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This study investigates the best available methods for remote monitoring inland small-scale waterbodies, using remote sensing
data from both Landsat-8 and Sentinel-2 satellites, utilizing a handheld hyperspectral device for ground truthing. Monitoring
was conducted to evaluate water quality indicators: chlorophyll-a (Chl-a), colored dissolved organic matter (CDOM), and
turbidity. Ground truthing was performed to select the most suitable atmospheric correction technique (ACT). Several ACT
have been tested: dark spectrum fitting (DSF), dark object subtraction (DOS), atmospheric and topographic correction
(ATCOR), and exponential extrapolation (EXP). Classical sampling was conducted first; then, the resulting concentrations
were compared to those obtained using remote sensing analysis by the above-mentioned ACT. This research revealed that
DOS and DSF achieved the best performance (an advantage ranging between 29% and 47%). Further, we demonstrated the
appropriateness of the use of Sentinel-2 red and vegetation red edge reciprocal bands ð1/ðB4 × B6ÞÞ for estimating Chl-a
(R2 = 0:82, RMSE = 14:52mg/m3). As for Landsat-8, red to near-infrared ratio (B4/B5) produced the best performing model
(R2 = 0:71, RMSE = 39:88mg/m3), but it did not perform as well as Sentinel-2. Regarding turbidity, the best model (R2 = 0:85,
RMSE = 0:87 NTU) obtained by Sentinel-2 utilized a single band (B4), while the best model (with R2 = 0:64, RMSE = 0:90
NTU) using Landsat-8 was performed by applying two bands (B1/B3). Mapping the water quality parameters using the best
performance biooptical model showed the significant effect of the adjacent land on the boundary pixels compared to pixels of
deeper water.

1. Introduction

Monitoring surface and ground water quality is a crucial
responsibility of water supply and management entities, par-
ticularly in arid and semiarid regions due to the vulnerability

of surface waterbodies, the influence of wastewater treatment
plant discharges, farmland runoff, urban runoff, and industrial
plant discharge. Sedimentation accumulation is a critical chal-
lenge to water management as well. Water sampling is the tra-
ditional method for monitoring water quality; and while
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accurate and effective, it can be time- and cost-prohibitive. In
addition, the sampling results are often indicative of just one
specific sampling location. Remote sensing techniques provide
a good alternative to evaluating key water quality parameters
with the possibility of efficiently performing temporal and spa-
tial analysis. Multispectral and hyperspectral measurements
collect information from across the electromagnetic spectrum.
They are rich in information and traditionally have been used
to find objects, identify materials, and detect processes.
Remote sensing data was successfully applied in managing
and monitoring widely water and environmental subjects
[1–6].

As early as the 1960s, remote sensing techniques were
applied for analysis of the ocean color to estimate the con-
centration of chlorophyll-a (Chl-a) and water temperature
[7, 8]. Later on, scientists began investigating the potential
of remote sensing to observe the optical properties of water
constituents, such as colored dissolved organic matter
(CDOM), total suspended solids (TSS), and suspended par-
ticulate matter (SPM) [9–11]. Unfortunately, the theories
and optical models of ocean remote sensing cannot be
applied directly to inland water, mainly due to the different
compositions of their various water constituents, making
the application of remote sensing in inland water more com-
plex and less successful. Three decades ago, the concepts of
remote sensing began to be extended to inland water in asso-
ciation with biooptical models (equations relating reflec-
tance at the sensor to concentrations) to evaluate and
monitor the optical water column constituents that affected
the color of the water, such as Chl-a, TSS, and CDOM [9].

Chl-a is recognized as a proxy of phytoplankton and
algae blooms, which are vital indicators of the biophysical
status and biological productivity of waterbodies [12].
Therefore, controlling is crucial for maintaining water
aquatic health and its capacity as a habitat for fish and wide
species. Optically, Chl-a has two reflectance peaks at the
green and near-infrared wavelength regions at 550nm and
700nm, respectively. Numerous biooptical models have
been developed for characterizing Chl-a in different water-
bodies. One of the challenges in Chl-a estimation is high tur-
bidity, which inhibits the use of remote sensing for Chl-a
estimation by interfering with the reflectance at the wave-
length needed for Chl-a measurements [12]. The same can
be said about CDOM evaluation. Several biooptical models
have been developed to estimate Chl-a concentration from
satellite images, some of which use the concept of the two-
band ratio [13–15]. For example, Kallio et al. [16] used the
ratio of the peak absorption at the blue region to the mini-
mum absorption at the green regions; moreover, other stud-
ies used the ratio of the minimum absorption at the NIR
region to the peak absorption at the red region [17]. Three-
and four-band biooptical models also were found in litera-
ture with pros and cons for each system [18, 19].

CDOM consists of the natural, biogenic, and heteroge-
neous organic material that is present in oceans and inland
waterbodies [20]. CDOM can be used as a reliable proxy to
DOC as it is the optically active part of it, which is important
in tracking as its presence creates a suitable medium of
microorganisms to grow, resulting in higher water pollution.

CDOM shows significant absorption at 443nm, which is
normally used to determine Chl-a concentrations, causing
a problem with the overlap between CDOM and the Chl-a
absorbance spectrum [21]. Thus, high concentrations in
the waterbody of one of them will overshadow the readings
of the other. Estimating CDOM using remote sensing is
challenging due to the lack of a standardized method in
measuring and reporting. Blue and red bands are used in
many CDOM biooptical models even though CDOM
absorption is significantly high in the blue range and almost
negligible in the red range [22]. Other studies have demon-
strated that green to red ratios were more appropriate for
inland water. Overall, better success was achieved using
hyperspectral and airborne devices for CDOM measure-
ments rather than satellite multispectral imagery [23]. Sev-
eral studies concluded that a two-band ratio model can
achieve an acceptable model to estimate CDOM using vari-
ous bands. Also, the ratio of R(412) to R(670) was used in
some studies [24], while in others, the ratio of R(551) to
R(671) showed a strong power-law relationship with
CDOM [25].

