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In the trend of large-scale and intensive livestock farming, it has become difficult to monitor the physical health and breeding
performance of animals accurately, quickly, and comprehensively in the traditional feeding management mode, and with the
development of computer technology, machine vision has been widely used as a non-contact sensor technology. In this work,
it reviews the current automatic behavior detection methods. The chapters are summarized with machine vision technology as
the core and classical behavior detection techniques are added for comparison. It is classified into three aspects: breeding
performance, disease and health, and social behavior, and then discusses in detail daily behaviors (lying, drinking, feeding,
lameness, etc.) and complex behaviors (mounting, aggression, tail biting, etc.).

1. Introduction

The global demand for livestock products is expected to
increase further with the growth of population size and the
acceleration of urbanization[1]. Traditional livestock in a
single mode presents disadvantages such as low breeding
efficiency, high labor cost, and large workload that hinder
the development of agricultural modernization. Therefore,
breeding oriented to scale, intensive, and digitalization has
become an inevitable requirement for the development of
precise livestock farming. Meanwhile, large-scale and inten-
sive farming also brings higher requirements for manage-
ment specifications. The traditional breeding model relies
on empirical knowledge to analyze behavioral changes, to
monitor the health status of animals, and to make appropri-
ate policy. However, precision animal husbandry can inte-
grate individual animal information at multiple stages such
as feeding, breeding, and slaughtering. Combined with ani-
mal’s body condition status, feeding environment, and other
individual information, it can perform personalized feeding,
health monitoring, and timely breeding for animals of differ-
ent growth cycles.

With the emergence of animal health, man-made stress,
and environmental problems in scale farming, higher

demands have been placed on the energy-efficient feeding
management of enterprises. Animal welfare has received
more scholarly attention in recent years, and welfare man-
agement aims to reduce the intensity of negative impacts
critical to survival to tolerable levels [2]. Timely detection
of behaviors that are contrary to animal welfare and health
is beneficial to the profitability as well as sustainability of
farming systems. Animals express emotions such as joy,
anger, and anxiety through behavior, and the emotional
expression can often provide the basis for daily feeding,
such as disease monitoring, estrus detection, and prenatal
and postnatal monitoring. Due to the subtle behavioral
changes, it is expensive and impossible to rely on manual
observation for long periods of time in large-scale farming.
Some abnormal behaviors that occur regularly are often
accompanied by diseases and other problems, and the
machine can replace the manual real-time monitoring, such
as abnormal excretion [3], abnormal water intake [4],
abnormal activity [5], and abnormal breathing [6] to pre-
dict the occurrence of diseases and reduce the risk to reduce
economic losses.

This paper summarizes the technologies related to auto-
matic animal behavior detection from earlier studies, focuses
on the current research status of domestic and international
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automatic behavior detection technologies in the field of
machine vision, and discusses some potential methods.

2. Automatic Behavior Detection Systems

2.1. Accelerometer-Based in Behavior Detection. Accelerome-
ter and gait scoring as a means of studying early motor
behavior are effective in detecting gait abnormalities,
changes in activity levels, and gait status during eating and
drinking [7]. The accelerometer expresses the velocity
change in each directional axis as vector information and
determines the speed and direction of the motion behavior
by the voltage value of the sensor [8]. In addition to measur-
ing linear velocity, it measures the earth’s gravitational pull
by determining the angle at which the device is tilted to
describe the angular velocity of the motion. Measurements
are usually made with single or double sensors on the neck,
leg, back, and ear of the pig. For example, Main et al. [9]
attached accelerometers to the hind legs of pigs to explore
gait patterns to detect lameness. Cornou et al. [10] obtained
lying variation data from an accelerometer placed on the
neck of the pig to classify the pig’s posture specifically. Esca-
lante et al. [11] also installed the device on the neck to quan-
tify the feeding behavior of the pigs. The behavior is
classified by different vector variations on the three axes.
The different parts of the device placement also affect the

trend of the data. Exploring multiple behaviors often
requires multiple device acquisitions for analysis, which are
expensive in commercial farming.

2.2. Vision Systems in Behavior Detection. Computer vision
constructs an explicit and meaningful description of physical
objects from images [12]. The vision system in behavior
detection consists of vision sensors and computer hardware
and software. Behavior detection by machine vision is
mainly embodied in the following process: animal behavior
images are obtained by vision sensors and transmitted to
dedicated computer hardware for behavior image processing
and analysis by software. The purpose is to perform the
visual task of behavior detection. The application of vision
systems in pig behavior detection is shown in Table 1.

Vision sensors commonly used for behavioral detection
are visible light sensors, infrared imagers, and depth sensors.
The different types of sensors deliver behavioral images and
videos that contain different information.

2.2.1. Vision Sensor. Creating two-dimensional images in
visible light sensor and is sensitive to the visible wavelength
band reflected from the object [21]. Monochrome and color
cameras are widely used in animal husbandry, using one or
more cameras for pig detection, pig tracking, and behavior
recognition. The captured image is suitable for the algorithm

Table 1: Application of visual system in pig behavior recognition.

Visual
sensor type

Composition
of visual system

Image type
Visual
angle

Behavioral feature Feature description Conclusion Reference

Visible light
sensor

Single CCD
Grayscale
image

Top view

Drinking behavior
Use dynamic data-based

model estimate
half-hourly water use

92% [13]

Lying behavior
An ellipse fitting

technique applied to
find pig lying positions

93-95% [14]

Locomotion
Calculation of pixel-level

motion after ellipse
fitting of pigs

89.8% [15]

Infrared
sensor

Infrared
thermography

Thermography

Partial Cyllopodia
Scoring the average leg
temperature to identify

lameness
— [16]

Top view

Estrus behavior

Comparison of changes
in vulvar skin

temperature and buttock
skin temperature

— [17]

Aggressive behavior
Extraction of skin

temperature changes
in the area of interest

— [18]

Depth sensor Kinect Depth image Top view

Five postures (standing,
sitting, sternal

recumbency, ventral
recumbency, and

lateral recumbency)

Deep learning
recognition five types

of gestures
— [19]

Aggressive behavior

Clustering training
kinetic energy

difference between
adjacent frames

95.8% [20]
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based on color, texture, shape, and other feature extraction.
Kashiha et al. [13] achieved 92% accuracy in identifying
drinking behavior and predicting water consumption within
half an hour by obtaining top view through visible light sen-
sors. Nasirahmadi et al. [14, 22] placed a visible light sensor
at 4.5m from the ground to acquire images of pigs lying
down by 10min intervals in overhead view, and demon-
strated the influence of changes in lying preference and local
activity patterns. Kashiha et al. [15] obtained monochro-
matic top views by visible light sensors to prove that pig
movements were analyzable by images with an accuracy of
89.8%.

Infrared imagers capture the heat information emitted
by an object by receiving and measuring infrared radiation
from the surface of the object, and the sensor then converts
it into radiometric temperature data [23]. Can be non-con-
tact, real-time access to thermal information at different
behavior to avoid the stress response of the traditional con-
tact monitoring body temperature, thereby improving ani-
mal welfare based on how it works. Infrared imagers can
make up for the insufficiency of visible light cameras that
are limited to collect data at night, instead of manual moni-
toring of animal behavior day and night without interrup-
tion and reduces manual consumption. Amezcua et al. [16]
proposed a method to measure the average temperature of
the sow’s legs through an infrared imager, which provided
conditions for detecting the lame behavior of the sow. Sco-
lari et al. [17] measured vulvar temperature changes by ther-
mography for estrus detection. Boileau et al. [18] using a
thermal imager acquired a plan view of the thermal imaging
pig, and the pig was observed failure or retreat one feel pain
when the temperature dropped, the thermal imaging evi-
denced based on the back as aggressive behavior when
fighting.

