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Convolutional neural network (CNN) model based on deep learning has excellent performance for target detection. However, the
detection effect is poor when the object is circular or tubular because most of the existing object detection methods are based on
the traditional rectangular box to detect and recognize objects. To solve the problem, we propose the circular representation structure
and RepVGG module on the basis of CenterNet and expand the network prediction structure, thus proposing a high-precision and
high-efficiency lightweight circular object detection method RebarDet. Specifically, circular tubular type objects will be optimized
by replacing the traditional rectangular box with a circular box. Second, we improve the resolution of the network feature map and
the upper limit of the number of objects detected in a single detect to achieve the expansion of the network prediction structure,
optimized for the dense phenomenon that often occurs in circular tubular objects. Finally, the multibranch topology of RepVGG is
introduced to sum the feature information extracted by different convolution modules, which improves the ability of the
convolution module to extract information. We conducted extensive experiments on rebar datasets and used AB-Score as a new
evaluation method to evaluate RebarDet. The experimental results show that RebarDet can achieve a detection accuracy of up to
0.8114 and a model inference speed of 6.9 fps while maintaining a moderate amount of parameters, which is superior to other
mainstream object detection models and verifies the effectiveness of our proposed method. At the same time, RebarDet’s high
precision detection of round tubular objects facilitates enterprise intelligent manufacturing processes.

1. Introduction

The detection and recognition of circular tubular objects are
always a basic problem and difficult problem in image pro-
cessing. Circular tubular objects are common in the produc-
tion practice of traditional manufacturing, so the intelligent
detection of circular tubular objects is also an important part
of the process of enterprise intelligence. Many traditional
feature-based images processing methods had been pro-
posed for detection of circular tubular objects, such as
Genetic algorithms [1, 2], Gradient pair vectors [3], and
Hough transform filters [4–6]. Such methods have low

detection accuracy and strongly rely on “hand-crafted” fea-
tures from feature engineering, which have great limitations.

In recent years, data-driven deep learning technology
has shown superior performance in the field of artificial
intelligence, and convolutional neural network is one of the
most popular deep learning structures [7, 8]. In the field of
computer vision, detection methods based on convolutional
neural networks have made great breakthroughs in many
fields, such as image classification [9], target detection [10,
11], semantic segmentation [12], instance segmentation
[13], and gesture recognition [14]. In 2012, Krizhevsky
et al. constructed an 8-layer convolutional neural network
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AlexNet [15]. AlexNet used ReLU as the activation function
of CNN for the first time, successfully solving the problem of
gradient diffusion of Sigmoid when the network was deep
and applied Dropout in the network to randomly ignore
some neurons to avoid model overfitting. Since then, more
and more neural network models have been proposed. The
VGG (Visual Geometry Group) [16] network designed by
Simonyan and Zisserman mainly improved network perfor-
mance by increasing the depth of the network. The convolu-
tional layer of the network uses a 3 × 3 small-size
convolution kernel. Compared with a large-size convolu-
tional layer, a small-size convolutional layer has fewer
parameters and can increase the nonlinearity of the mapping
function. With the deepening of network layer, the VGG
network reaches a performance bottleneck at the 16th layer
and then tends to be saturated. Increasing the depth of the
neural network like VGG can improve the performance of
the network to a certain extent, but this approach has two
bottlenecks. On the one hand, the deeper the network struc-
ture needs to learn more parameters, making the network
easy to overfit. On the other hand, the network with more
layers requires more computing resources. The GoogLeNet
[17] network model developed and designed by Szegedy
et al. used a novel inception structure as the basic module
for cascading, and the network reaches a depth of 22 layers.
Inception uses 3 convolution kernels of different sizes to
extract feature information of different scales from the previ-
ous input layer. The 1 × 1 convolution kernel is used to
reduce the data dimension of the previous layer and the
amount of convolution calculations for the subsequent 3 ×
3 and 5 × 5 convolutional layers to greatly reduce network
parameters while increasing the depth of the network and
make full use of computing resources to improve the com-
putational efficiency of the algorithm. Although methods
such as ReLU and batch normalization can solve the gradi-
ent disappearance or explosion of deep neural networks to
a certain extent, the problem of gradient disappearance or
explosion is still very serious when training a very deep net-
work. In 2015, He et al. proposed a 152-layer residual net-
works (ResNet) [18], which added shortcut connections
when constructing the network, so that the output of subse-
quent layers was not the input mapping in the traditional
neural network, but the input mapping and the superposi-
tion of the input, which solves the problem of the disappear-
ance or explosion of the gradient of the deep neural network
training. This type of detection method based on deep learn-
ing technology has high accuracy, strong model robustness,
and strong transferability, but it also has the disadvantage
of slow inference speed due to the large model. At the same
time, most of these detection methods are based on the tra-
ditional rectangular box to detect and recognize objects, so
they are not optimized for circular or tubular objects, result-
ing in poor recognition and detection of such objects.

