
Research Article
Landslide Displacement Prediction Based on Transfer Learning
and Bi-GRU

Haiqing Zheng ,1 Mengfan Duan,1 Xiaoyun Sun ,1 Guang Han,1 and Qiang Jin2

1School of Electrical and Electronic Engineering, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China
2Hebei Jinyu Zenith Cement Co., Ltd, Shijiazhuang, Hebei 050223, China

Correspondence should be addressed to Xiaoyun Sun; sunxy1971@126.com

Received 6 August 2021; Revised 31 August 2022; Accepted 22 September 2022; Published 11 October 2022

Academic Editor: Kathiravan Srinivasan

Copyright © 2022 Haiqing Zheng et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Predicting slope deformation prediction is crucial for early warning of slope failure, preventing damage to properties, and saving
human lives. However, in practice, equipment maintenance causes discontinuity in the displacement data, and the traditional
prediction models based on deep networks do not perform well in this case. To solve the problem of prediction accuracy in
case of discontinuous and inadequate data, we propose a combined displacement prediction model that integrates the
bidirectional gated recurrent unit (Bi-GRU), attention mechanism, and transfer learning. The Bi-GRU is employed to extract
the forward and backward characteristics of displacement series, and the attention mechanism is utilized to give different
weights to the extracted information so as to highlight the critical information. Transfer learning is used to guarantee
prediction accuracy in case of discontinuous and limited data. The model is then employed to predict the slope displacement
of the JinYu Cement Plant in China. Finally, the modeling results excellently agree with measured displacement, especially in
case of insufficient sample data.

1. Introduction

There have been enormous casualties and economic losses
due to landslides recently. On July 23, 2019, a landslide
occurred in Shuicheng, China, which affected more than
1,600 people and caused an economic loss of 190 million
RMB. On July 16, 2020, three landslides in Dunhao, China,
resulted in two deaths and four missing people. Due to con-
siderable damage from landslide disasters, it is necessary to
establish reliable early warning models [1]. According to
Web GIS techniques, areas at risk from landslides have been
estimated by using various geospatial data [2]. Landslides are
generally believed to be governed by their physical charac-
teristics and triggering factors. The physical characteristics
primarily include stratigraphic lithology, pore-fluid pressure,
and gravitational stress. The triggering factors are much
more diverse. Rainfall, earthquakes, human activities, vege-
tation cover, water level fluctuations, and erosion processes
may cause slope failure [3]. The variation of the slope dis-
placement can reflect the instability of landslides and has

been considered a critical index for evaluating the stability
and status of landslides [4]. The monitored series of slope
displacements reflect the nonlinear dynamic evolution of
the slope with the dual impact of internal and external
environments.

By analyzing the monitored series of slope displacement,
various displacement prediction models are constructed
based on intelligent algorithms, such as the gray model, the
support vector regression model, the wavelet neural net-
work, and the particle swarm optimization (PSO). Com-
bined with actual slope engineering, the mechanism and
law of slope deformation are grasped to provide guidance
for landslide prevention.

Kuradusenge et al. [5] proposed random forest (RF) and
logistic regression (LR) models to predict rainfall-induced
landslides in Rwanda. They used rainfall data sets and vari-
ous internal and external parameters for landslide predic-
tion, thereby improving its accuracy. In another work, Yan
et al. [6] employed the Holt-Winters damped model to pre-
dict the deep horizontal displacement of sloping soil. He
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et al. [7] presented a machine-learning-aided stochastic reli-
ability analysis of spatially variable slopes, and it significantly
reduced the computational efforts and provided a complete
statistical description of the safety factor with reasonable accu-
racy. Wang et al. [8] also developed a direct interval prediction
approach based on least-squares support-vector machines
(LS-SVM) and the differential search algorithm to predict
the landslide displacements in the Three Gorges Reservoir
area. In another work, Ma et al. [9] proposed measures based
on mutual information (MI) for input variable selection (IVS)
and optimized support vector regression (SVR) for predicting
the displacement of seepage-driven landslides. Their experi-
mental results demonstrated that MI-based measures could
effectively identify relevant or critical variables, and the opti-
mized SVR methods based on variable-reduced inputs could
significantly enhance prediction performance.

Further, Wang et al. [10] compared the performance of
several popular machine learning methods in predicting
the displacement of reservoir landslides. Ray et al. [11] also
developed an artificial neural network (ANN) to evaluate
the safety factor of Shiwalik Hills in the Himalayan region.
Shihabudheen et al. [12] developed an extreme learning,
adaptive, neuro-fuzzy inference system (ELANFIS) using
the empirical-mode decomposition (EMD) technique to pre-
dict the displacement of step-like landslides.