The two-dimensional images acquired by the visible light
sensor can produce errors due to the complex environment
of detecting groups of pigs, such as when the Charge-
coupled Device (CCD) camera is above the pig pen in top
view; the standing behavior and kneeling behavior that are
right below the camera are likely to cause recognition errors
or fail to satisfy the posture recognition. Therefore, depth
sensors with three-dimensional (3D) imaging systems are

easy to extract height features and establish world coordi-
nates more accurately compared to two-dimensional (2D)
imaging systems. Among them, Time-of-Flight (ToF) and
Kinect cameras are often used in animal behavior detection.
ToF cameras output images with depth information by mea-
suring the light pulses reflected from the surface of an object.
The longer it takes for the reflected light pulse to reach the
sensor, the greater the distance to the object. The principle
of data acquisition by the Kinect depth sensor is similar to
that of the ToF [24]. The researchers utilized depth sensors
to obtain animal orientation and 3D spatial information to
better identify behavioral postures. Zheng et al. [19] classi-
fied sows into five categories of lactation postures (standing,
sitting, sternal recumbent, ventral recumbent, and lateral
recumbent) based on the combination of position, orienta-
tion, and connection relationships of the body parts of the
sow acquired by Kinect, which provided basic information
to study the behavioral characteristics and patterns of sows.
Some researchers have used depth images to obtain 2D
image information. Chen et al. [20] acquired depth image
information of pigs by Kinect and built a kinetic model to
classify attack and non-attack behaviors with an accuracy
of 95.8%. The accurate acquisition of depth images by depth
sensors such as Kinect poses computational challenges for
hardware devices, yet the precision of low-consumption
depth sensors decreases as the distance used increases. Lee
et al. [25] proposed a method with complementary depth
and infrared images, where the depth image compensates
the disadvantage of lower accuracy in the dark of the infra-
red image due to less influence by light, but the advantage
of accurate pixel values of the infrared image can be
obtained. The method has an execution time of 8.71ms
real-time detection accuracy of 95% and an execution time
of 14.65ms with 80% accuracy using YOLO in the same
experimental environment.

Besides imaging objects in the visible (VIS) color region,
some machine vision systems are also able to inspect these
objects in light invisible to humans, such as infrared (IR).
It is very useful in morphological signs, body temperature,
and behavioral information. It also helps to explore further
applications such as disease, reproduction, and psychosocial.

Problem
domain Resluts

Knowledge baseImage
acquisition

Pre-processing

Low level
processing

Recognition

Interpretation

Segmentation

Representation

Description

Intermediate level
processing

High level
processing

Figure 1: Different levels in the image processing process [26].
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2.2.2. Image Processing and Analysis in Behavior Detection.
Image processing and analysis involves a series of steps,
which can be broadly divided into three levels: low-level pro-
cessing, mid-level processing, and high-level processing
indicated in Figure 1 [26].

Low-level processing is the acquisition and pre-
processing of behavioral images. The vision sensors will
acquire raw images of variable quality. The region of interest

(ROI) in behavioral detection requires enhancement to
improve the image quality. Commonly used pre-processing
includes correction of geometric distortion, noise removal,
grayscale correction, and blur correction [27]. Xue et al.
[28] adopted median filtering to remove noise and restricted
contrast adaptive histogram equalization to enhance depth
images.

Hierarchical image segmentation process is described,
embodied as a target extraction and detection feature extrac-
tion behavior. Target extraction is a technology of image
segmentation, which extracts research objects in a static sin-
gle frame image or a dynamic continuous frame image. The
result greatly affects the precision of behavior detection at a
later stage. Segmentation can be achieved by three different
techniques: thresholding, edge-based segmentation, and
region-based segmentation as shown in Figure 2. Feature
extraction is a processing method of image description. It
needs to extract quantitative information from previously
segmented images. Feature extraction as a processing
method for image description requires quantitative informa-
tion to be extracted from previously segmented images.
Behavioral changes in animals are characterized as continu-
ous and difficult to detect. Different behaviors have similar
features in physical appearance, and features such as geom-
etry, color, texture, grayscale, and contour are quantified
by specific algorithms to facilitate recognition by classifiers.
Nasirahmadi et al. ([14, 22]) used Otsu method [29] for
global thresholding segmentation, setting thresholds to con-
vert grayscale images to binary images and then using mor-
phological closure operations to remove noise. The pig
target was successfully extracted from the pig pen back-
ground and then ellipse fitting was used to describe the pig
location and orientation based on the geometric features of
the ellipse. Zhou et al. [30] used the Otsu method to segment
the pig and the background after converting the image to
grayscale and combine texture features and color features
based on the Camshift algorithm to describe the pig move-
ment status. The above methods are based on grayscale
images for segmentation. Other researchers have performed
image segmentation process based on color information.
Xiao et al. [31] designed a dynamic color channel selection

method to segment pigs using a threshold selection strategy
that combines the maximum variance between classes and
the minimum variance within classes. In order to ensure that
the pigs have smaller targets when shooting the pigs in a
panoramic view, it is not conducive to the observation of
detailed sexual behaviors such as abdominal breathing
behaviors. Ma et al. [32] proposed to automatically extract
the contour of the pig from the video, segment the contour
of the pig through the Sobel operator, and then use the Fou-
rier descriptor to describe the contour feature. Sobel opera-
tor is based on edge detection segmentation method, and
Robert operator, Prewitt operator, Canny operator, etc. are
also commonly used. The edges are important information
of an image [33] and segmenting the target contour from
the background can obtain more detailed information which
were used to describe the behavior. Some developers have
used specific algorithms, such as deep learning-based algo-
rithms for image segmentation and feature extraction. Song
[33] used a modified RestNet-based deep convolutional net-
work structure for individual pig detection with an accuracy
of 96.4%. Han et al. [34] proposed a decision tree image seg-
mentation model based on color features using CART algo-
rithm to achieve target and background segmentation. Gao
et al. [35] used an improved Mask R-CNN network for the
segmentation of adherent pigs. The accuracy of segmenting
the target and background classes was 86.15%, and the com-
puting time was reduced by 30ms compared with that the
algorithm improved.

The high-level processing is recognition. In behavior
detection, the classifier or deep neural network designed for
the region of interest performs behavior detection based on
the extracted features. With the development of computer
technology, deep learning algorithms can automatically
extract image features driven by data, which has accelerated
the development of machine vision in automatic behavior
detection. It is possible to learn deeper features from a large
number of image samples of animal behaviors, but it is pre-
cisely because of the self-learning nature of features that it is
difficult to explain them and requires in-depth exploration.
Zeng [36] proposed a Faster R-CNN algorithmwith improved
Anchor and improved the detection speed by deleting some
target frames in forward propagation. The accuracy of identi-
fying pig delivery behavior and determining the moment of
birth of piglets was 97%. Zhuang et al. [37] used an improved
convolutional neural network AlexNet to identify the estrus
behavior of large Landrace sow with an accuracy of 93.33%
and an average single detection time of 26.28ms.

The interaction with each stage at all stages of the entire
process is essential for more precise decision-making and is

T

(a) (b) (c)

Figure 2: Typical segmentation techniques: (a) thresholding, (b) edge-based segmentation, and (c) region-based segmentation [25].
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seen as an integral part of the image processing process, as
shown in Table 2. The effectiveness of intelligent decision-
making is more dependent on the integrity of the computer
system, and the addition of machine vision technology has
accelerated the achievement of system integrity. Genetic
algorithms, fuzzy logic, neural networks, and other algo-
rithms provide system control for recognition detection
through constructed image understanding and decision-
making capabilities.

