. Phase 3 (Crossover). In this, more than one parent is
selected and one or more set is generated having the parent
attributes. The crossover is applied with a high probability.
There are various ways to perform a crossover.

(a) One-point crossover: the random point is selected
from the parent(s) and generated a new solution
with the swapping process

(b) Multipoint crossover: it is advanced to the one-point
crossover; in this, we will have multiple random
points to generate a new solution

(c) Uniform crossover: in this, there is no random point.
We decide whether the property of parent will be
selected or not by flipping a coin

(d) Whole arithmetic recombination: this takes weighted
average of parents by the following formulae:

(1) Child1 = α · x + ð1 − αÞ · Y
(2) Child1 = α · x + ð1 − αÞ · Y

(e) Davi’s order crossover (OX1): it is a permutation-
based crossover that transmits relative information
to the new solutions. It works as follows:

Table 1: Configuration parameters of user tasks.

Parameters Values

Task length 300/2000/3000/4000

Input file size 200 bytes

Output file size 400 bytes

PE 1-2

Table 2: Types of VMs.

MIPS/RAM (mb)/PE/storage

VM1 1000/512/1/20000

VM2 2000/1024/2/2000

VM3 4000/2156/4/20000

Start

Generate initial population

Evaluate fitness

Selection

Crossover (multi point crossover)

Mutation (swap based)

Delete two worst schedule (big crunch)

Termination
condition

Schedule

End

St
op

 co
nd

iti
on

 n
ot

 m
ee

t

Figure 4: Flowchart of BB-BC algorithm.

5Journal of Sensors



RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

(1) Define two random points in the parent and
copy the segment between points and move it
to the first new solution

(2) Now from the 2nd point in the second parent,
copy the unused content and move to the first
solution

(3) Repeat the second solution in a reverse parent
manner

3.4. Phase 4 (Mutation). This process makes a random small
change in the parent solution to generate a new solution.
This occurs to maintain the diversity in the initial popula-
tion set and works on low probability. The most common
used mutations are as follows:

(a) Bit flip mutation: we select some random bits and
flip them to get a new solution. Mostly used in
binary encoded BB-BC

(b) Random setting: in this, a random integer value is
assigned to a randomly selected solution

(c) Swap mutation: this combination-based encoding
selects to random points from the parent and swaps
them to generate a new solution

(d) Scramble mutation: in this, a subset of the solution is
selected and scrambled/shuffled the subset to gener-
ate a new solution

(e) Inversion mutation: similar to the scramble selection
mutation, we choose a subset, but instead of shuffle,
we invert the list to generate a new solution

3.5. Phase 5 (Big Crunch and Termination Condition). In the
Big Crunch phase, the worst solution with worst fitness
value is rejected in each iteration. In each iteration, two such
solutions are rejected. For termination condition, when the
proposed algorithm provides a single set of solution, then
the algorithm is terminated. In the beginning, BB-BC tends
to be very fast, but at later stages, it comes to a saturation
point where the improvements are very small. Termination
is usually done when we are nearly close to an optimal solu-
tion or a solution is repetitive in nature.

Figure 4 shows the working of the proposed BB-BC algo-
rithm taking into account the list of tasks and virtual
machine list as input.

(2) Training

The schedule/data generated by BB-BC is used for
training which has the following features: task length,
task input, output size, processor required, start for each
VM, and the VM ID of the selected VM. This data is
divided into training and testing data in a proportion
of 80 : 20 for verification of accuracy of the machine
learning model. The ANN model used 2 hidden layers,
1 input layer, and 1 output layer. The hidden layer
has 50 neurons in each layer and 1 neuron in the out-
put layer. Learning rate is 0.2 with leaky ReLU as the

3500

3000

2500

2000

1500

1000

500

2000 4000 6000 8000 100000
0

A
ve

ra
ge

 st
ar

t t
im

e (
m

s)

Number of tasks

GA cost
GA EXE
BB-BC Cost-ANN

(a)

7000

6000

5000

4000

3000

2000

1000

2000 4000 6000 8000 10000
0

A
ve

ra
ge

 st
ar

t t
im

e (
m

s)

Number of tasks

GA EXE

GA cost

BB-BC Cost-ANN

(b)

Figure 5: (a) Comparison of average start time for 5 VMs. (b) Comparison of average start time for 10 VMs.

6 Journal of Sensors



RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

activation function for the hidden layer and input layer
and the sigmoidal function at the output layer. The
training phase also includes the backpropagation and
error correction which improves the accuracy of the
model with the least mean error.

(3) Testing

In this phase, the trained model is tested with the 20% of the
remaining data for testing the accuracy of the model if the
model accuracy is found to be low; error correction is
followed. This phase of neural network goes for various iter-
ations which allow to improve the accuracy of the system.

Figures 2(a) and 2(b) show the architecture of the pro-
posed BB-BC and BB-BC using ANN for task scheduling

3500

3000

2500

2000

1500

1000

500

2000 4000 6000 8000 10000
0

A
ve

ra
ge

 fi
ni

sh
 ti

m
e (

m
s)

Number of tasks

(a)

7000

6000

5000

4000

3000

2000

1000

2000 4000 6000 8000 10000
0

A
ve

ra
ge

 fi
ni

sh
 ti

m
e (

m
s)

Number of tasks

GA EXE

GA cost

BB-BC Cost-ANN

(b)

Figure 6: (a) Comparison of average finish time for 5 VMs. (b) Comparison of average finish time for 105 VMs.