However, the prediction accuracy of the above methods
depends on their hyper-parameters, which usually differ
for each time series. Furthermore, misspecification reduces
prediction accuracy by generating overfitted or underfitted
models [13]. Table 1 lists the characteristics of some models
for predicting slope deformation.

Since frameworks based on deep learning perform well
in terms of discovering and extracting the internal structure
of data, researchers are inspired to employ deep architec-
tures in preference prediction tasks. Ref. [14] proposed an
algorithm based on the deep recurrent neural network
(RNN) called DeepVM to predict vehicle mobility in a future
period of several (or tens) of minutes. Ref. [15] also devel-
oped a deep neural network named convolution-based
LSTM network by mining the in situ vibration data to pre-
dict the remaining useful life of rotating machinery. In
another work [16], a deep-learning-based approach was
developed to characterize the probability density function
(PDF) of wind for the following hours, where the convolu-
tional neural network (CNN) and the gated recurrent unit
(GRU) were employed to capture spatial and temporal fea-
tures simultaneously. A composite GRU-Prophet model
was also constructed to predict sales volume [17].

Further, Ref. [18] utilized the bidirectional long short-
term memory (Bi-LSTM) and bidirectional GRU (Bi-GRU)
to predict the network traffic matrix, and the results showed
that the bidirectional models offered the ability to look into
data series in two opposite directions, allowing the acquisi-
tion of the full knowledge of past and future statuses for bet-
ter prediction results. The social force model (SFM) was
incorporated into an original LSTM network to predict ves-
sel trajectories, taking account of the social force-driven
LSTM network and the mixed loss function in artificial intel-
ligence- (AI-) powered maritime Internet of Things (IoT)

systems to achieve robust prediction [19]. Ref. [20] proposed
a Bi-GRU-based framework to predict a rating for customer
review, and the experimental results demonstrated that the
developed framework could significantly enhance the rating
prediction in the case of balanced and imbalanced data sets.
The LSTM, GRU, RNN, Bi-GRU, and Bi-LSTM were also
developed to forecast solar irradiance, and the experimental
results showed that the Bi-GRU model performed better
than the others in terms of the training time, the trainable
parameters, and the epoch ratio [21]. It can be stated that,
in a given time, bidirectional models are more reliable due
to their capacity to learn more abstract features of time-
series data sets.

The remainder of the paper is organized as follows. Section
2 reviews the related literature on slope displacement predic-
tion, and Section 3 presents the architecture of the proposed
displacement prediction model and its execution procedure.
Section 4 reports the experimental results of a case study in
the JinYu Cement Plant, an overview of the study site, the pre-
diction results, and the model performance evaluation. Section
5 summarizes the model outcomes and limitations.

2. Related Works

The related literature has addressed slope displacement pre-
diction from different perspectives [22–26]. Here, we review
the recent progress in displacement prediction methods
based on deep learning.

Ref. [27] proposed a dynamic model based on the LSTM
neural network to predict landslide displacement. The accu-
mulated displacement was decomposed into a trending and
periodic term, where a cubic polynomial function was
employed to estimate the trend displacement, and an LSTM
model was used to predict the periodic displacement. The
performance of the model was validated with the observations
of two step-wise landslides in the Three Gorges Reservoir area,
the Baishuihe and Bazimen landslides. Another work intro-
duced two new concepts, namely, the trend sequence and
the sensitivity states, to quantificationally characterize the
response of landslide displacement to external factors and
the internal states of landslides, respectively [28]. Then, the
PSO algorithm and the SVR method were used to obtain the
trend sequence, and the LSTM neural network was employed
to predict the sensitivity states. Taking the Baishuihe landslide
located in the Three Gorges Reservoir area as a case study, the
proposed model showed satisfactory performance. Another
study [29] investigated a coupling prediction model based on
the double moving average (DMA) method and the LSTM
network to improve the accuracy of landslide displacement
point prediction and quantify the uncertainties associated with
the predicted values.