3. Pig Behavior Patterns

3.1. Daily Behavior Patterns. Daily behavior reflects the most
basic physiological needs of pigs including feeding, drinking,
lying, and locomotion behaviors. The appearance of disease,
estrus, and other abnormal states causes changes in behav-
ioral patterns. The maintenance of pig body condition and
timely breeding play a key role in production efficiency.
The traditional manual body size measurement and estrus
detection can bring cost increase in large-scale breeding.
Early behavioral detection devices based on sensors have
therefore emerged to record changes in animal activity by
means of Radio Frequency Identification (RFID) technology,
and these changes are represented in terms of frequency,
duration, behavioral sequences, and complexity of behav-
ioral sequences. With the maturity of computer vision tech-
nology, the application of machine vision in target
monitoring [39], target tracking [40], video classification
[41], and behavior prediction [42] has gradually enhanced.
It also provides a new approach for the application of
machine vision in animal behavior monitoring.

3.1.1. Feeding and Drinking Behavior. Pigs are supplemented
with daily nutrition through feeding behavior and drinking
behavior. Changes in feeding and drinking behavior are a
key symptom of health and animal welfare [1, 2]. Precise
quantification of eating behaviors at an early stage could pre-
vent the occurrence of diseases and other problems to reduce
the risk. Quantification can be expressed in a variety of ways,
such as recording the duration of time spent chewing/biting
food (drinking water) or recording the amount of time and/
or frequency that the head of the animal is in the food
trough or drinking system. The determination of feeding
behavior relies on the extraction of features of the surround-
ing environment such as drinker/feeding troughs. Therefore,
the determination of non-nutritive visits (NNVs) such as
pigs exploring the environment becomes the key to improve
the accuracy [43, 44]. The eating behavior of healthy pigs
occurs at a fixed time. The appearance of abnormal behav-
iors such as decrease/increase in the number of feeding
behaviors and decrease in feeding time could be used as a
basis for determining the abnormal status of pigs, already
widely used in large-scale farming for prediction of disease
and estrus behavior, as shown in Table 3.

In early studies, feeding and drinking behavior detection
was performed by electronic flow meters and accelerometers.
Madsen et al. [4] installed electronic water flowmeters for
measurements of 24 h drinking monitoring. The flow rate
was measured at discrete intervals with a period of 2 mins.

The V-mask arms were set to avoid the accumulation and
error caused by the variation of growth rate. Practical appli-
cation showed that data changes could be observed 17 h
before the disease outbreak. The error mentioned in the
method and based on a priori knowledge, in order to reduce
the error caused by subjective factors, needed to be auto-
mated methods to extract features. Escalante et al.[11] used
LIS3L02DS to measure acceleration data. The 4D vector
was extracted from the measurements which consist of the
three-dimensional axes and the length of the acceleration
vector. After multiple classifier comparisons, the logitboost
classifier reached the best prediction with 90.79% for feeding
behavior. When dividing the time activity sequence in 2min
units, feeding behavior was correctly classified by the logit-
boost classifier with 100%. These experimental results indi-
cated that feeding behavior could be effectively identified
in behavioral sequences.

In order to monitor water drinking rate, Kashiha et al.
[13] installed CCDs for recording drinking nipple visits with
top-view images. The pig body was extracted from the binar-
ized image using ellipse fitting. The body contours were then
separated by reference to the centroid of body image. Water
usage and water dispenser access times were evaluated
through a dynamic data-based model with discrete unit
times of half an hour. The analysis described the half-
hourly water usage of pigs with an accuracy of 92%. This
method could be applied to monitor the occurrence of
abnormal events such as disease outbreaks and feed quality,
while indicating that video surveillance could be used as a
drinking water behavior detection. Zhu et al. [51] analyzed
whether it was a drinking behavior based on individual pig
identification. Histogram equalization was used to improve
the image quality brought about by light. After the maxi-
mum entropy global segmentation and morphological noise
reduction of the enhanced image, drinking pigs were
obtained. Three low-order color moments of drinking pigs
were extracted as color features and five geometric features
(connection area, contour perimeter, distance of the center
of mass from the drinker, external rectangle aspect ratio,
hip circularity) as individual features to identify the corre-
sponding pigs. The drinking behavior of each pig was iden-
tified by calculating the distance to drink nipple with an
accuracy of 90.7%. Qiumei Yang et al. [52] monitored the
drinking behavior of pigs by combining machine vision with
RFID technology. Pigs’ detections were performed based on
threshold segmentation. Then, the learning network of Goo-
gleNet was used to identify the drinking behavior of pigs.
The drinking time of pigs, the duration of water consump-
tion was recorded, and the accuracy of drinking behavior
recognition reached 92.11%. Some studies also used deep
images to quantify drinking and feeding behaviors. Lao
et al. [53] processed voids in images by moving average filter
and binarized depth images for features extraction. After
dividing the pig body into 7 parts, the average depth of each
part was calculated for behavioral classification. The feeding
behavior and drinking behavior were correctly classified by
97.4% and 92.7%.

In summary, an early system for detecting feeding
behavior by electronic sensors. Results of behavioral
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quantification relying on statistics and a priori knowledge
were oriented. This led to a more limited application orienta-
tion. With the application of 2D and 3D sensors, the enrich-
ment of data features has improved. In particular, the
determination of film and television behavior relies on
region-specific feature segmentation. Image data better sup-
ports this work. The depth image, due to its spatial feature of
“depth,” facilitates the delineation of more detailed actions
such as “sitting and drinking” and “standing and feeding”
[53]. However, data-driven detectionmethods are less studied.

3.1.2. Lying Behavior. Pigs spend more than half of daily
time in a lying position [54]. Exploring the physiological
and psychological needs of pigs in combination with the
lying state and position can help improve animal welfare.
The different combination of position, orientation, and con-
necting relation of various parts of the body is referred to
different lying posture of a sow. Among lying postures, the
“recumbency” is subdivided into “sternal,” “ventral,” and
“lateral” recumbent positions as shown in Table 4. The com-
bination of behavioral characteristics with the physiological
characteristics has been the subject of many studies. How-
ever, these researchers have generally been explored under
experimental conditions. For example, lying behavior was
used as a stationary reference state in the behavioral

sequence to obtain a template of pig behavior, which was com-
bined with time series to analyze daily activity. The lying pref-
erence of pigs is related to the material structure of the lying
area, ambient temperature and humidity, stocking density,
outdoor climate stimuli, and other factors [55]. Moreover,
during farrowing and lactation of sows, different lying posi-
tions affect the life and health of piglets. Real-time monitoring
of farrowing room is also important to improve piglet survival
rate. Cornou et al. [10] placed an acceleration below the neck
for behavioral data collection. A multivariate dynamic linear
model (DLM) is constructed by combining the triaxial obser-
vation vector with potential time variables. The variance
parameter of the vector is used as the learning feature. Then,
the Kalman filter is used to automatically classify the
sequences. The results of DLM analysis showed that the prob-
ability of lying behavior being correctly classified was 97%, due
to the need to observe the state of the mean axis when analyz-
ing behavioral sequences; otherwise, it could lead to misclassi-
fication. It can also lead to deviations in axis values when the
accelerometer is worn loosely. This is a problem that is difficult
to avoid with contact sensors.