Turbidity’s spatial and temporal variation can provide
an important representation of anthropogenic activities in
adjacent areas [26]. In contrast to the effects of Chl-a and
CDOM, turbidity scatters the light as opposed to absorbing
it. Two-band ratio models were widely used by several stud-
ies to estimate turbidity; and various others used ratios
between green and red [27], blue and red [28], or NIR and
red [29]. A detailed list of several biooptical models is pre-
sented in the Materials and Methods section that follows.

As demonstrated earlier, there is shortage of studies
addressing the use of satellite images for water quality
assessment, particularly for small-scale inland waterbodies.
Therefore, our study is aimed at addressing this deficiency
in the following manner: we assessed the usability of the
publicly available sources of multispectral images (Sentinel-
2 and Landsat-8), for small-scale inland water quality esti-
mation. This was achieved using on-site hyperspectral mea-
surements as a ground truthing tool, in order to choose the
most appropriate atmospheric correction technique. The
most efficient atmospheric correction techniques were used
to establish the relationship between water quality parameter
concentrations and Sentinel-2/Landsat-8 data through the
selection of the best-fit biooptical models.

The novelty of this work is that it studies a small-scale
inland water body, located within mountainous area sur-
roundings, and water quality parameters were successfully
extracted using the most appropriate atmospheric correc-
tion method. The choice of the most appropriate atmo-
spheric correction technique for measurement of such an
inland small-scale water body is done by developing a test-
ing algorithm that utilizes several data sources and deter-
mines the model that best represents the observed data.
In addition to the methodological development, to our
best knowledge, there has been no work that utilizes
remote sensing technology, particularly satellite images
from Sentinel-2 and Landsat-8 in the determination of
water quality parameters in semiarid regions inland water
bodies.
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2. Materials and Methods

The overall schematic of this study is illustrated in Figure 1.
The first step involved selecting the proper atmospheric cor-
rection based on comparative analysis between the satellite
images (Sentinel-2 and Landsat-8) and the on-the-ground
hyperspectral data. Once the optimal atmospheric correction
was identified, the best biooptical model was chosen for each
water quality parameter by comparing the water quality pre-
dictions of the model to those measured in the laboratory for
the collected samples. Once selected, the biooptical model
was then used for mapping spatial and temporal predictions
of the water quality of the waterbody based on satellite data.

2.1. Study Area. The study area was King Talal Dam (KTD)
(32.1912° N, 35.8191° E), located in northern Jordan (54 km
north of the capital Amman) as shown in Figure 2. KTD was
selected as the study area due to its unique location, inland
surrounded by mountainous areas. It is an earth-fill dam
whose total capacity reaches 86MCM and its height is
107m with a surface area fluctuating with time of the year
and ranging between approximately 1.95km2 towards the
end of the dry season to approximately 2.5km2 towards the
end of the wet season. The lake arm spanning in the East-
West direction has an average width of approximately
380m with the width thinning out upstream. The other
arm (North-South) has an average width of approximately
200m, also significantly thinning out in the upstream direc-
tion. The second largest dam in northern Jordan, KTD was
built across the Zarqa River and has a 3918 km2 catchment
area. KTD receives 50% of its annual water recharge
(113MCM on average) through wastewater treatment plant
discharge (WWTP) (Jerash, Baqa’a, and Khirbet As-Samra,
which is the largest WWTP in Jordan and was historically
known to have decreased the quality of water) [30, 31]. This
in turn may be affecting the quality of agriculture production
and human health. Hence, there is a need to continuously
monitor the reservoir as it is used for plant irrigation in
the middle and southern parts of Jordan Valley [32]. It irri-
gates about 17,000 hectares [33].

2.2. Field Measurement. Field visits were made to the site on
October 6th, 2018, for the fall sampling, January 26th, 2019,
for the winter sampling, and July 5th, 2019, for the summer
sampling. These dates were chosen to cover different seasons
and conditions of water quality. The sampling locations were
randomly chosen on each visit, keeping in mind the need to
spatially cover as much of the reservoir as possible. It is
worth noting that the extent of this lake differs with time
and has the largest footprint after the precipitation season;
hence, some site visits extended further to the edges of the
lake than others. The sampling locations are shown in
Figure 3.

Unfortunately, on January 26th, 2019, the cloud cover
was very high in the Sentinel-2 and Landsat-8 images. How-
ever, since the temporal resolution of Sentinel-2 was five
days and there was no prior precipitation, the Sentinel-2
image from January 21, 2019, was used in the analysis.
Landsat-8 had a long revisit time (16 days); thus, the image

from Landsat-8 was eliminated. It was reported that the time
gap between the satellite image and the in situ measurements
affects the reflectance comparison. Several studies, however,
report that a gap of up to eight days can still be reasonable
when environmental and water conditions do not undergo
rapid changes [34].

A total of fifty-one water samples were collected approx-
imately 20 cm below the surface of the water, and dark glass
bottles were rinsed for the samples, which then were stored
in an icebox to be sent out for analysis. The samples were
analyzed both at the Ministry of Water and Irrigation labo-
ratories for Chl-a and at the German Jordanian University
laboratories for the other parameters. Thus, two samples
were collected from each location. Chl-a testing was done
using the Standard Methods for the Examination of Water
and Wastewater Method No. 10200 H [35]; turbidity was
measured using the Hach 2100P® Portable Turbidity meter;
and the CDOM measurements were made according to the
Standard Methods for the Examination of Water and Waste-
water [35].