7Journal of Sensors



RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

in the cloud. Figure 2(a) shows the various phases in
the proposed BB-BC algorithm to find the best optimal
solution using the Big Bang and Big Crunch phases,
which allow the model to find best fittest solution. The
ANN model has its input and output layers with various

activation functions used at the input layer, hidden layer,
and output layer with error correction mechanism using
backpropagation modules. For the model setup, mutation
rate is 0.15; evolution and population are varied from 50
to 100.

14000000

12000000

1000000

8000000

6000000

4000000

2000000

2000 4000 6000 8000 100000

0

Co
st

Number of tasks

GA cost
GA EXE

BB-BC Cost-ANN

(a)

10000000

8000000

6000000

4000000

2000000

2000 4000 6000 8000 10000
0

Co
st

Number of tasks

GA EXE

GA cost

BB-BC Cost-ANN

(b)

Figure 7: (a) Comparison of cost in $ for 5 VMs with increasing tasks. (b) Comparison of cost in $ for 10 VMs with increasing tasks.

8 Journal of Sensors



RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

4. Results and Discussions

In this work, experiment and results are showcased with
comparative analysis with the existing works. For the
simulation, cloudsim 4.0 is used. The experiment uses a
real word SWF log file from the planned lab. The simu-
lation is done taking the following performance matrix
into mind:

(i) Cost ($)

(ii) Average start time (ms)

(iii) Average finish time (ms)

(iv) Execution time (ms)

(v) Network delay (ms)

Tables 1 and 2 show the configuration of various types
of task and resource in terms of virtual machine taken
into consideration. Where the tasks are of small large
and medium type, similar resources are categorized into
low-medium- and high-computing machines. For simula-
tion, 5 data centers are taken into consideration with 2
hosts each. The cost for each of the resources is taken
from AWS (Amazon Web Services) for a simulation pur-
pose. The above discussed simulation parameters are used
to formulate a cloud environment where the resources are
spread geographically all over the globe. The tasks gener-
ated by smart city applications can vary from small, aver-
age, or large tasks, so in order to formulate this, the

simulation uses the tasks varying from 200 instructions
to 4000 instructions in a task.

Figures 5(a) and 5(b) show the comparative study of
average start time with a scaling task load. The experi-
ment is compared with change in resources to study the
performance with increasing resources. Figures 6(a) and
6(b) show the comparative study of average finish time
with a scaling task load. The experiment is compared
with change in resources to study the performance with
increasing resources. This shows most of the tasks get
an early start without a long waiting time.

The proposed algorithm performs better than the
existing algorithms in the case of the start time and fin-
ish time.

Figures 7(a) and 7(b) show the comparison of execution
cost in dollars for using the resources with increasing tasks.
The comparative study is also performed with scaling
resources. In order to verify the performance of the pro-
posed model, the performance with increase in population
is also performed as shown in Figure 8.

Figures 9(a) and 9(b) show a study of network delay
experienced by tasks before execution. This plays an
important role in total execution time which is the sum
of network delay and execution time. The comparative
analysis shows that the proposed BB-BC-cost ANN per-
forms better than GA with the least network delay with
increasing task and scaling cloud resources. Similarly,
Figures 10(a) and 10(b) show a comparative analysis of
execution time of the tasks which shows that the tasks
are complete on high-computing machines with the least

3500

3000

2500

2000

1500
100 150 200 250 300350 400

Co
st

Number of populations

BB-BC Cost-ANN
GA EXE

GA cost

Figure 8: Comparison of cost in $ with increasing population size in the proposed algorithm.

9Journal of Sensors



RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

7000

6000

5000

4000

3000

2000

1000

2000 4000 6000 8000 10000
0

N
et

w
or

k 
de

la
y 

(M
ili

se
co

nd
s)

Number of tasks

GA cost

GA EXE

BB-BC Cost-ANN

(a)

14000

12000

10000

8000

6000

4000

2000

2000 4000 6000 8000 10000
0

N
et

w
or

k 
de

la
y 

(M
ili

se
co

nd
s)

Number of tasks

GA EXE

GA cost

BB-BC Cost-ANN

(b)

Figure 9: (a) Comparison of network delay for 5 VMs with increasing tasks. (b) Comparison of network delay for 10 VMs with
increasing tasks.

10 Journal of Sensors



RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

execution time rather than some tasks with high delay and
other with the least delay.