Moreover, three prediction models, namely the LSTM,
GRU, and RF, were utilized to estimate the periodic and total
accumulated displacement of three step-wise landslides in
the Three Gorges Dam Reservoir area [30]. Zhang et al.
[31] also developed a novel and dynamic model to predict
the displacements of step-like landslides. To this end, varia-
tional mode decomposition (VMD) was used to decompose
the cumulative displacement into stochastic, periodic, and
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trend components. A polynomial expression with an opti-
mized order fitted the trend displacement, and the bidirec-
tional long short-term memory model dynamically
modeled the periodic and stochastic displacements. The
experiments demonstrated that the proposed model better
predicted the displacement of step-like landslides. In another
work [32], a novel prediction model based on the graph con-
volutional network was derived to estimate the slope defor-
mation; the model considered the spatial correlations
between all points in the entire displacement monitoring
system. Furthermore, the complete-ensemble empirical-
mode decomposition with adaptive noise (CEEMDAN)
algorithm was employed to divide the total displacement
into a trending, periodic, and residual term [33]. Then, a
novel model based on the LSTM was established to predict
the displacement of landslides.

However, in real-world scenarios, the training data sets
for slope displacement are insufficient, which somewhat
restricts the applications of the above methods. In addition,
monitoring equipment can be destroyed under complex
external conditions, and monitoring interruption results in
data missing for model training. The transfer learning (TL)
method solves the above problems in such cases because
the knowledge acquired from the source tasks with sufficient
training data can be applied to the target task without
enough training data. Therefore, this paper combines the
Bi-GRU network, attention mechanism, and transfer learn-
ing to construct a model for predicting the slope displace-
ment of the landslide in Hebei JinYu Zenith Cement Co.,
Ltd., China. Concurrently, some ordinary networks such as
SVR, LSTM, GRU, Bi-LSTM, Bi-GRU, and Bi-GRU with
attention mechanism and the transfer network proposed in
this work are invoked for comparison.

3. Establishment of the Slope Displacement
Prediction Model

Predicting slope displacement can be regarded as a time-
series prediction problem, and the Bi-GRU can deeply cap-
ture the relationship between the forward and backward

characteristics of the displacement data. Bidirectionally han-
dling data in the learning process offers the opportunity to have
a strong representation of the features to better predict the
future step. The attentionmechanism can pay attention to only
relevant pieces of information, and specifically, the importance
of pieces of information is determined by their probability dis-
tribution, which eliminates unnecessary information.

During the process of slope deformation, the distribution
of displacement monitoring data changes remarkably over
time, and the maintenance of monitoring equipment causes
discontinuity in the data, resulting in the discontinuity
between the historical and newly collected data on displace-
ment. Discontinuity in the training data leads to the deteri-
oration of network prediction performance, so the transfer
learning strategy is introduced to solve this problem. The
model trained with historical data is used as the source
domain model, and the knowledge and skills learned from
the source domain model are applied to the new data (the
target task) over a long period to assist in predicting new
data. In this way, knowledge acquisition is no longer from
scratch, which can enhance prediction accuracy to a certain
extent.

Figure 1 shows the technical method this paper employs
to predict the slope displacement accurately. First, the col-
lected displacement data are divided into the source and tar-
get data. Afterward, a displacement prediction model based
on the Bi-GRU and the attention mechanism (denoted as
Bi-GRU-ATT) is constructed, and model training is con-
ducted using the source data. Then, a small amount of target
data is used to fine-tune the prediction model so as to obtain
the target model. After that, the prediction performance of
the model is evaluated using the testing data set. Finally,
the prediction results of the model are denormalized to esti-
mate the displacement of the landslide.

Figure 2 illustrates the model structure diagram, com-
prising the input layer, the Bi-GRU layer, the attention layer,
the fully connected layer, and the output layer.

3.1. Bidirectional Gated Recurrent Unit. The recurrent neural
network focuses on time-series problems because of its

Table 1: The characteristics of some models of predicting slope deformation.

Category Commonly used model Input data or characteristics Limitations

Statistics-
based
model

Auto-regressive moving average model
(ARMA)

The correlation analysis of the input
series is required, and the order and
parameters of the model should be

determined in advance.
Since a variety of factors affect landslide
deformation, the statistical model cannot
reflect the fluctuation in the landslide

displacement with the influencing factors.Gray model and related improved
models

The original time series should be
accumulated to yield the once

accumulating generation operator (1-
AGO) data sequence.

Machine-
learning-
based
model

Extreme learning machine model
The inputs are usually the selected

inducing factors or features.

Static fitting is performed on historical
data, which cannot reflect the nature of
the dynamic evolution of landslides

Support-vector machine (SVM) model

Neural network model

Deep-learning-based models, such as
long short-term memory (LSTM) and
gated recurrent unit (GRU) models

The input can be original displacement
series and various influencing factors.