In addition to the grab samples, field spectroscopy mea-
surements were made at each location using ASD’s field spec
Handheld-2® device. This spectrometer has an operational
wavelength range of 325nm to 1075 nm, which incorporates
the range typically used in water quality studies. Several
images were taken at each location to ensure replicability;
and the device was calibrated every 15 minutes during the
test to ensure the lighting conditions were properly set.

2.3. Satellite Data. Landsat-8 and Sentinel-2 have high
potential for being used in inland water remote sensing.
Landsat-8 provides a high radiometric resolution (16 bit)
but still has a long revisit time (16 days) and medium spatial
resolution (30m) [26]. Sentinel-2 offers an advantageous
radiometric and temporal resolution (12 bit and five days,
respectively) along with spatial resolution (10m, 20m, and
60m for different bands). Recently, Landsat-8 and
Sentinel-2 imagery were used in several studies for evaluat-
ing inland water quality [36–48].

Landsat-8 and Sentinel-2 satellite images should ideally
be downloaded for the same days when the samples were
collected. The Landsat-8 images were acquired from the
United States Geological Survey (USGS) (https://
earthexplorer.usgs.gov) at level 1, while the Sentinel-2
images were acquired from the Copernicus Open Access
Hub (https://scihub.copernicus.eu) at level 1-C. Both satel-
lite images were geometrically corrected in Universal Trans-
verse Mercator (UTM-zone 36n)/World Geodetic System
1984 (WGS84) projection. In some cases, the image date
was within a few days of the field trip simply because of
the mismatch between the dates of the images of the two sat-
ellites. During these cases, this time lag was not expected to
have any noticeable impact on the quality of the water as
there was no precipitation and runoff. The obtained
Landsat-8 images were in the form of digital numbers, which
needed radiometric calibration to convert them to top of
atmosphere (TOA) reflectance using the metadata acquired
with the image. Table 1 summarizes the dates of collection
of the field data and satellite images.
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2.4. Atmospheric Correction. Atmospheric correction for the
received reflectance is important because sunlight passes
through the atmosphere twice before reaching the satellite
sensor. Sunlight also is subjected to scattering and absorp-
tion by aerosols and gaseous molecules throughout that
journey, which is particularly important when measuring
highly absorptive biooptical parameters; thus, the amount
of total radiance reaching the sensor is initially small [49].

Inland waterbodies pose additional challenges the surround-
ing air pollution, the adjacency effects of the surrounding
land, and the high concentration of suspended particulate
matter. A study by Liuzzo et al. [50] addressed the challenge
of identifying small inland waterbodies, especially due to
atmospheric aerosol, by modifying the normalized difference
water index (NDWI) to be able to accurately detect inland
water bodies as small as 0.1 ha.
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Figure 1: Flowchart of the research methodology.
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Figure 2: King Talal reservoir relative location in Jordan along with a digital elevation model (DEM) of the lake location.
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Image-based atmospheric correction techniques rely on
the data acquired from the imagery to retrieve the water sur-
face reflectance from the radiance information at the sensor.
The development of image-based techniques does not
require any auxiliary data or radiative transfer principles;
thus, it can be used in the analysis of the historical images
that lack such data [51].

The following four atmospheric correction techniques
were evaluated in this study: dark spectrum fitting (DSF)
[52], dark object subtraction (DOS) [53], exponential
extrapolation (EXP) [52, 54], and atmospheric and topo-
graphic correction (ATCOR) [55].

The DSF approach relies on dynamically selecting a dark
target by using lookup tables, from which to calculate the aero-
sol optical thickness. This correction was applied using the
ACOLITE software package [56]. The DOS approach assumes
that the minimum radiance pixel (at the complete shadow) in
the image is due to the atmospheric contribution only; and
the value of this cell therefore is subtracted from the other image
pixels [53]. The DOS calculations were carried out using the
QGIS software. The EXP assumes that the water reflectance is
zero for both SWIR bands [54], which also was applied using
the ACOLITE package. ATCOR includes several special algo-
rithms to correct the effects of topographic and adjacency, haze,
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Figure 3: Location map of water sampling points and hyperspectral data on July 5th, 2019 (blue square), January 26th, 2019 (red triangle),
and October 6th, 2018 (black circle).

Table 1: Summary of data collection dates.

Field visit
date

Sentinel-2 acquisition
date

Sentinel-2 cloud cover
(%)

Landsat-8 acquisition
date

Landsat-8 cloud cover
(%)

Number of
samples

6 Oct. 2018 8 Oct. 2018 1.7345 6 Oct. 2018 5.82 19

26 Jan. 2019 21 Jan. 2019 0.1 — — 20

5 July 2019 5 July 2019 0.1276 7 July 2019 0.25 21

Table 2: Specific reflectance values used at each band for both
satellites.

Reflectance wavelength (nm)
Satellite bands B1 B2 B3 B4 B5 B6 B7 B8

Sentinel-2 443 490 560 665 705 740 781 834

Landsat-8 443 482 561 665 865 — — —
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and spectral smoothing. The ATCOR package is included in
several remote sensing programs, such as the Geomatica soft-
ware, which was used in this study. ATCOR has been success-
fully used for cloud and haze reduction in a satellite image [55].

In this study, the central wavelengths of the bands from
the satellite images (Landsat-8 and Sentinel-2), as shown in
Table 2, were compared with the in situ hyperspectral data.
The atmospheric correction that provided the closest match
was deemed the most appropriate for this study. This choice
was further verified when the best biooptical model for esti-
mating the water quality parameters was chosen.