The detection and recognition of circular tubular objects
are a basic problem in the field of image processing. Zelniker
et al. [19] used a maximum likelihood estimation method
based on convolutional neural network to better estimate
the circular parameters of the center and radius of the circle
in digital images as a method of circular object detection.

Ayala-Ramirez et al. [20] propose a circle detection method
based on genetic algorithm (GA), which can detect subpixel
circles in composite images, but this method has poor per-
formance in dealing with small circle targets. Yang et al. pro-
pose a circular object detection algorithm based on
convolutional neural network in CircleNet [21], which is
used to identify and detect the glomeruli of spherical bio-
medical objects. CircleNet improves the network’s detection
accuracy of circular tubular objects to a certain extent by
adding a circular detection head to the network, but this
model also has the problems of high model complexity and
low detection efficiency. Because circular tubular objects
often appear in a large number of clusters, another difficulty
in detecting and identifying circular tubular objects is dense
scene detection. Recognition and detection of objects in
dense scenes are a difficult problem in the field of object
detection. There are roughly two reasons. One is that highly
overlapping instances are likely to have very similar features,
making it difficult for the detector to generate distinguish-
able prediction results for each instance; the other is that
there is a serious overlap between instances, and the predic-
tion results may be incorrectly suppressed by NMS. For
these reasons, mainstream algorithms in the object detection
field, such as R-CNN [22–24], YOLO [25–27], and SSD [28],
have poor detection effects in dense scenes.

In order to solve the above problems, based on the net-
work architecture of object detection algorithm CenterNet
[29], combining with the characteristics of circular tubular
type image and the particularity of circular tubular object
detection, we design a high-precision and high-efficiency
lightweight circular object detection method RebarDet. First,
a circular representation structure is introduced on the basis
of the CenterNet network architecture, and a circular box
representation is used to replace the traditional rectangular
box representation. The circular box representation is opti-
mized for the spherical shape of the circular tubular target
and has better rotation consistency than the rectangular
box representation. At the same time, the parameter amount
of detection representation is reduced from 4 to 3 to improve
the detection effect of the network while reducing the model
parameters. Then, we expand the prediction structure of the
CenterNet network. The specific method is to increase the
resolution of the network feature map and the upper limit
of the number of single detection objects in the network
and optimize for the dense phenomenon of circular tubular
object detection. In addition, by combining the advantages
of RepVGG [30] block in information fusion and informa-
tion extraction, we introduce RepVGG block into the Center-
Net network structure, which reduces the amount of model
calculation and improves the feature extraction capability of
the network. Combining the above improvements, we obtain
our work RebarDet, a high-precision and high-efficiency
lightweight circular object detection method. Based on the
rebar dataset provided by Glodon, extensive experiments
have been done to verify the performance of RebarDet in
the rebar detection environment. The experimental results
show that our work has brought about a significant improve-
ment in detection performance. We also compare with the
current mainstream target detection network on the three
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performance indicators of AB-Score, inference speed, and
parameter quantity. The experimental results show that the
accuracy and inference speed of our proposed RebarDet
exceed the existing mainstream object detectors when the
parameters are moderate.