When the sample data are limited,
overfitting can easily occur, resulting in

poor prediction accuracy.
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advantages over sequence dependence. However, due to gra-
dient exploding and vanishing, there is a length limitation
when applying the RNN algorithm [34]. Subsequently, vari-
ants of RNN, such as the LSTM and GRU neural network,
are proposed to deal with long-sequence prediction prob-
lems. The GRU retains some properties of the LSTM, and
simplifies the structure, which can realize information for-
getting and memorizing with the same gate, thereby giving
rise to fewer parameters and faster convergence [35].
Figure 3 depicts the structure of the gated recurrent unit.

The GRU model consists of two gates, reset gate and
update gate. The update gate controls the previous informa-
tion that will be carried over to the current layer, while the
reset gate decides the amount of information to forget. As
seen in Figure 3, the GRU transmits the input state xt at
the current moment and the hidden layer’s output state at
the previous moment to the reset gate, which determines
how much memory information is saved. It can be formu-
lated as

rt = σ Wrxt +Urht−1 + brð Þ, ð1Þ

where rt is the output of reset gate, σ is the logistic sigmoid
function, xt and ht−1 are the input and the previous hidden

state, respectively. Wr and Ur are learned weight matrices.
br is the bias.

Similarly, the output of update gate is computed by

zt = σ Wzxt +Uzht−1 + bzð Þ: ð2Þ

The new memory state �ht can be computed by

�ht = tanh Whxt + rt ∘ Uhht−1 + bh
� �� �

: ð3Þ

The final hidden state ht can be computed by

ht = zt ∘ ht−1 + 1 − ztð Þ ∘ �ht: ð4Þ

where ∘ represents the Hadamard product. The gating signal
zt ranges from 0 to 1. The closer the gating signal is to 1, the
more data will be memorized, whereas the closer to 0, the
more forgotten.

The unidirectional GRU model uses previous informa-
tion to predict follow-up information, while the bidirectional
GRU can comprehensively learn the time-correlated infor-
mation in both forward and backward directions simulta-
neously to improve prediction accuracy [36]. The Bi-GRU
extends the unidirectional GRU by introducing a second
layer, as shown in Figure 4.

The horizontal direction calculates the forward GRU hid-

den vector (h
!
t) and the backward GRU hidden vector (h

 
t) at

each time step(t)simultaneously. The vertical direction repre-
sents a unidirectional flow from the input layer to the hidden
layer and then to the output layer. Connecting the two hidden
states can calculate the final prediction of the Bi-GRU, as
described below:

h
!

t =GRU xt , h
!

t−1

� �
, ð5Þ

h
 

t =GRU xt , h
 

t−1

� �
, ð6Þ

yt =Wt h
!
t +Vt h

 
t + by , ð7Þ

where GRUð⋅Þ represents GRU function, Wt , Vt are the
weights of forward GRU and backward GRU, respectively,
and by is the bias of the output layer.

Predicting the displacement of a slope can be considered
a regression problem related to time series. The bidirectional
structure offers the ability to look into the displacement
series in two opposite directions, which allows acquiring
the full knowledge of past and future statuses for better pre-
diction results.

3.2. Attention Mechanism. Generally, the GRU model can
effectively avoid the phenomenon of gradient disappearance,
however, when the time series is too long, the model may
experience the phenomenon of gradient disappearance.
Therefore, an attention mechanism is introduced to reduce
the loss of historical information and strengthen the influence
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Figure 1: Technical route of slope displacement prediction.
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of important information, which is one of the most influential
ideas in the field of deep learning. The attention mechanism
assigns different weights to the Bi-GRU hidden layer, which
highlights the critical information, thereby optimizing the out-

put value and improving the prediction accuracy. Figure 5
depicts a schematic of the attention mechanism.

The attention mechanism can simply be a weighted sum-
mation [37]. It starts by calculating the importance of the

Fully connected layer

+

h1 h2 h3 ht

Attention layer𝛼1 𝛼2 𝛼3 𝛼t

y
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Figure 2: The model structure diagram.
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input information; then, the softmax function is utilized to
ensure that the sum of all the weights equals 1.0. The weights
and the input information are multiplied correspondingly,
and are eventually summed to obtain the output. The rele-
vant equations are as follows:

αt = softmax utð Þ =
exp utð Þ

∑n
t=1exp utð Þ

, ð8Þ

ut = tanh Wdyt + bdð Þ, ð9Þ

V = 〠
n

t=1
αtut , ð10Þ

where n is the total time steps of the input sequence, αt is the
weight calculated for each state ut at each time step, Wd is
the weight matrix, bd is the weight offset, and yt is the hid-
den state of Bi-GRU.