The biooptical models to represent water quality param-
eters were chosen from widely known and used reflectance
combinations. The models were adapted to Landsat-8 and
Sentinel-2 bands (indicated as B1 to B5 in Table 3), and
the in situ data were used to evaluate the effectiveness of
these biooptical models. The biooptical models were cali-
brated by regressing the in situ measurements to the models
that were estimated from the atmospherically corrected
bands. The data were divided randomly into two sets: 70%
for calibration and 30% for validation.

2.5. Statistical Index. To evaluate the performance of the
selected biooptical models, the following four statistical met-
rics were evaluated: root mean square error (RMSE, Equa-
tion (1)), normalized root mean square errors (NRMSE,
Equation (2)), mean absolute error (MAE, Equation (3)),
bias (Equation (4)), and the widely used determination coef-
ficient (R2).

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1/Nð Þ〠
N

i=1
xi

estimated − xi
measured

h i2

v

u

u

t , ð1Þ

NRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1/Nð Þ∑N
i=1 xiestimated − ximeasured
� �2

q

1/Nð Þ∑N
i=1 ximeasured� �

, ð2Þ

MAE = ∑N
i=1 xi

estimated − xi
measured

�

�

�

�

N
, ð3Þ

Table 3: A sample list of the biooptical models of key water quality parameters previously developed.

Parameter Sensor Index Functional Accuracy assessment Reference

Chl-a

Landsat-8

1/B1 − 1/B3ð Þ × B5
Linear

R2 = 0:83

[37]
1/B2 − 1/B3ð Þ × B5 R2 = 0:86

B2/B3
Exponential

R2 = 0:60
B3/B2 R2 = 0:53
B5/B4

Linear
R2 = 0:78 [36]

B5/B4 R2 = 0:84 [38]

Sentinel-2

B3/B4
Linear R2 = 0:65

[12]
Exponential R2 = 0:68

B5/B4 Exponential R2 = 0:49 [39]

B5/B4 Linear R2 = 0:51 [40]

CDOM

Landsat-8

B4/B2
Linear

R2 = 0:624 [41]

B3/B4 R2 = 0:2316
[57]

B2/B3 R2 = 0:4176
B2/B4 Power R2 = 0:69 [42]

Sentinel-2

B4/B2
Exponential

R2 = 0:700 [41]

B3/B4 R2 = 0:72 [42]

B2/B4 Linear R2 = 0:779 [39]

Turbidity

Landsat-8

B4

Linear

R2 = 0:84
[58]B5/B4 R2 = 0:79

B3 R2 = 0:70
B4 R2 = 0:69

[59]
B5 R2 = 0:65

Sentinel-2

B1/B3
Linear

R2 = 0:55 [60]

B1/B3 R2 = 0:59 [61]

B4 Exponential R2 = 0:761 [62]
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Bias = ∑N
i=1 xi

estimated − xi
measured

� �

N
, ð4Þ

where xi
estimated is the predicted value estimated from the

model, xi
measured is the in situ measurement value, and N is

the number of samples.
RMSE depends on the square of the difference between

the estimated and measured values, which results in a signif-
icant weight of large errors. RMSE is used widely in environ-
mental and climate research where detected large errors are
destructive. MAE, on the other hand, is the average absolute
variation between the estimated and measured values where
every single distinction has similar weight. In the bias indi-
cator, the average variation between the forecast and the
measurement is reported. Bias needs to be used with care
since the positive and negative errors can cancel out each
other. R-squared provides information about how close the
regression line is to fit the data by indicating the proximity
of the model equation to the measured points. Although in
the first three indicators the less the value is the better; in
R-squared, the closer the value is to 1 the better.

3. Results

3.1. Observed Water Quality Data. Statistical summaries of
the key water quality parameters in this study are shown
as box plots in Figure 4. It can be observed that the mean
concentration of the three investigated parameters was
largest during summer sampling, and the spread (differ-
ence between maximum and minimum) was high in sum-
mer and winter for both CDOM and turbidity. Summer
season comes with high temperatures and suitable condi-
tions for algae growth, thus higher Chl-a concentration,
and the high spread during winter for CDOM and turbid-
ity can be attributed to runoff and the disturbance it could
have over the water composition. Higher variation in the
concentration of the different biooptical parameters will
make it easier to model the water quality using remote
sensing techniques as there will be significant reflectance
difference.

3.2. Atmospheric Correction Analysis. Atmospheric correc-
tion is needed as the atmosphere absorbs and scatters the
light on its way to the ground. Some satellite data sources
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provide datasets that are already atmospherically corrected:
an example is the Sentinel-2 L2A dataset and Landsat-8 Sur-
face Reflectance (L8SR). These datasets were used in the
analysis and their performance was compared to other
investigated atmospheric correction methods. The devel-
oped method for identifying the most appropriate atmo-
spheric correction approach for our small-scale inland
waterbody involved using in situ hyperspectral measure-
ments. That was achieved by comparing the hyperspectral
measurements (at specific wavelength) with the images of
the satellites, namely, the reflectance at the center of each
band. The 51 locations that were sampled for the three cam-
paigns were used in the evaluation using the DOS, ATCOR,
DSF, and EXP algorithms. The three statistical indexes of
RMSE, MAE, and Bias were used to identify the optimal
atmospheric correction approach.

Figure 5 shows the measured reflectance spectra (range
of 400-800 nm) of the surveyed sampling points in King
Talal Dam for data obtained in October 2018, January
2019, and July 2019.