In general, the main contributions of this work are as
follows:

(1) The circular representation structure is introduced
on the basis of the CenterNet network structure,
and the spherical shape of the circular tubular object
is optimized to improve the detection effect of the
network while reducing the model parameters

(2) Improve the resolution of the network feature map
and the upper limit of the number of single detection
objects in the network, expand the prediction struc-
ture of the CenterNet network, and optimize the
dense phenomenon of circular tubular object
detection

(3) By combining the advantages of RepVGG block in
information fusion and information extraction, the
RepVGG block is introduced into the CenterNet net-
work structure, which reduces the amount of model
calculation and improves the feature extraction abil-
ity of the network

(4) The proposed work RebarDet under the condition of
moderate parameter quantity, the accuracy and
inference speed are both higher than the existing
mainstream object detectors, and it reaches 0.8114
AB-Score and 6.9 fps on the rebar dataset provided
by Glodon, significantly better than mainstream
object detection models

2. Methods

This work follows the general process of key point detection.
Suppose the input image is I ∈ RW×H×3, where W and H are
the width and height of the image, respectively. In the pre-
diction phase, the network generates a heat map of key
points as Ŷ ∈ ½0, 1�W/R×H/R×C , where R is the step size corre-
sponding to the original image, and C corresponds to the
number of detection points in the object detection. For
example, in the COCO [31] object detection task, the value
of C is 80, representing 80 categories. In this way, Ŷx,y,c = 1
represents a predicted value of a detected object, indicating
that for category c, an object of this category is detected at
the current coordinate ðx, yÞ, and Ŷx,y,c = 0 indicates that
there is no object of category c at the current ðx, yÞ coordi-
nate. For a certain C category in each label map, calculate
the real key point p ∈ R2 in it for training, the calculation
method of the center point is

p = x1 + x2
2 , y1 + y2

2
� �

, ð1Þ

and the coordinate after downsampling is set to ~p = ½p/R�,
where R is the downsampling factor 4, so the final calculated

center point is the center point corresponding to the low res-
olution. Next, use Y ∈ ½0, 1�W/R×H/R×C to mark the image, and
use a Gaussian kernel:

Yxyc = exp −
x − ~pxð Þ2 + y − ~py

� �2

2σ2p

0
B@

1
CA, ð2Þ

to distribute the key points on the feature map in the form of
markers in the downsampled image, where σp is a standard
deviation related to the object size w and h. In the whole
process, if two Gaussian distributions of a certain class over-
lap, the one with the larger element is directly selected.

2.1. Overview. Figure 1 shows the overall network structure
of RebarDet. We introduce the circular representation struc-
ture and RepVGG module into the network and expand the
network prediction structure. Compared with the usual
object detection backbone networks such as VGG and
ResNet, the Hourglass [32] is better used as the feature
extraction network of the model. Because compared to other
backbone networks, Hourglass is more conducive to key
point detection. The Hourglass network structure includes
convolutional layers, deconvolutional layers, fully connected
layers, etc., repeatedly using top-down and bottom-up
methods, and continuously encoding and decoding to infer
the location of detection points. The overall network struc-
ture is stacked with submodules and subnetworks. It is con-
structed in such a way that Hourglass has a high degree of
flexibility while having a complex structure and has an excel-
lent performance in describing complex features. The
repeated encoding and decoding operations of the network
make the network has stronger presentation ability and can
better mix global and local information. Compared with
other object detection networks, the advantage of using the
Hourglass network is that the feature points of the object
may appear in different layers of the network, and the final
feature map of Hourglass can better detect all the key points
of the object. We introduced the RepVGG module at the
beginning of the network. After the input image enters the
network, it first passes through two RepVGG modules for
feature extraction. The multibranch topology of RepVGG
will sum up the information extracted by different convolu-
tion modules, improve the ability of the shallow network to
extract image features, reduce the loss of image details, and
be more conducive to the subsequent deep network to
extract high-level semantic information of the image. Then,
the image passes through the residual module of the network
and is downsampled, where RebarDet reduces the original
two residual modules to one residual module, and the num-
ber of downsampling is also reduced from 2 to 1, which
increases the resolution of subsequent feature maps and is
more conducive to the detection of dense objects by the net-
work. Then, the image enters the Hourglass backbone net-
work for feature extraction, and the extracted key point
feature information is input to the final circular detection
head. As can be seen from Figure 1, the network has three
detection heads: heat map head, local offset head, and circle
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radius head, which, respectively, detect the object category,
center point coordinates, and radius to complete the recog-
nition and detection of circular objects.