In addition to contact sensors, vision sensors could avoid
device errors caused by motion variations. Nasirahmadi
et al. [57] used machine vision system to score and classify
pigs in lying posture. After background subtraction, the

Table 2: Image processing and analysis in behavioral detection.

Level Method Image type Key technology Conclusion Reference

Low level: image
pre-processing

Noise removal Depth image
Median filtering denoising and
adaptive histogram equalization
are used to enhance the image

— [28]

Mid-level: image
segmentation and
feature extraction

Threshold-based
segmentation

Grayscale image

Global threshold segmentation
based on Otsu method, described
by elliptical geometry features

— [14]

Threshold segmentation based on
Otsu method, joint texture features,

and color features description
in Camshift algorithm

Better than
Camshift
algorithm

[30]

Color image
Segmentation based on dynamic

selection of color channels
92.6% [31]

Segmentation
based on edge

detection
Grayscale image

Segmentation of contours based
on Sobel operator with Fourier

descriptor
91.7% [32]

Deep learning RGB image

Detection of individual pigs
based on improved RestNet

96.4% [33]

Segmentation of adherent pigs
using modified Mask R-CNN

network
86.15% [35]

Mid-level: image
segmentation and
feature extraction

Specific algorithm Color image
Decision tree image segmentation
model based on color features

using CART algorithm

Better than
Otsu et al.’s
method

[34]

High-level: feature
classification and
behavior recognition

Deep learning Color image

Improving faster R-CNN
algorithm to identify childbirth

behavior
97% (Zeng, 2018)

Improving AlexNet algorithm
to identify estrus behavior

93.33% [37]

Behavior classification using
MobileNet algorithm

93.4% (mAP) [38]
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resulting grayscale image is binarized. This is followed by a
series of noise reduction operations of watershed transfor-
mation, size filtering, and hole filling. Finally, the adjacent
frame pixel movement method is used to distinguish
between standing and lying behavior. Extracting lying pig
contours to build a boundary convex hull feature set. Classi-
fication of lying posture scores using SVM with linear kernel
with 94.4% accuracy. Feature extraction in pattern recogni-
tion relies on pre-processing of images. The model stability
is affected when facing the complex and variable light envi-
ronment. The gathering of pigs or their proximity to the

enclosures makes it difficult to segment lying pigs. This is
one of the key studies in group pig behavior identification.
Depth images avoid color-related problems such as shadows;
Kim et al. [58] used Kinect camera to detect lying pigs. In
this study, spatial interpolation method was applied to
reduce the noise. The background image without the target
pig is subtracted from the depth information of the input
image. Subsequently, the frame difference image was binar-
ized by the Otsu algorithm. Adjust the overlapped pigs by
applying Connected Component Analysis (CCA) before
output in an accuracy 80%.

Table 3: Other applications in behavior detection.

Field of application Variants Detection device Method Conclusion Reference

Disease and health
surveillance

Lameness behavior
Infrared sensor

Comparison of the average temperature
of healthy and affected limbs

— [16]

Depth sensor
Tracking of neck markers enables
markerless tracking of other parts

— [45]

Excretion behavior Wireless sensor
Monitor excretion time and frequency to
detect abnormal behavior of sick pigs

78.38% [3]

Drinking behavior

Electronic flow meter Monitor daily water intake
Predict diarrhea
symptoms a day

in advance
[4]

Machine vision
and RFID

GoogleNet-based monitoring of head
drinking behavior and recording of

drinking time and duration
92.11% [46]

Breathing behavior Machine vision
Extraction of target contours from video
sequences and calculation of ridge and
ventral line fluctuation frequencies

91.1% [6]

Social behavior
Aggressive
behavior

Infrared sensor

Recording back temperature changes with
the intensity and phase of the competition

— [18]

Classification based on mean motion
intensity and booth index using linear

discriminant
89.0% [47]

Social behavior

Aggressive
behavior

Machine vision
Automatic detection by activity indices and
multi-layer feed-forward neural networks

99.8% [48]

Depth sensor
Extracting active features and detecting

attacks using SVM classification
95.7% [25]

Tail-biting
behavior

Depth sensor Automatic pigtail posture detection 73.9% [49]

Lying behavior Machine vision
Judging the relationship with ambient

temperature by the degree of aggregation
— [50]

Table 4: Definition and description of postures.[56].

Behavior level Posture Shorter from Description

Feeding — —
Lowering head into the feeder. The sow may ingest food, or merely

demonstrate its interest in food.

Drinking — —
Touching the nipple water drinker with snout, regardless of whether

the sow is drinking or merely manipulating the nipple.

Lying

Sternal recumbency StR
Lying on abdomen/sternum with front and hind legs folded under

the body; udder is totally obscured.

Ventral recumbency VtR
Lying on abdomen/sternum with front legs folded under the body and

visible hind legs (right side, left side); udder is partially obscured.

Lateral recumbency LtR
Lying on either side with all four legs visible (right side, left side);

udder is totally visible.
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Accelerometers were applied to the lying variation of
individual pigs. Specific scoring of lying posture was per-
formed by different axis values. However, group monitoring
is difficult to realize with wearable sensors due to the aggre-
gated activity habits of group pigs. Machine vision technol-
ogy faces new challenges in improving group monitoring
problems while overlapping pig segmentation. 3D sensors
have been less studied for lying behavior detection.

3.1.3. Locomotion Behavior. Pigs’ locomotion behavior is
closely related to health status and behavioral disturbances
[22]. The locomotor process consists of continuous
sequences of movements such as standing and walking.
Researchers analyzed and explored locomotor behavior in
different expressions in an experimental environment. It
was verified that a relationship exists between locomotor
behavior and disease health and breeding applications. The
gait variation, gait overlap, and stride length of pigs in
abnormal conditions would differ from normal pigs. Lame-
ness in pigs varies in visual presentation due to differences
in pain levels. Early lameness behavior might be difficult to
detect promptly. Therefore, after visual scoring by the gait
scoring system, the lameness level is assessed with the sen-
sors such as accelerometers, force plates, and combined with
kinematics. The gait scoring system set the score from 0 to 5
(0: normal gait, ability to change direction and accelerate
easily; 1: movements appear stiff, abnormal stride length; 2:
walking with a large body twist, shortened stride; 3: mini-
mum weight-bearing on affected limb, still able to gallop
and trot; 4: reliance on non-affected limb for movements;
5: non-movements.) [9]. Gait scoring system normally uses
machine vision as the initial determination of lameness,
which is subjective compared to automatic detection by
means of intrusive sensors. Significant claudication behavior
achieves the expected accuracy. However, there are chal-
lenges in the determination of early claudication and regard-
ing the degree of claudication/pain. The sensors are able to
quantify behavioral information visually through values
such as number of steps. Conte et al. [59] placed single accel-
erometer (Hobo Pendant G Data Logger, Onset Computer
Corporation, Pocasset, MA, USA) on the hind leg. The
accelerometer recorded the x-axis acceleration was <0.6 g
or>1.4 g while a pig is standing. The result presented that
lame sow made a greater number of steps per min than
sound sows (P=0.013). The change in the weight value of
each leg was obtained from a force plate (Pacific Industrial
Scale Co. Ltd., Richmond, BC, Canada). Two cameras were
then used to identify whether each leg was on the correct
platform. The frequency of weight transfer (WS), the average
percentage of body weight per leg (%BW), the percentage of
time WS (%time WS), and other variables were subsequently
obtained by calculation. The negative correlations of front
and hind legs were calculated to measure asymmetry. The
result initiated that the lame sows also had lower contralat-
eral hind leg weight ratios than the sound sows (P=0.062).
The level of lameness was obtained by combining the results
of accelerometer, force plate, and kinematic analysis. Lame-
ness is influenced by multiple factors, and unconsidered var-
iables may become important factors influencing the