Table 4 summarizes the results for the Sentinel-2 analy-
sis, while Table 5 summarizes the results for Landsat-8. Sim-

ilar analysis was done for both satellites. All 34 sampled
locations were used in the Landsat-8 analysis. An analysis
was carried out in which the spectral response functions
were used to synthesize the reflectance at specific wave-
lengths. The goal was to compare the performance of these
functions in predicting the water quality parameters to both
measured hyperspectral data and the approach described
above (use of central wavelength) for multispectral data. Dis-
cussion on this analysis will follow.

3.3. Chl-a Retrieval Model. Several biooptical models were
introduced in various studies that used satellite images for
water quality evaluation (Table 3). In this research, a subset
of the techniques found in literature was utilized to identify
the best approach to estimate water quality parameters; R2,
the coefficient of determination, represents the criteria used
to evaluate the quality of the prediction. Various atmo-
spheric correction methods were applied. It should be noted
that different atmospheric correction techniques are shown
here only to verify the results obtained from the previous
analysis in which hyperspectral data was used in order to
choose a proper atmospheric correction. Tables 6 and 7
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Figure 5: In situ reflectance spectral data on (a) October 2018, (b) January 2019, and (c) July 2019.
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shows related results. It should also be noted that at this
stage of development, all the available data (51 samples)
were utilized in the analysis.

Based on the strong correlation between the obtained
remote sensing data and the Chl-a in situ measurements
results shown in Tables 6 and 7, a total of 51 samples from
Sentinel-2 were used for Chl-a model development using
the DOS atmospheric correction algorithm. 35 of them were
used for calibration and 16 used for validation. Figure 6(a)
illustrates the results of the calibration study, which show
the different coefficients of determination for the power
and logarithmic models. The split of the samples between
calibration and validation was random.

The same analysis was conducted on the Landsat-8 satel-
lite images. A total of 34 samples were used, 24 of which
were used for calibration and 10 for validation. Figure 6(b)
shows the case where an exponential model was used for
curve-fitting based on the strong correlation for Chl-a model
development using the DSF atmospheric correction algo-
rithm. Figures 6(c) and 6(d) show the validation plots for
both Sentinel-2 and Landsat-8. It is observed that the R2 is
high for both cases indicating a very good match between
the model’s predicted and measured Chl-a values. Table 8
summarizes the validation results of Sentinel-2 Chl-a models
and Landsat-8 Chl-a models, respectively.

The DOS and DSF atmospheric correction algorithms
were used to generate spatial distribution maps of the Chl-
a concentrations (mg/m3) using the most performing model
of Sentinel-2 ðpower function of 1/ðB4 × B5ÞÞ and Landsat-8
(expositional function of B4/B5), respectively. Three maps
were generated for the three field visits on October 6th,
2018 (Figures 7(a) and 7(b)), January 26th, 2019
(Figure 7(c), notice that the Landsat-8 image for that day is
ignored), and July 5th, 2019 (Figures 7(d) and 7(e)).

Table 4: Evaluation of the performance of various atmospheric correction methods for Sentinel-2 image processing.

Atmospheric correction Statistical index B1 B2 B3 B4 B5 B6 B7 B8

DOS

RMSE 0.029 0.033 0.029 0.047 0.045 0.052 0.056 0.055

NRMSE 0.231 0.174 0.187 0.114 0.198 0.147 0.183 0.177

MAE 0.023 0.025 0.021 0.037 0.034 0.041 0.045 0.043

Bias -0.022 -0.023 -0.016 -0.036 -0.034 -0.04 -0.044 -0.04

ATCOR

RMSE 0.043 0.045 0.052 0.061 0.058 0.061 0.063 0.065

NRMSE 0.343 0.237 0.335 0.148 0.255 0.172 0.206 0.209

MAE 0.038 0.033 0.042 0.049 0.046 0.044 0.045 0.046

Bias -0.037 -0.027 -0.041 -0.049 -0.044 -0.038 -0.038 -0.04

DSF

RMSE 0.024 0.038 0.048 0.059 0.06 0.063 0.065 0.065

NRMSE 0.191 0.200 0.310 0.143 0.264 0.178 0.212 0.209

MAE 0.019 0.029 0.041 0.052 0.053 0.057 0.06 0.059

Bias -0.013 -0.028 -0.041 -0.051 -0.053 -0.057 -0.059 -0.06

EXP

RMSE 0.033 0.041 0.042 0.051 0.052 0.059 0.066 0.061

NRMSE 0.263 0.216 0.271 0.124 0.229 0.167 0.216 0.196

MAE 0.048 0.036 0.032 0.037 0.041 0.038 0.048 0.049

Bias -0.047 -0.027 -0.031 -0.037 -0.041 -0.038 -0.038 -0.04

L2A

RMSE 0.051 0.055 0.048 0.068 0.61 0.059 0.076 0.072

NRMSE 0.406 0.290 0.310 0.165 2.684 0.167 0.248 0.232

Bias 0.049 0.049 0.053 0.059 0.057 0.069 0.071 0.66

MAE -0.44 -0.057 -0.049 -0.056 -0.04 -0.063 -0.067 -0.61

Table 5: Evaluation of the performance of various atmospheric
correction methods for Landsat-8 image processing.