2.2. Circle Representation. Existing detectors in the field of
object detection, such as Faster R-CNN, YOLO, SSD, etc.,
generally use rectangular boxes parallel to the horizontal axis
to represent the object of network prediction and recogni-
tion. Comprehensive considerations are given to the best fit-
ting effect of rectangular boxes for most objects. However,
the fitting effect of rectangular boxes is poor in some specific
scenes, such as the recognition task of circular tubular
objects. As shown in Figure 2(a), the detection effect of using
a rectangular box to fit the rebar object is not very good, and
the number of missed detections is 5. The reason for the
poor performance of rectangular box in circular tubular
object recognition task may be that the cross-section of cir-
cular tubular object is round, and the distribution of circular
tubular object is mostly dense, so it is difficult to fit rectangu-
lar box. RebarDet introduces a circular representation struc-
ture, using a circular box instead of a traditional rectangular
box, to optimize for the spherical shape of a circular tubular
object. Specifically, we build a circular detection head to
enable the convolutional neural network to predict the
regression of the center point (px, py) and the radius r of
the circular box and finally obtain the circular representation
of the recognition object. As shown in Figure 1, the network
uses heat map head (H ×W × C), local offset head
(H ×W × 2), and circle radius head (H ×W × 1) to complete
the identification and detection of circular objects. Figure 2
(b) is the detection effect of the rebar object after applying
the circular box. It can be seen that the detection effect of
the circular box on the rebar object is better than that of
the rectangular box, which can achieve the industrial accu-
racy of zero missed detection. Figure 3 is the experimental
comparison of the rotation consistency of the rectangular
box and the circular box. After the original image is rotated

by 90 degrees for the rectangular box, the number of missed
objects increases significantly, while the circular box only
has 2 missed objects after the original image is rotated. The
above experimental results show that the circular box has
better rotation consistency than the rectangular box.

2.3. Expansion of Prediction Structure. The CenterNet pro-
posed by Zhou et al. have a shortcoming in actual training,
that is, if the center points of multiple objects of the same
category in the image overlap when the network is sampled,
CenterNet is also powerless for this situation, because there
is only one center point, so these two objects can only be
trained as one object. For the detection of circular tubular
objects, the distribution of circular tubular objects is dense
and compact in most cases, so the overlapping phenomenon
of object centers is more serious. To alleviate this phenome-
non, we expand the prediction structure of the network in
RebarDet. Specifically, we increase the resolution of the fea-
ture map before the Hourglass subnetwork, so that the net-
work can detect the center point of the object at a larger
feature map level, which can reduce the overlap of the object
center point. As shown in Figure 4(a), the size of the feature
map has been increased from the original 128 × 128 to 256
× 256. Figure 4(b) is a simplified schematic diagram of the
object detection effect after the feature map is enlarged. It
can be seen that compared to the small feature map, the
large feature map can divide the object to be detected more
dispersed, improve the detection ability of the network in
dense scenes, and reduce the risk of missed detection. In
addition, we expand the upper limit of the number of objects
that the network can detect at a time from 128 to 256, which
makes the network perform better in dense multitarget rec-
ognition scenarios.

2.4. RepVGG Block. The architecture of RepVGG is very
simple and effective, which is equivalent to adding identity
and residual branches to the block of the VGG network.