classification of lameness levels, for example, the weight dis-
tribution of pigs and clinical signs manifestation. Therefore,
automatic detection methods are required to prevent com-
petent factors to the maximum extent. Thompson et al.
[60] used two Axivity AX3 logging triaxial accelerometers,
which were attached separately to the rear and the neck.
After data cleaning, the extracted features were trained on
a Support Vector Machine (SVM) classifier with a Radial
Basis Function (RBF) kernel. After the optimization opera-
tion such as standard sequential minimal and grid-search,
the standing and walking behavior obtained F1 scores of
0.77 and 0.84. One of the problems that this paper focuses
on is how to correctly classify behaviors in a continuous
sequence of behaviors. Sliding discrimination of different
behaviors in an active sequence in three consecutive frames
is used to avoid smoothing over short transitions. As men-
tioned before, pattern recognition based on SVM, KNN,
Bayes, and other methods could extract features in a targeted
manner. Adequate description of the semantics of the behav-
ior is accompanied by feature selectivity.

In addition to intrusion sensors, Kashiha et al.[15] used a
top view CCD to automatically quantify locomotion behav-
ior. After eliminating the light effect, the image filtered the
background by Otsu method and used morphological clos-
ing operator to eliminate noise. After the segmented pigs
were fitted with ellipses, the movement status of the pigs
was monitored by ellipse parameters. The overall accuracy
reached 89.9% in a farming density of 1.23 pig/m2. This both
achieves the detection of the number of pigs at the same
time. The method that simultaneously achieves quantifica-
tion of movement behavior provides the possibility for auto-
mation in commercial farming. Ellipse fitting achieves better
tracking and localization of pigs than the way of marking
color or id on pigs in previous studies. Segmentation of more
accurate pigs in binary images naturally facilitates ellipse fit-
ting. However, the segmentation results are easily affected by
the contrast with the background and the ambient light
intensity, which could be solved by setting a separate thresh-
old. Furthermore, the change of farming density also affects
the locomotion/resting routine of pigs. The emergence of
complex tasks such as overlapping pigs near each other
due to increased farming density creates difficulties in split-
ting pigs. Lind et al. quantified pig motility by processing
continuous frames. After the fisheye distorted image is recti-
fied by the geometric transformation, a moving object is
extracted by the image-subtraction. It is worth mentioning
that the threshold is automated selected, while balancing
the contrast among the object, the background, and the
noise. The noise was referred the primary reason causing
the bias, which was suppressed by the median value com-
puted in the last n frames. It has been experimentally shown
that the track distance was overestimated by 9%. The image-
subtraction method resolved the problem caused by low
contrast even the similar colors. However, without automat-
ically updating a reference frame was one source of errors in
video frame tracking. Automatically updating the reference
may alleviate this problem at the beginning of the process,
but the objects would gradually become part of the reference
frame over time. In addition to image subtraction, the
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optical flow (OF) method is often applied to quantify motion
behavior by video [61]. Gronskyte et al.[62] used OF track-
ing individual pigs with no marks. Through OF preliminary
estimated and filtered the continuous frames, the OF vectors
would be further estimated by modified angular histograms
(MAH). Due to a high correlation present in the MAH vec-
tor sets, SVM is used to exclude unnecessary vectors. The
MAHs indicated that partial identified OF vectors can
describe actual direction and velocity. The proposed method
is helpful in detecting slow abnormal behavior. However,
monitoring results were susceptible to density effects, and
abnormal behavior vectors were averaged out in the process
of low-level statistics. And the variation in pig size creates a
challenge in tracking individuals. OF was also applied in
another study about the process of transporting pigs to the
slaughterhouse to avoid health hazards in pigs. The model
classified by SVM, which reached 93.5% with the sensitivity
and 90% with the specificity.

Due to the difference in spatial characteristics between
locomotion behavior and flying behavior, such as height var-
iation, 3D vision sensors are also often used in this applica-
tion. Stavrakakis et al.[45] used kinematic gait analysis
(Vicon T20, Oxford, UK) as a reference system to demon-
strate that the Kinect system performed lameness detection.
The experiments were separately compared by marker track-
ing and marker-free tracking. The mark height difference
was 8± 1.1mm between the Kinect system and the Vicon.
The difference of neck marker trajectories amounted 5
± 1.5mm. Similarly, the mean of vertical displacement
amplitudes was 5± 2.8mm. It concluded that the Kinect sys-
tem could detect the lameness by tracking the neck mark.
However, the application of marker-free tracking needs fur-
ther exploration. The Kinect system is mainly applied in
locomotion analysis, such as skeleton tracking [63] and
action recognition [64]. Skeletal tracking of quadrupeds is
more difficult in practical applications, owing to the reason
that some skeletal points of the body structure can be
obscured. Therefore, innovations based on marker tracking,
back curve detection, and other methods. While ensuring
the accuracy of locomotion behavior recognition, the spatial
features captured by the 3D sensor are also preserved.

In conclusion, locomotion behavior is one of the main
forms of daily activity. Lameness behavior is more intuitive
and affects the health of pigs. Lameness detection is an early
tool to improve animal welfare and has reached maturity in
gait analysis techniques, such as Axivity AX3, ADXL330,
and LIS3L02DS, which are widely applied to investigate the
advanced behavior of pigs in relation between physiology
and psychology. The unique identification of the devices also
provides a method for individual pig identification and
health status tracking. The 2D sensor tracks individuals
through continuous frames and allows for abnormal behav-
ior detection for individual frames. This reduces the loss of
wearable sensors during pig movement but increases the
computational cost and the challenge of tracking and detec-
tion due to the similarity of the pig body shape and color.
The body shifts in vertical height during pig movement,
which is difficult to capture by 2D sensors. 3D sensors apply
spatial features such as height changes. The detection of

lameness behavior using the pattern of back curve change,
the magnitude of vertical height change, etc., but the compu-
tational cost in the algorithm needs to be improved.

3.2. Advanced Behavior Patterns. Advanced behaviors are
used to infer the current state of the pig by combining the
underlying behaviors, such as estrus behavior that causes a
sudden decrease in food intake, an increase in activity. How-
ever, there are also specific behaviors, such as estrus behavior
that can produce climbing and straddling and aggression
that can result in violent collisions. Advanced behavior is
mainly a relationship between social behavior and psycho-
logical profiling of pigs. It helps to understand and explore
the potential link between pig behavior and psychology to
improve breeding patterns. A farming environment that bet-
ter fits the physiological and psychological requirements of
pigs could be provided. The economic value is increased
while promoting welfare farming.

3.2.1. Estrus Behavior. The reproductive performance of
sows can affect the production efficiency of pig farms. Estrus
detection is critical for improving reproductive performance;
it is very important to correctly determine the time of estrus
and conduct effective scientific breeding in a timely manner.
Sows in estrus will produce a number of symptoms, such as
reduced feed intake, increased activity, and swollen vulva
with mucus discharge, and reactions such as static reaction
and erect ears. Contact IoT devices including accelerome-
ters, posture sensors, and RFID are used in estrus detection
in a traditional manner. To reduce the occurrence of stress,
infrared imaging technology, visible camera technology,
and depth sensor technology are also used in estrus detec-
tion is shown in Table 5.