Atmospheric
correction

Statistical
index

B1 B2 B3 B4 B5

DOS

RMSE 0.017 0.015 0.022 0.038 0.057

NRMSE 0.135 0.079 0.142 0.092 0.251

MAE 0.014 0.011 0.017 0.033 0.046

Bias -0.011 -0.008 -0.016 -0.032 -0.046

ATCOR

RMSE 0.031 0.024 0.03 0.041 0.058

NRMSE 0.247 0.127 0.193 0.099 0.255

MAE 0.026 0.02 0.024 0.033 0.045

Bias -0.026 -0.018 -0.023 -0.032 -0.044

DSF

RMSE 0.015 0.015 0.022 0.032 0.047

NRMSE 0.119 0.079 0.142 0.078 0.207

MAE 0.013 0.011 0.013 0.021 0.029

Bias 0.006 -0.0001 -0.01 -0.02 -0.025

EXP

RMSE 0.03 0.028 0.033 0.035 0.059

NRMSE 0.239 0.148 0.213 0.085 0.260

MAE 0.025 0.018 0.027 0.031 0.048

Bias -0.025 -0.018 -0.023 -0.031 -0.046

L8SR

RMSE 0.047 0.038 0.045 0.051 0.066

NRMSE 0.374 0.200 0.290 0.124 0.290

MAE 0.039 0.047 0.048 0.042 0.071

Bias -0.041 -0.029 -0.037 -0.043 -0.041
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It is noted that the maps generated using Sentinel-2 sat-
ellite data did not perform well at the edges of the lake. This
can be attributed to the adjacency effects of the nearby
mountains, sun glint, satellite match-up dates, and the effect

of the shallow water at the upstream locations. Bottomland
will be visible due to the shallow water column and thus will
interfere with the reflectance values.

3.4. Turbidity Retrieval model. The DOS and DSF atmo-
spheric correction algorithms were used to develop turbidity
retrieval model for Sentinel-2 and Landsat-8, respectively.
Turbidity optical models were evaluated for the Sentinel-2
and Landsat-8 spectral bands using single-band and two-
band ratios. The regression results are shown in
Figures 8(a) and 8(b) for Sentinel-2 and Landsat-8, respec-
tively. Validation plots are shown in Figure 8(c) for
Sentinel-2 and Figure 8(d) for Landsat-8. The validation
results for the two satellites are shown in Table 9.

The most performing optical models of Sentinel-2 (lin-
ear function of B4) were used to generate the spatial distri-
bution maps of turbidity (NTU) in three field visits on
October 6th, 2018 (Figures 9(a) and 9(b)), January 26th,
2019 (Figure 9(c)), and July 5th, 2019 (Figures 9(d) and
9(e)).

4. Discussion

It was observed that the concentration of Chl-a, CDOM, and
turbidity during the July 5th, 2019 sampling was generally
higher than that observed in earlier sampling events. The
rainy season leading to 2019 was good with high amounts
of precipitation recorded (approximately 450mm/yr). The
dam filled its 75 million m3 storage capacity and then

Table 6: Sentinel-2. Results from the application of several formula types to different band index configurations under different atmospheric
correction techniques that showed a correlation between the obtained remote sensing data and the Chl-a in situ measurements.

Sentinel-2

Index Formula
DOS DSF ATCOR EXP L2A

R2

B5/B4

Linear 0.56 0.44 0.41 0.49 0.33

Power 0.75 0.45 0.3 0.67 0.29

Logarithm 0.43 0.40 0.33 0.51 0.47

Exponential 0.61 0.36 0.48 0.58 0.41

1/ B4 × B6ð Þ
Linear 0.64 0.52 0.58 0.43 0.49

Power 0.84 0.69 0.48 0.68 0.41

Logarithm 0.80 0.52 0.47 0.61 0.39

Exponential 0.67 0.65 0.11 0.59 0.37

1/ B4 × B5ð Þ
Linear 0.34 0.36 0.19 0.49 0.16

Power 0.79 0.70 0.68 0.71 0.51

Logarithm 0.50 0.43 0.12 0.48 0.27

Exponential 0.48 0.26 0.23 037 0.19

1/B4 − 1/B5ð Þ × B6

Linear 0.57 0.46 0.45 0.51 0.36

Power 0.73 0.54 — 0.62 0.31

Logarithm 0.63 0.31 0.24 0.58 0.41

Exponential 0.61 0.19 0.14 0.63 0.46

1/B4 − 1/B5ð Þ/ 1/B6 − 1/B5ð Þ
Linear 0.71 0.10 0.11 0.66 0.49

Power 0.55 0.39 0.26 0.49 0.21

Logarithm 0.59 0.47 0.41 0.49 0.37

Exponential 0.6 0.27 0.29 0.31 0.22

Table 7: Landsat-8. Results from the application of several formula
types to different band index configurations under different
atmospheric correction techniques that showed a correlation
between the obtained remote sensing data and the Chl-a in situ
measurements.

Landsat-8

Index Formula
DOS DSF ATCOR EXP L8SR

R2

B2/B3

Linear 0.58 0.61 0.54 0.32 0.31

Power 0.68 0.79 0.52 0.55 0.21

Logarithm 0.56 0.56 0.49 0.51 0.48

Exponential 0.51 0.49 0.47 0.41 0.33

B3/B2

Linear 0.57 0.62 0.42 0.51 0.47

Power 0.48 0.53 0.41 0.39 0.40

Logarithm 0.54 0.59 0.52 0.43 0.44

Exponential 0.65 0.78 0.55 0.48 0.19

B4/B5

Linear 0.61 0.63 0.53 0.46 0.42

Power 0.21 0.34 0.19 0.14 0.11

Logarithm 0.41 0.47 0.41 0.36 0.31

Exponential 0.66 0.71 0.4 0.32 0.34
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flooded its excess water into the Jordan Valley at a rate of
12m3/s. Thus, it was assumed that this dilution resulted in
low concentrations in the January samples, and regular
growth during the summer of 2019 yielded higher concen-
trations during the July sampling.