Input
image RepVGG Block ×2 Residual 

Block
Hourglass 
Network

Heat Map Head

Circle Radius Head

Circle detection head

Conv 3×3

Conv 1×1

BN

ReLU

Residual Block

Output

Figure 1: The overall network structure of RebarDet. We introduce the RepVGG module and circular detection head on the basis of
CenterNet and expanded the network prediction structure.
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(a) (b)

Figure 2: The actual effect of RebarDet under the background of rebar detection, (a) is the detection effect of the rectangular box with the
number of missed detection being 5, and (b) is the detection effect of the circular box, achieving zero missed detection.
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Figure 3: Experimental comparison of the rotation consistency between the rectangular box and the circular box.
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The entire network is only composed of 3 × 3 convolution,
BN layer, and ReLU modules. Figure 5 is a schematic dia-
gram of the structure of RepVGG block. In the training
phase, RepVGG has a multibranch topology in which 1 × 1
convolution (additional BN layer) and BN layer are con-
nected in parallel on both sides of 3 × 3 convolution (addi-
tional BN layer). This structure sums up the feature
information extracted by different convolution modules,
which can improve the information extraction ability of a
single convolution module. Considering that the shallow
convolution of the network is responsible for extracting
low-level semantic features, and the information richness
of this part of the low-level semantic features directly deter-
mines the effectiveness of the high-level semantic features of
the subsequent convolutional layer, so we set the first two
layers of the backbone network as RepVGG block. The fea-
ture of multiple modules in parallel is utilized to improve
the information extraction ability of the network’s shallow
convolution and improve the feature extraction ability of
the whole network while reducing the amount of model cal-
culation [33]. Regarding the number of RepVGG blocks and
the number of channels, we discuss in Section 3.3.3 and
obtain experimental results.

3. Experiments

3.1. Rebar Dataset. To verify the effectiveness of RebarDet
on circular tubular object detection, we evaluate RebarDet
in the context of rebar detection. All experiments in this
paper are based on the rebar dataset released by Glodon
on the DataFountain platform in 2019, which is also the only
open-source rebar dataset so far. The dataset contains a total
of 250 cross-sectional images of rebars and provides rectan-
gular box annotations for object detection task training.
Among them, 24,442 rebar samples in 200 rebar images
are used as training data, and 6,499 rebar samples in 50 rebar
images are used as test data. Eventually, we formed a cohort
with 200 training and 50 testing images.

3.2. Score Metrics. In the rebar quantity counting competi-
tion published by Glodon on the DataFountain platform,
the competition uses F1-score as the scoring algorithm.

Feature map

128

128

256

256

)b()a(

Figure 4: (a) is a schematic diagram of the enlarged network feature map, and (b) is a schematic diagram of the effect. For the purpose of
simplification and easy observation, in (b) the schematic diagram of the effect is simplified from 128->256 to 4->8.

Conv 3×3

Conv 1×1

BN⊕ Summation

⊕

Figure 5: Schematic diagram of the RepVGG block structure, a 1
× 1 convolution (additional BN layer) and a BN layer are
connected in parallel on both sides of the 3 × 3 convolution
(additional BN layer), then, the sum operation is performed.

Table 1: The score table of part B of AB-score. If the predicted
number is completely correct, the score is 1. If the predicted
number differs by 1, the score is 0.5. If the predicted number
differs by 2, the score is 0.1. In other cases, the score is 0.

Number deviation range Score (task B)

0 1

±1 0.5

±2 0.1

Other 0
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However, F1-score is actually a measure of classification
problems, and it is not necessarily suitable for counting
problems such as rebar counting. In our research, it is found
that the model with high F1-score is not effective in the
actual rebar counting detection on the construction site. So
in this paper, we use the scoring algorithm AB-score of a
counting competition on iFLYTEK OPEN PLATFORM to
evaluate RebarDet. AB-score consists of two parts, A and
B. Part A is the mAP value with IoU equal to 0.5. For part
B, as shown in Table 1, different scores are assigned to differ-
ent counting results obtained from a single picture. If the
predicted number is completely correct, the score is 1. If
the predicted number differs by 1, the score is 0.5. If the dif-
ference is 2, the score is 0.1. Otherwise, the score is 0. The
final score in part B is the mean of all the image scores.
The final score of AB-score is as follows:

AB‐Score = A ∗ 0:4 + B ∗ 0:6: ð3Þ

Figure 6 is a comparison chart of the detection effect of
the trained circular tubular object detection model on the
test set. The abscissa is the difference between the predicted

result and the real result, and the ordinate is the number of
predicted pictures. The F1-score and AB-score of the model
in Figure 6(a) are 0.9872 and 0.7983, and the F1-score and
AB-score of the model in Figure 6(b) are 0.9476 and
0.8114. It can be seen from the figure that the number of pic-
tures that are completely predicted correctly by the latter is
more than that of the former, and the error in a smaller
range is also better than that of the former. This shows that
the model with high F1-score is not as effective as the model
with high AB-score in the actual test, indicating that AB-
score is more suitable for the detection task of circular tubu-
lar objects.