5. Conclusion and Future Works

In this work, an efficient resource allocation scheme is pre-
sented for cloud applications in smart cities. The proposed

algorithm tries to improve the cost and network delay of
the cloud environment and managing to improve the
performance of the system at the same time using machine
learning techniques. The proposed BB-BC-cost model out-
performs the existing techniques. The results are compared
using the finish time, start time, and power as the perfor-
mance matrix. In this work, we focused on task scheduling

10000

12000

14000

16000

18000

20000

22000

8000

6000

4000

2000

2000 4000 6000 8000 100000
0

Ex
ec

ut
io

n 
tim

e (
m

s)

Number of tasks

GA cost

GA EXE

BB-BC Cost-ANN

(a)

10000

8000

6000

4000

2000

2000 4000 6000 8000 100000
0

Ex
ec

ut
io

n 
tim

e (
m

s)

Number of tasks

GA cost
GA EXE

BB-BC Cost-ANN

(b)

Figure 10: (a) Comparison of total execution time for 5 VMs with increasing tasks. (b) Comparison of total execution time for 10 VMs with
increasing tasks.

11Journal of Sensors



RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

RE
TR
AC
TE
D

in the cloud using BB-BC and ANN algorithms to reduce the
simulation time of finding the best solution and reducing
cost at the same time. The work has proposed an ANN
model trained with an optimized solution of BB-BC to pre-
dict the cost-efficient solution in a constant time. In the
future, we plan to use the proposed model for resource
scheduling on host and migration approaches for better uti-
lization of resources to improve the running cost of cloud
applications with the optimal resource. The proposed model
has been evaluated under underloaded and overloaded con-
ditions. The result shows that the proposed model proved to
provide better results than the existing models.

Data Availability

The dataset for simulation is supported by parallel http://
workload.com for real-time analysis.

Disclosure

We certify that the submission is the original work and is not
under review at any other publication.

Conflicts of Interest

The authors have no conflicts of interest to declare, and
there is no financial interest to report.

Authors’ Contributions

Punit Gupta and Dinesh Kumar Saini have designed the
model for the cloud with a mathematical proof. Ravindra
R Kaikini and Salma Rahman have contributed in simula-
tion and analysis of result. All co-authors have seen and
agree with the contents of the manuscript.

References

[1] C. Zhao, Q. Liu, J. Xie, S. Zhang, and J. Hu, “Independent tasks
scheduling based on the genetic algorithm in cloud comput-
ing,” in in Wireless Communications, Networking, and Mobile
Computing, 2009. WiCom’09. 5th International Conference,
pp. 1–4, Beijing, China, 2009.

[2] Q. Wu, M. Zhou, Q. Zhu, Y. Xia, and J. Wen, “MOELS: multi-
objective evolutionary list scheduling for cloud workflows,”
IEEE Transactions on Automation Science and Engineering,
vol. 17, no. 1, pp. 166–176, 2020.

[3] M. Rajasree and A. A. Beegom, “A particle swarm optimiza-
tion based Pareto optimal task scheduling in cloud comput-
ing,” in in International Conference in Swarm Intelligence,
pp. 79–86, Springer, 2014.

[4] N. A. B. M. Shaari, L. Y. Por, T. F. Ang, and C. S. Liew,
“Dynamic pricing scheme for resource allocation in multi-
cloud environment,” Malaysian Journal of Computer Science,
vol. 30, no. 1, pp. 1–17, 2017.

[5] Z. Wang and A. Liu, “Grid task scheduling based on adaptive
ant colony algorithm,” in in Management of e-Commerce and
e-Government, 2008. ICMECG’08. International Conference,
pp. 415–418, Nanchang, China, 2008.

[6] H. G. E. D. H. Ali, I. A. Saroit, and A. M. Kotb, “Grouped tasks
scheduling algorithm based on QoS in cloud computing
network,” Egyptian Informatics Journal, vol. 18, no. 1,
pp. 11–19, 2017.

[7] J. Wang, P. Korambath, I. Altintas, J. Davis, and D. Crawl,
“Workflow as a service in the cloud: architecture and scheduling
algorithms,” Procedia Computer Science, vol. 29, pp. 546–556,
2014.

[8] A. Thomas, G. Krishnalal, and V. J. Raj, “Credit based sched-
uling algorithm in cloud computing environment,” Procedia
Computer Science, vol. 46, pp. 913–920, 2015.

[9] A. V. Lakra and D. K. Yadav, “Multi-objective tasks scheduling
algorithm for cloud computing throughput optimization,”
Procedia Computer Science, vol. 48, pp. 107–113, 2015.

[10] S. Zhan and H. Huo, “Improved PSO-based task scheduling
algorithm in cloud computing,” Journal of Information &
Computational Science, vol. 9, no. 13, pp. 3821–3829, 2012.

[11] C. Y. Liu, C. M. Zou, and P. Wu, “A task scheduling algorithm
based on genetic algorithm and ant colony optimization in
cloud computing,” in In 2014 13th International Symposium
on Distributed Computing and Applications to Business, Engi-
neering and Science, pp. 68–72, Xi'an, China, 2014.

[12] M. A. Alworafi, A. Dhari, A. A. Al-Hashmi, and A. B. Darem,
“An improved SJF scheduling algorithm in cloud computing
environment,” in In 2016 International Conference on Electri-
cal, Electronics, Communication, Computer and Optimization
Techniques (ICEECCOT), pp. 208–212, Mysuru, India, 2016.

12 Journal of Sensors

http://workload.com
http://workload.com