The atmospherically corrected satellite data published by
the two satellites (Sentinel-2 Level 2A and L8SR) did not per-
form well upon comparison with hyperspectral data as clearly
visible from Tables 2–4. It is unclear why these values were
inferior to the other atmospheric correction methods, but it
may be related to the local conditions of the research site
which is an inland small-scale waterbody. On the other hand,
the atmospheric correction analysis performed during this
work indicated that for Sentinel-2, except for band 1, the
DOS algorithm provided the smallest RMSE and MAE (an
advantage up to 29% was observed over the average RMSE
of the other atmospheric correction techniques), which means
that this atmospheric correction method was the most suc-
cessful in representing the Sentinel-2 satellite image. This
result could be attributed to its widespread usability in land
applications as this technique relies on subtracting the darkest
spot in the image, typically a land pixel, especially if there is
rugged terrain (mountainous), which is the same situation in
our study area. The DOS algorithm is one of the image-
based algorithms and has the advantage of being simple. In
addition, unlike the atmospheric correction techniques that
are based on modeling, it does not require any site-specific
atmospheric data (e.g., aerosol content); thus, the data that it
produces can be unreliable and may jeopardize the quality of
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Figure 6: (a) top fitting model for Chl-a prediction from Sentinel-2 satellite image (35 samples were used for calibration). (b) Top fitting
model for Chl-a prediction from Landsat-8 satellite image (24 samples were used for calibration). (c) Validation graph for Sentinel-2
using 16 data points. (d) Validation graph for Landsat-8 using 10 data points.

Table 8: Validation results of Chl-a models from Sentinel-2 and
Landsat-8.

Index Equation RMSE MAE Bias

Sentinel-2 (16 samples were used)

B5/B4 y = 0:2808e5:0942x 29.65 19.12 -5.73

1/ B4 × B5ð Þ y = 6204:6x−0:866 12.90 9.52 -0.50

y = −41:48 ln xð Þ + 311:57 21.15 15.88 -8.28

1/ B4 × B6ð Þ y = 7635:7x−0:921 14.52 10.98 1.20

y = −45:56 ln xð Þ + 330:11 21.07 15.07 -5.42

Landsat-8 (10 samples were used)

B2/B3 y = 344:09x2:5294 60.14 45.42 0.44

B3/B2 y = 860:67e−1:295x 59.31 44.64 2.05

B4/B5 y = 19332e−5:379x 39.88 28.43 3.02
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Figure 7: Chl-a distribution on (a) October 6th, 2018, estimated from Sentinel-2, (b) October 6th, 2018, estimated Landsat-8, (c) January
26th, 2019, estimated from Sentinel-2, (d) July 5th, 2019, estimated from Sentinel-2, and (e) July 5th, 2019, estimated from Landsat-8.
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the correction method. One of the assumptions of the DOS
method is that the conditions across the atmosphere are uni-
form; while for a small-scale inland waterbody, this assump-
tion is valid as the variations will be practically negligible.
One disadvantage of the other atmospheric correction tech-
niques is that many of them were developed for oceanic appli-
cations. Therefore, they have several operational assumptions
that are invalid in inland settings; for example, many of the
techniques were developed at the mean sea level while inland
waterbodies are typically at higher altitudes and are subject
to thinner atmosphere. Thus, they have a tendency to overes-
timate the correction.

The DSF algorithm was slightly more advantageous for
representing the Landsat-8 satellite image (an advantage
up to 47% was observed over the average RMSE of the
other atmospheric correction techniques). It should be
noted that the advantage of the DOS method over DSF
was not very high, with a ratio not exceeding 20%. The
DOS algorithm thus can be applied for both satellite
images with not much loss in accuracy. The same cannot
be said about the other correction techniques. These two
correction techniques were examined in our analysis. For
Chl-a, it was observed and later validated that the power
model followed by the logarithmic regression model pro-
vided the best fit between the observed and predicted con-
centrations, which was achieved with a band index of
1/ðB4 × B6Þ. The DOS atmospheric correction method
was chosen for this study as it proved to be the most suc-
cessful for Sentinel-2.

As previously mentioned in Table 3, several band ratios
and indexes have been developed for retrieving Chl-a. The
blue to green ratio is one of the widely used ratios in estimat-
ing Chl-a using remote sensing data [63, 64]. However, this
ratio does not provide satisfactory results in this study due to
the presence of CDOM with high values, where the CDOM
interferes with Chl-a reflectance in the green range [23].
Hence, the peak reflectance of Chl-a in the 700-710nm
region against the 665-740 nm baseline has been used in this

y = 106.62x-0.7179 
R2 = 0.8478

0

5

10

15

20

25

0 0.05 0.1 0.15 0.2

Tu
rb

id
ity

, N
TU

B4

(a)

y = 3.0221e 2.0488x
R2 = 0.6442

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8

Tu
rb

id
ity

, N
TU

B1/B3

(b)

R2 = 0.8692

0
2
4
6
8

10
12
14

0 5 10 15

Pr
ed

ic
te

d 
tu

rb
id

ity
 (N

TU
)

Measured turbidity (NTU)

(c)

R2 = 0.9082

0

2

4

6

8

10

12

0 5 10 15

Pr
ed

ic
te

d 
tu

rb
id

ity
 (N

TU
)

Measured turbidity (NTU)

(d)

Figure 8: (a) Regression between the Sentinel-2 band index and measured turbidity using B4. (b) Regression between the Landsat-8 band
index and measured turbidity using B1/B3. (c) Validation graph for Sentinel-2. (d) Validation graph for Landsat-8.

Table 9: Validation results of turbidity models from Sentinel-2 and
Landsat-8.