Some researchers based on non-visual sensors for estrus
detection. Ostersen et al. [65] proposed an automatic estrus
detection method based on visiting boars to sows. The dura-
tion was modeled by a multi-process dynamic linear model
with first-order Markov probability by reading the individ-
ual information of the visiting sow, the start time of the visit,
and the duration through an RFID sensor at the visit win-
dow. The specificity of the test results was 99.4% better than
the detection of 87.4% of sows entering estrus. The number
of visits per 6 hours was defined as the boar visit frequency
to build a dynamic generalized linear model with a specific-
ity of 98.5%. A method of combining such information
sources through Bayesian networks is also proposed in the
study as an option for future research. Gies et al. [66] devel-
oped a device based on RFID technology that was applied in
estrus detection. When boars and sows are kept in separate
pens, the sows can recognize the boar scent through the
sniffing hole on the detector. A sensor on the top or side wall
of the detector records the electronic ear tag number of the
sow near the sniff hole and the residence time, while an
infrared sensor further verifies whether the sow is in estrus.
Hu [67] recorded daily feeding, body weight, and estrus
index (the number of times the sow contacted the boar on
that day) of sows marked as in estrus through RFID reader
on the feeding pen to monitor the condition of sows in
estrus to avoid abnormalities through feeding behavior and
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body condition changes. Other studies have used wearable
devices such as accelerometers and posture sensors for activ-
ity frequency as well as activity counts to detect estrus
behavior. Cornou and Lundbye-Christensen [68] used time
series (values for the three-dimensional axes x, y, and z) of

acceleration measurements to automatically classify activity
types performed by group-housed sows; the results indicated
that multivariate models are well suited to categorize activity
types. An example of direct application of the modeling is to
detect the onset of estrus, by monitoring the activity level of

Table 5: Applications in behavioral detection.

Field of
application

Variants Detection method Method Conclusion Reference

Estrus
detection

Boar visit RFID

Dynamic linear modeling of sow visit times
with first-order Markov probabilities

87.4% [65]

Record the length of sow visits and verify
estrus with an infrared detector

— [6]

Feeding volume RFID
Detection of estrus by feeding behavior and

body condition
— [67]

Activity level

Triaxial
accelerometer
(LIS3L02DS)

Time series on three axes are selected for
behavioral classification based on a multi-
process Kalman filter to detect outbreaks

Active category: 96%;
passive category: 94%

[68]

Infrared sensor
Translating temperature changes generated by
behavioral changes into voltage changes to

detect estrus
80% [5]

Activity level
and mounting

behavior
Attitude sensor

Optimizing LSTM to identify estrus behavior
using MFO

86.57% [69]

Vaginal
hormone

Vaginal resistance

Comparison of impedance changes before and
after estrus to detect estrus

P < 0:01 [70]

Monitoring the resistivity of the vaginal
mucosa to detect estrus

— [71]

Temperature
variation

Infrared sensor Monitor temperature changes to detect estrus — [72]

Estrus
detection

Vulvar skin Infrared sensor
Analysis of vulva surface temperature to

detect estrus
— [73]

Ears erect Visible light sensor
Improved AlexNet recognition of binaural

erection time to detect estrus
93.33% [37]

Mounting
behavior

Visible light sensor

Establishment of SBDA-DL model to detect
estrus

92.3% [38]

Geometric features and optical flow features
of the target region are extracted, SVM is used

as a classifier to detect the hair situation
90.9% [74]

Improving Mask R-CNN model to detect
seizures after region segmentation

94.5% [75]

Analysis of
prenatal and
postnatal
behavior

Posture
detection

Triaxial
accelerometer
(MPU6050)

Haar wavelet extracted features to identify
lactation behavior based on SVM

Standing position
75.4%; lateral position

83.3%
[76]

Setting motion energy thresholds and building
action classifiers to detect high-risk behaviors

81.7%

Analysis of
prenatal and
postnatal
behavior

Posture
detection

Depth sensor
Improving Faster R-CNN to identify lactation

behavior

Standing 96.73%, sitting
94.62%, sternal 86.28,
ventral 89.57, lateral

99.04%

[28]

Activity level Ultrasonic sensor
K-means clustering of distance information of
the sow’s head, back, and tail before farrowing

to detect farrowing behavior
90.47% [77]

Piglet Visible light sensor
Detection of farrowing behavior based on
color and area characteristics of piglet

movement areas
— [78]
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individual sows. [69]) placed posture sensors on the neck of
sows and identified estrus behavior by mounting behavior
and volume of activity. MFO was used to optimize the num-
ber of first and second hidden layer nerves, maximum train-
ing period, block size, and learning rate of Long Short-Term
Memory (LSTM). The error rate was 13.43% and the recall
rate was 90.63% when 30 minutes was used as the recogni-
tion time of estrus behavior.

In addition to the behavioral parameters of activity, feed-
ing behavior, and frequency of boar visits, methods have
been proposed to detect estrus behavior based on physical
and biological characteristics, such as ear temperature, vagi-
nal temperature, rectal temperature, and hormonal changes
in the vagina [79]. Dusza et al. [70] reported that the mea-
sure of vaginal impedance helps in predicting the LH surges,
which occurred 16.9 h (±17.8) after the first signs of estrus.
Řezáč et al. [71, 80] reported that the impedance changes
in the vaginal vestibule during peri-estrus are considerably
different from those described earlier in the vagina.

In the early estrus detection, the uniqueness of the device
identification enables better tracking of individual informa-
tion, i.e., it can effectively combine individual identification
with behavioral identification to achieve precise raising of
animals. But at the same time, both the estrus detection
device on the feeding pen and the sensor near the boar visit
window could only record the individual information of one
sow at a time. Contact sensors such as accelerometers, pos-
ture sensors, and vaginal resistance devices are prone to
costly problems such as loss of equipment and wear and tear
when animals move or crash with friction.

Machine vision-based estrus monitoring: Digital infrared
thermal imaging (DITI) technology could detect tempera-
ture gradients over a surface area due to its ability to detect
temperature gradients. The body changes in temperature
are easily recognized and detected by DITI and may provide
a means for the discovery and monitoring of normal and
abnormal physiological events [72]. Sykes et al. [73] used
DITI to discriminate between estrus and diestrus phases of
the porcine estrous cycle. Vulva thermal images from
defined regions of interest were analyzed for maximum
(MAX), minimum (MIN), and average (AVG) temperatures.
After performed by the gate level model (GLM) procedure,
Pearson’s correlations were used to determine relationships
among MAX, MIN, and AVG vulva, rectal, and ambient
temperatures. Based on the current data, DITI can discrim-
inate between vulva surface temperatures during estrus and
diestrus in gilts. Freson et al. [5] proposed a method of using
infrared sensors to obtain daily average activity to determine
whether a sow was in heat. The change in behavior is trans-
formed into a change in body temperature and finally reflected
in the form of voltage. According to the change in voltage, 4
parameters of exercise volume (average daily activity, standard
deviation of average daily activity, minimum, and peak) are
set. Research has shown that the accuracy rate of judging the
issuance behavior based on the average daily activity amount
is 80%. Based on this method, Sun et al. [81] designed a
microprocessor-based infrared monitoring system to identify
the estrus behavior of sows. The experimental results showed
an accuracy of more than 80%.