3.3. Loss Function. The loss function of network training fol-
lows CenterNet and consists of three parts: Lk , Lradius, and
Loff . The predicted heat map is optimized by pixel regression
loss Lk with focal loss:

Lk =
−1
N

〠
xyc

1 − Ŷxyc

� �α log Ŷxyc

� �
if Yxyc = 1,

1 − Ŷxyc

� �β
Ŷxyc

� �α log 1 − Ŷxyc

� �
otherwise,

8<
:

ð4Þ

where α and β are the hyperparameters of the focal loss, and
N is the number of keypoints in the image I. The radius of
the circular box is optimized with Lradius:

Lradius =
1
N
〠
N

k=1
R̂pk − rk
�� ��, ð5Þ

where rk is the true radius of each circular object k. Center-
Net performs an R = 4 downsampling operation on the
image in the network. When the feature map is remapped
to the original image, it will cause an accuracy error. There-
fore, an additional local offset: Ô ∈ RW/R×H/R×2 is used for
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Figure 6: Statistics of the test results of the trained RebarDet model in 40 rebar pictures, the abscissa is the difference between the predicted
results and the real results, and the ordinate is the number of predicted pictures. (a) is the statistical chart of the test results of the RebarDet
model with F1-score of 0.9872 and AB-score of 0.7983, (b) is the statistical chart of the test results of the RebarDet model with F1-score of
0.9476 and AB-score of 0.8114.

Table 2: RebarDet ablation experiment results table.

Component RebarDet

Circle representation √ √ √ √
Expansion of prediction
structure

Max objects √ √ √
Feature map

resolution
√ √

RepVGG block √
AB-score 0.8114 0.7751 0.7568 0.6984 0.4631
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each center point to compensate. All center points of class c
share the same offset prediction, and this offset value is
trained by L1 loss:

Loff =
1
N
〠
p

Ô~p −
p
R
− ~p

� ����
���: ð6Þ

Finally, the overall objective is

Ldet = Lk + λradiusLradius + λoffLoff , ð7Þ

we set λradius = 0:1 and λoff = 1 referring from CenterNet.

3.4. Ablation Study. To verify the effectiveness of our pro-
posed RebarDet model on detection of circular tubular
objects, we conduct ablation experiments on the rebar data-
set provided by Glodon. In addition, we conduct compara-
tive experiments on mainstream object detection models
and compare the performance of various parameters of the
models to prove the superiority of the RebarDet model. Spe-
cifically, we resize all training set images to 512 × 512 resolu-
tion and keep the relevant hyperparameters of model
training consistent to ensure a fair comparison. All models
are evaluated using AB-score, see Section 3.2 for details of
AB-score.

3.5. Circle Representation. In order to verify the effectiveness
of the circular representation structure, we use the original
CenterNet model and our improved CenterNet model with
the circular representation structure for comparative experi-
ments. The experimental results are shown in the fifth and
sixth columns of Table 2. We obtained an AB-score of
0.6984 after adding the improved circular representation
structure to the basic CenterNet model. Compared with

the basic CenterNet model, adding the circular representa-
tion structure can bring an improvement of 0.2353 AB-
score to the detector, which proves that by adding a circular
representation structure to the network can improve the per-
formance of the detector. We think there are several reasons
why the circular representation structure can bring such a
big improvement. First, in the detection of circular tubular
objects, the fitting effect of the circular box is better than that
of the traditional rectangular box. Second, the circular detec-
tion head is used to detect and represent the object, which
reduces the amount of parameters for detection and repre-
sentation. Third, the circular box has better rotation consis-
tency than the traditional rectangular box.