Index Equation RMSE MAE Bias

Sentinel-2

B4 y = 106:62x − 0:7179 0.868 0.594 0.101

B5 y = 69:171x + 1:1889 1.266 0.885 0.171

B8 y = 62:726x + 1:4285 1.737 1.214 0.106

Landsat-8

B1/B3 y = 3:0221e2:0488x 0.902 0.662 -0.107

B2/B3 y = 1:259e2:8172x 5.718 4.938 4.938
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Figure 9: Continued.
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Figure 9: Continued.
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study and provides a good correlation with Chl-a values.
This finding is consistent with outputs of the previous inves-
tigation by Toming et al. 2016 [42].

Chl-a algorithms were evaluated for Landsat-8 spectral
bands using mainly blue-to-green and red-to-NIR ratios.
Several linear and nonlinear trend lines were fitted to the
in situ and satellite imagery derived data. The analysis
showed that the relationships between Chl-a and the selected
Landsat-8 spectral bands ratios were essentially nonlinear.
The model calibration results showed that Chl-a was
strongly correlated to the blue-to-green ratio using both
the power and exponential functions with R2 = 0:77 and R2

= 0:78, respectively. A strong positive correlation also was
detected between Chl-a and the red-to-NIR band ratio with
R2 = 0:71.

The validation results for the Sentinel-2 images were bet-
ter than those obtained for the Landsat-8 with an R2 value of
0.9 for the power function and 0.86 for the logarithmic func-
tion using the two-band ratio of 1/ðB4 × B5Þ. The R2 value
for Landsat-8, on the other hand, was 0.29 using the two-
band ratios of B4/B5. Thus, in general, the Sentinel-2 images
were more successful for modeling the Chl-a concentrations
in the KTD lake. This conclusion varies from what was
found by comparing the performance of Sentinel-2 and
Landsat-8 in retrieving chlorophyll-a in previous research,
where both satellites have shown nearly equal effectiveness
[65]. This difference can be attributed to variation in biogeo-
chemical characteristics of the water bodies, which highly
affect the water column’s biooptical properties.

The distribution maps produced from Sentinel-2 data
showed the high effect of the adjacent land on the obtained

Chl-a concentration relative to the much deeper water near
the dam. This effect, which resulted from the interference
with the contiguous land pixels, reached its highest around
the elevated topography surrounding the lake, as shown in
the east and south parts. The thin water layer in the
upstream ends of the lake also contributed to these adja-
cency effects as the underlying land was visible and inter-
fered with the reflectance values. The handheld
hyperspectral data provided an underestimated Chl-a con-
centration in some locations, but it still provided a reason-
able estimation.

The turbidity model calibration results for Sentinel-2
using single-band models indicated a very strong relation-
ship with turbidity using linear functions, which was previ-
ously shown in Figure 9(a). The figure depicts the best
fitting model, with the highest coefficient of determination
and the lowest RMSE (R2 = 0:8478, RMSE = 1:180 NTU).
Analysis of the Landsat-8 images resulted in a more success-
ful fit using a two-band algorithm where an exponential
model best fits the data, reaching a coefficient of determina-
tion of 0.64 for the calibration and an RMSE of 0.9 for the
validation. In previous research, two-band models have been
widely used to detect the high turbidity levels as typified by
Ma et al. [66]. For instance, the index of 550nm and
850 nm was used in France’s Gironde Estuary (TSS: 13–
985mg/L) [67], the index of 551nm and 678 nm was used
in China’s Yellow River (TSS: 2–1897mg/L) [68], and the
index of 555nm and 645nm was used in China’s Yangtze
River (TSS: 1–300mg/L) [69]. Because our research site has
a low turbidity water area, the single-band model seemed
more suitable than a two-band model.

Turbidity (NTU)
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10.95 – 12.29
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(e)

Figure 9: Turbidity distribution on (a) October 6th, 2018, estimated from Sentinel-2, (b) October 6th, 2018, estimated Landsat-8, (c)
January 26th, 2019, estimated from Sentinel-2, (d) July 5th, 2019, estimated from Sentinel-2, and (e) July 5th, 2019, estimated from
Landsat-8.
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5. Conclusions

The presented study used multispectral images to evaluate
the concentrations of key water quality parameters (Chl-a,
CDOM, and turbidity) in a small-scale inland waterbody,
the KTD lake in Jordan. This study showed that moderate
free spatial resolution multispectral images can produce
good estimation of active optical water quality parameters
in small-scale inland waterbodies. It can be recommended
to further investigate other satellite sources of hyperspectral
data. It is anticipated that there will also be a need for atmo-
spheric correction and that should be investigated in future
works. Low to moderate resolution data performed satisfac-
torily, with better performance observed in deeper sections
of the waterbody and further away from adjacent lands. Uti-
lizing the on-site hyperspectral data for atmospheric correc-
tion optimization proved to be essential for better prediction
of the water quality parameters. This can be clearly noticed
when comparing the obtained results of the chosen optimal
atmospheric correction technique to the data sources auto-
matically corrected from the source (L2A and L8SR).

Even though this study evaluated the water quality
parameters for a specific small-scale inland waterbody, its
conclusions, primarily those related to the method of choos-
ing the most appropriate atmospheric correction, are appli-
cable to other inland waterbodies and are appropriate for
estimating water quality parameters from satellite imagery,
and thus, it has the potential for wide-area coverage at rela-
tively low cost. The procedure developed here can be used in
similar conditions. An examination of the most appropriate
atmospheric correction technique based on on-the-ground
hyperspectral data can be done, from it, the satellite images
can be adjusted, and subsequently, the water quality param-
eters can be evaluated. This work will be expanded to other
waterbodies in the same region for validation. Moreover,
other satellites, models, and multivariable and advanced
regression techniques such as neural networks can be used.

Future extensions of the work can expand including
additional Sentinel-2 and Landsat-8 atmospheric correction
tools such as SEN2Cor, C2RCC, iCOR, SeaDAS, and 6S.
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