To improve the accuracy of machine vision in estrus
detection, deep learning models have shorter detection time
and higher model integration compared to traditional vision
models [13, 82], which provide new research directions for
this purpose. Zhuang et al. [37] identified the binaural erec-
tion behavior of large white sows by setting a binaural erec-
tion time threshold in estrus to identify whether they are in
estrus or not. A CNN model AlexNet with a 7-layer struc-
ture was designed by reducing the number of convolutional
layers and the size and number of convolutional kernels in
each layer of the AlexNet network structure. From the data,
the range of binaural erection time at estrus was found and a
threshold of 76 s was set to determine whether the sow was
in estrus or not, and the accuracy of the test reached
93.33%. Zhang et al. [38] proposed a SBDA-DL model based
on SBDA-DL for monitoring the climbing behavior of sows.
Improving on VGG16 + SSD, MobileNet was used as the
classification module instead of VGG16. The detection mod-
ule uses SSD with the last two convolutional layers deleted to
reduce the detection frame to 1/4 of the original VGG16 +
SSD network structure. Experiments showed an average
accuracy of 92.3% in identifying mounting behavior. Zhang
et al. (2018) [83] used video analysis for estrus detection
with median and mean filtering for noise removal and
homomorphic filtering for image enhancement. The geo-
metric features and optical flow features of the target region
were used as behavioral detection features, and the average
accuracy of the SVM classifier was 90.9% for recognizing
mounting behavior. Li et al. [75] proposed a Mask R-CNN
based algorithm for pig mounting behavior recognition,
using Mask R-CNN network to segment the region of pigs
in the detected images, and then based on the mask pixel
area of pigs with mounting behavior and non-mounting
behavior in the dataset. Then, the defined threshold of the
pixel area of the pigs with mounting behavior was obtained.
Finally, the method was used to classify the mounting
behavior with 94.5% accuracy.

Estrus detection is different from daily behavioral moni-
toring and is more dependent on complex behavioral
sequences of multiple individuals. It relies on more complex
sequence analysis involving more than one animal and is
therefore more challenging than simple shape or location
detection tasks which can be used for other behavioral cate-
gories. The information contained in the data collected
based on IoT technology is more homogeneous, compared
to image data that can convey more behavioral meaning.

3.2.2. Aggressive Behavior. Aggressive behavior revealed that
it was a complex and gradual behavior. Initial behaviors are
characterized by slower movement (walking) while those
occurring in the final phase are vigorous, rapid, and dynamic
[83]. Boileau et al. [18] used 1284 thermal images taken from
46 pigs in a controlled test environment. From this thermal
window, the average, minimum, and maximum tempera-
ture, standard deviation, and coefficient of variation (CV)
were analyzed in relation to contest phase. The study
showed that peripheral temperature, as recorded by IRT,
responded to the intensity and phases of a contest and
may allow new insight into the physiological and welfare
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outcomes of aggressive behavior. Viazzi et al. [47] developed
a method for continuous automated detection of aggressive
behavior among pigs by means of image processing. Based
on two features, the mean intensity of motion and the occu-
pation index, the Linear Discriminant Analysis was used to
classify aggressive interactions in every episode. The accuracy
of the systemwas 89.0%, and the result showed that it was pos-
sible to use image analysis to automatically detect aggressive
behaviors among pigs. Oczak et al. [48] proposed a method
to automatically detect aggressive behavior in pigs by using
an activity index and a multi-layer feed-forward neural net-
work. Five features of activity index were calculated on the
recorded videos (average, maximum, minimum, sum, and
variance) during 14 time periods. The results revealed that
ANNs, calculated on 241 s time intervals, classified high
aggression events with an accuracy of 99.8% whereas medium
aggression events were classified with an accuracy of 99.2%.
Lee et al. [25] extracted activity features (minimum, maxi-
mum, average, standard deviation of velocity, and distance
between the pigs) from the Kinect depth information in order
to detect aggressive activity. The method employed two
binary-classifier support vector machines in a hierarchical
manner with a better accuracy, and the accuracies of detection
and classification were over 95.7% and 90.2%, respectively.

Since the attack occurs in a standing position, the depth
information of the individual is more significant. Depth
images can identify pigs as standing or lying based on depth
criteria in the data processing stage to facilitate target track-
ing. Compared with visible light cameras, depth sensors can
also circumvent the problems of target occlusion, light, and
texture transformation, which are less used in practice.

3.2.3. Delivery and Lactation Behavior. Sows need to receive
special management at different stages after estrus. Negative
energy balance in sows during gestation increases the prob-
ability of abortion, so the monitoring of body condition and
abnormal behavior of sows during gestation needs to be
enhanced. The traditional farming method relies on manual
prediction of farrowing time for sows approaching farrow-
ing, which is prone to inefficiency and piglet mortality. Some
researchers have analyzed the clinical signs of sows at the time
of farrowing, such as rising body temperature, rising respira-
tion and heart rate udder initiation of milk production, and
swelling of the pubic area. Also, some investigators have auto-
matically determined the time of parturition by monitoring
the sow’s resident litter behavior, etc. Under non-human
interference conditions, the maternal ability of the sow deter-
mines the survival rate and daily weight gain of the piglets dur-
ing lactation [76]. Thus, behavioral performance during the
prenatal gestation and prodromal periods and during postpar-
tum lactation can also affect pig production.

Existing methods for analysis of prenatal and postnatal
behaviors mainly include three-axis acceleration-based
detection methods, ultrasonic detection methods, and
machine vision processing methods. Yan et al. [76] used
MPU 6050 sensor for recognition of lactating sow posture,
and Haar wavelet extraction features were used to recon-
struct the basic profile of acceleration curve. The behavior
was recognized using support vector machine after combin-

ing the posture feature information. A subsequent study [84]
found that the high-risk movement of lactating sows switch-
ing from standing and sitting to lying down was the main
cause of death in preweaned piglets. The frequency of move-
ment occurrence and transformation was determined as the
maternal index of sows, and the data from MPU 6050 sen-
sors were used to set the movement energy threshold and
construct a high-risk movement classifier. The accuracy of
the results reached 81.7%, providing data basis for achieving
scientific evaluation of maternal ability and reproduction.
Zhang et al. [77] used ultrasonic sensors to collect distance
information on the amounts of head, back, and tail activity
of sows before farrowing. The correct rate of behavior detec-
tion and classification using K-means clustering algorithm
reached 90.47%. Liu et al. [78] analyzed sow farrowing video
image features for motion target detection based on improved
single Gaussian model with background subtraction. Target
recognition of piglets was performed based on the color and
area features of motion regions. Xue et al. [28] proposed an
improved Faster R-CNN based on lactating sow pose recogni-
tion algorithm using deep video images as the data source and
introduced the residual structure into the ZF network. The ZF-
D2R network was designed to improve the accuracy and
maintain the real-time performance, and then the Center Loss
supervised signal was introduced into the Faster R-CNN train-
ing to enhance the cohesiveness of intra-class features. The
recognition speed is 0.058 s/frame, which is 0.034 s faster than
the VGG16 network.

The method based on the IoT technology can avoid the
effects of diurnal light changes and hot light illumination,
but at the same time it can lead to misjudgment of behav-
ioral data because of the variability among different individ-
ual sows. Although the visual processing method is affected
by the light problem, the introduction of depth data can rel-
atively overcome the impact of this problem. The perfor-
mance of the model is guaranteed while bringing the
problem of a larger model. Further consideration needs to
be given to compress the model for better migration deploy-
ment to embedded systems.