3.6. Expansion of Prediction Structure.Max objects represent
the upper limit of the number of objects detected by the net-
work at a time. As shown in the third and fourth columns of
Table 2, max objects and feature map resolution obtain AB-
scores of 0.7568 and 0.7751, respectively. The entire expan-
sion of prediction structure brings an improvement of
0.0767 AB-score to the model, which proves the effectiveness
of our designed expansion of prediction structure. We
believe that increasing the size of the feature map can divide
the objects to be detected more scattered, which greatly
improves the detection ability of the network in dense
scenes. The increase of max objects improves the loadability
of network detection of dense objects to a certain extent.

3.7. RepVGG Block. In order to verify the effectiveness of
RepVGG Block, we discuss how many RepVGG blocks are
applied in the network and how many channels are adopted
and conduct corresponding comparative experiments and
obtain the optimal number and number of channels for
applying RepVGG block. The experimental results are as

Table 4: Comparison table between RebarDet and other mainstream object detection models in AB-score, inference speed, and parameter
quantity.

Method Backbone Input size AB-score Inference speed (fps) Params (M)

SSD VGG-16 512 × 512 0.7233 3.5 33.51

RetinaNet [34] ResNet-101 512 × 512 0.7536 3.7 55.37

Faster-RCNN ResNet-101 512 × 512 0.7745 3.5 60.18

ATSS [35] ResNet-101 512 × 512 0.7812 3.5 50.91

YOLOv5 yolov5x 512 × 512 0.7983 7.1 40.97

RebarDet (ours) Hourglass-104 512 × 512 0.8114 6.9 35.24

Table 3: The experimental result table of the number of RepVGG Blocks and the number of channels. Using two RepVGG blocks and the
number of channels of 128, the experimental accuracy is the highest.

Number of blocks
Number of channels

128 256

RepVGGblock × 1 0.7525 0.7437

RepVGGblock × 2 0.8114 0.7758

RepVGGblock × 3 0.7825 0.7638
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shown in Table 3. Applying a number of RepVGG blocks of
2 and a number of channels of 128, the model achieves the
best accuracy. As shown in the second and third columns
of Table 2, applying RepVGG block brings an improvement
of 0.0363 AB-score to the model, which proves the effective-
ness of the multibranch topology of RepVGG on the model.
We think that the multibranch topology of RepVGG can
improve the extraction ability of shallow convolutions at
the beginning of the network, which parallels 1 × 1 convolu-
tion (additional BN layer) and BN layer on both sides of 3
× 3 convolution (additional BN layer) and BN layer to
sum up the feature information extracted by different convo-
lution modules, thus improving the information extraction
ability of a single convolution module. The richness of
low-level semantic information extracted by this part of the
convolutional module has a great influence on the high-
level semantic features of the subsequent convolutional
layers. Therefore, improving the extraction ability of this
part of the convolutional module can improve the perfor-
mance of the entire network.

3.8. Network Performance. In order to prove the superiority
of the model, we use three performance indicators of AB-
score, inference speed, and parameter quantity to conduct
comparative experiments on mainstream object detection
models. The experimental results are shown in Table 4. In
terms of detection accuracy, RebarDet obtains the highest
AB-score, 0.8114. While obtaining the highest detection
accuracy, RebarDet also maintains a high model inference
speed of 6.9 fps, which is only slightly lower than the model
inference speed of YOLOv5 of 7.1 fps. On the model param-
eters, the SSD model using VGG-16 as the backbone net-
work has the least amount of parameters, but the AB-score
and inference speed of the SSD model are not satisfactory.
While the RebarDet model based on Hourglass-104 main-
tains a moderate amount of parameters, its detection accu-
racy is the highest and the model inference speed is also
better than other mainstream object detection models.

4. Conclusion

In this paper, we introduce RebarDet, a high-accuracy and
high-efficiency lightweight circular tubular object detection
method. By introducing the circle representation structure
and RepVGG module on the basis of CenterNet and
expanding the network prediction structure, the circle detec-
tion performance of the network has been greatly improved.
RebarDet is tested on rebar dataset for object detection. The
experimental results show that RebarDet’s detection accu-
racy and model inference speed are better than existing
mainstream object detectors with moderate parameters.

Data Availability
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