3.2.4. Tail Biting Behavior. Tail biting occurs mostly in com-
mercial indoor farming, usually due to high farming densi-
ties, poor farming environments, inadequate ventilation,
and poorer feed quality consumption rates [85–89], as
shown in Table 3. In addition to direct damage caused to
the tail and caudal region of the pig, it may also lead to blood
loss or traumatic death, and wound infection can develop
and spread throughout the body, causing abscesses and sep-
sis leading to paralysis and death, thus affecting animal wel-
fare and production efficiency. D’Eath et al. [49] used Time-
of-Flight 3D cameras and machine vision algorithms to
automate the measurement of pig tail posture. Validation
of the 3D algorithm found an accuracy of 73.9% at detecting
low vs. not low tails. Yuzhi et al.[61] used a camera to auto-
matically monitor changes in activity levels prior to out-
breaks of tail-biting behavior. The rate of change of pixel
blocks was estimated by the optical flow method, which cal-
culates the image brightness of blocks between two consecu-
tive frames as well as the spatial average of the blocks. The
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result indicated that pigs increased activity level 3 d before
the first outbreak of tail biting (P < 0:01).

In summary, tail biting behavior can be monitored by
tail posture and behavioral changes. The tail is smaller rela-
tive to the overall target, which is difficult to measure by sen-
sors such as accelerometers, while visual sensors can
enhance attention to localized parts. However, for monitor-
ing the activity level, the time of tail biting outbreak can be
predicted by analyzing the activity trend of each behavior
over a long period of time, and the choice of sensors can
be chosen from accelerator, 2D, and 3D camera.

4. Discussion

(i) In addition to the behaviors mentioned in the previ-
ous section, there are also detections on breathing
behavior and excretion behavior. Zhu et al. [3] pro-
posed an automatic monitoring system to identify
suspected diseased pigs by excretion behavior. The
system was based on ARM platform to monitor
the excretion time and frequency of fattening York
pigs, and the excretion line was judged as abnormal
behavior when it was too frequent. The test results
showed that the correct detection rate of sick pigs
was 78.38%. Ji et al. [6] captured the spine and
abdominal line contours of pigs to warn sick pigs
suffering from shortness of breath. The target con-
tour was obtained by binarizing the acquired video
sequence frames, opening the operation, removing
orphan noise, and smoothing the target edges. The
range of the fluctuation of the shape center is
tracked to identify pigs standing still and moving,
and the location of the ridge line is determined
based on the shape center. The accuracy of auto-
matic video detection of sharply breathing pigs
was 91.1%. In machine vision-based disease surveil-
lance, chronic diseases do not initially show obvious
signs, such as hoof-limb infections. Target diseases
are hard to be monitored by remote vision systems
because of their small size relative to the animal
body but can be identified by detection of specific
parts [16]. Behavioral information such as drinking,
feeding, and excretion of multiple target animals
can be detected simultaneously, especially after pro-
cessing by deep learning algorithms, which can
extract deep feature information from the input
data to improve recognition accuracy. Some specific
sensors such as electronic flow meter, vaginal resis-
tance, pressure pad, and other sensors are also used
in behavior for detection but there are some prob-
lems. For example, electronic flow meters need to
be combined with RFID technology if they track
the drinking behavior of individual pigs. Vaginal
resistance can easily cause stress during measure-
ment. Incorrect treatment could also cause disease
in pigs or detachment of the sensor to the detriment
of animal welfare. In addition, the main reason
affecting the invasive sensors including accelerome-
ters is the limited battery technology. The main pur-

pose of behavior monitoring is to be real-time and
accurate for timely prevention. Real-time data trans-
mission requires a power supply which requires a
long-lasting battery life. The high frequency load of
the device also reduces the service life

(ii) Advanced behavior is also a way of expressing social
behavior. When an unfamiliar counterpart joins the
group, pigs will initiate interactions to gain hierar-
chical status and access to resources, such as space
and feed [90–95], which can lead to excessive
behaviors such as aggression and tail biting among
individuals. Interactions between behaviors are
sometimes negative, such as causing skin damage
leading to infection, which can be fatal in extreme
cases [96]. These negative effects have either direct
impacts or costs of recovery from injuries and asso-
ciated infections [97]. Over-aggressive behavior can
also lead to economic losses and the disadvantaged
party can suffer from problems such as slow growth
and weight loss due to lack of access to adequate
food; therefore, monitoring of over-aggressive
behavior between animals is key to improve animal
welfare in intensive farming to solve disease health
problems [98]. There are also changes in social behav-
ior that can be used as indicators for monitoring the
psychological or physiological health of animals; for
example, the aggregation behavior of pigs can indi-
cate whether the surrounding environment is suitable
for growth [99–101], while high ambient temperature
influences lying behavior with pigs spreading out
[50]. Social behavior can reflect changes in animal
psychology and deep emotions, which can be affected
to some extent by human intervention. The applica-
tion of machine vision technology can not only
record the social behavior of animals in the form of
video, but also can replace part of the farm operators’
behavior observation work

(iii) With the advent of 5G technology, edge computing
devices can be centrally managed and automated
through cloud infrastructures. Large amounts of data
are stored while the required information can be
dynamically accessed and recalled [102]. The amount
of behavioral data collected is large and strongly cor-
related with each other. It tends to have temporal
continuity and regularity. Edge computing technol-
ogy is applied in which historical data can be retained
and visualized for analysis, facilitating accurate man-
agement. However, the long transmission distance of
traditional wireless communication systems leads to
high latency. Edge computing technology shortens
the distance between devices, thus reducing latency
and improving the reliability of data transmission

5. Conclusion and Prospect

This paper reviews the methods of behavior analysis from
target extraction, behavior classification, and behavior mon-
itoring applications. The monitoring devices used gradually
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shift from contact to non-contact devices to reduce the psy-
chological stress on the animals, while machine vision mon-
itoring as non-contact monitoring can be of great help to
improve animal welfare. Especially in behavior monitoring,
the traditional wearable monitoring equipment with the
movement of the animal will have data bias, equipment
damage, and other problems. Video monitoring avoids these
problems well by target tracking from a distance, but
machine vision monitoring research is still in its infancy
and faces more challenges.

Accuracy of vision system detection: A single vision system
is mostly affected by diurnal shift, bright and dark light, and
system accuracy, which affects the later behavior detection,
and more methodological investigations are needed to com-
pensate for the problems in the vision system. Reliability of
individual recognition algorithms. The information contained
in animal behavior needs to be explored more. In addition to
behavior detection itself, individual recognition of animals is
also very important, especially multi-target individual recogni-
tion is the focus of future research. In the refinement of farm-
ing, the management of individuals in the group breeding
method has put forward more stringent requirements, requir-
ing more innovation and integration in target detection, accu-
racy of target tracking algorithms, and arithmetic power.

Applicability of behavioral detection algorithms. The
application direction of behavior detection mostly stays in
the research of general behaviors such as standing and lying
down. Some behavioral detection such as estrus behavior
and aggressive behavior with more complex judgment condi-
tions also play a key role in production but the research results
are still few and should be the direction of further research.

This paper reviews pig target extraction, behavioral
image analysis, and behavioral detection methods based on
machine vision technology, presents the problems of single
vision system, difficult fusion of individual information,
and applicability of behavioral detection algorithms, and
proposes optimization strategies for these problems.

The use of multi-sensor vision system: the combination of
two ormore vision sensors tomake up for the light transforma-
tion, 2D images lack of depth spatial information, and other
problems to achieve all-day detection; The use of multiple sen-
sors to collect data: video monitoring combined with sound
monitoring, individual information collection equipment inte-
gration, and other diversifiedmethods, but at the same time the
data fusion of diversified sensors, process synchronization, and
application to production after the device integration and other
issues also come up. Machine vision for animal behavior
motion detection in many types of research objects, complex
application scenarios, variable environmental variables (tem-
perature, humidity, etc.) will also become a challenge for
machine vision algorithms, but machine vision as one of the
methods of non-contact detection for improving animal wel-
fare still has the potential to be explored.
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