3.3. Transfer Learning. Transfer learning is a primary
method to solve the problem of insufficient available label
data in machine learning [38]. This method relaxes the
assumption that the training and testing data sets are identi-
cally distributed so as to realize the knowledge transfer from
the source domain to the target domain. After establishing
the training network based on the Bi-GRU and the attention
mechanism, this work uses the source data set to train the
training network so as to obtain the source model. Then,
the target data set is employed to fine-tune the full connec-
tion layer of the source model so as to obtain the target
model for predicting small data sets. Figure 6 shows the spe-
cific process.

Deep learning prediction models are prone to overfitting
for small data sets, and their prediction accuracy is not high
[21, 39]. On the other hand, obtaining a perfect data set is
expensive and time-consuming. Moreover, the collected data
on slope displacement are usually insufficient, and the data
reflecting the slope inclining to slide are limited, which
affects the accuracy of early warning. Transfer learning is
essential to solve the fundamental problem of insufficient
training data. Therefore, concerning the less effective sample
data during a long period of slope deformation, we introduce
a transfer learning algorithm to solve the slope displacement
prediction under limited sample data.

4. Case Study

4.1. Project Description. The case study area is the slope of
the JinYu Cement Plant in the Luquan District, Shijia-
zhuang, China. The JinYu Cement Plant established a highly
integrated global navigation satellite system (GNSS) online
monitoring system, realizing the comprehensive network
monitoring of the slope with high efficiency, sensitivity,
quick response, and reliable operation, to improve the slope
monitoring and the emergency response level. Figure 7
shows the location and actual view of the slope studied,
and Figure 8 depicts the layout of the monitoring points
and installed GNSS monitoring equipment.

Nine monitoring points are arranged on this slope, as
shown in Figure 8. Table 2 presents some of the data col-
lected by monitoring point G112 in 2019, where X, Y, and
Z represent the displacement in the north, east, and vertical
directions of the coordinate system, respectively. A negative
value indicates the opposite direction.

4.2. Data Preprocessing. The experiment selects 798 displace-
ment data obtained from monitoring point G112 from 2019
to 2021 as the experimental objects, and the first 648 data
from June 2019 to January 2021 are used as the source data.
Due to the equipment overhaul, 150 groups of data from
March 2021 to July 2021 are employed as the target data.
For target model training, the first 110 data from the target
data set are selected as the training data set. After fine-
tuning the training model, the last 40 data are selected for
its testing.
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To improve the training speed and prediction accuracy,
we normalize the collected sample data as follows:

xT =
x − xmin

xmax − xmin
, ð11Þ

where x is the original data, and xmax and xmin indicate the
maximum and the minimum in the sample, respectively.

The root-mean-square error (RMSE) and mean absolute
error (MAE) are used for the evaluation criteria, which can
be expressed by Equations (12) and (13), respectively.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
ŷi − yið Þ2

s
, ð12Þ

MAE =
1
n
〠
n

i=1
ŷi − yij j, ð13Þ

where yi denotes the measured accumulative displacement
of the slope, ŷi denotes the predictive accumulative displace-
ment of the slope, and n represents the number of predictive
values.

RMSE and MAE reflect the difference between the pre-
dicted value and the measured value and the dispersion
degree of errors. The smaller the RMSE and MAE, the better
the model performance.

4.3. Results and Discussion. According to the training pro-
cess, as described in the previous section, the performance
of the ordinary networks, i.e., the SVR, LSTM, GRU, Bi-

TABLE 2: Some of the data collected by monitoring point G112.

Date X Y Z Displacement

2019/6/1 17 : 09 : 50 -6.630 -3.980 -10.530 7.733

2019/6/2 17 : 10 : 02 -8.260 -4.350 -8.170 9.336

2019/6/3 17 : 13 : 28 -9.460 -4.530 -18.210 10.489

2019/6/4 17 : 16 : 37 -12.600 -3.570 -21.450 13.096

2019/6/5 17 : 17 : 00 -10.250 -1.930 -15.080 10.431

2019/6/6 13 : 27 : 51 -14.490 -2.390 -28.770 14.686

2019/6/7 17 : 01 : 55 -14.360 -6.550 -43.030 15.784

2019/6/8 17 : 09 : 17 -8.240 -4.840 -6.520 9.557

2019/6/9 17 : 08 : 36 -9.500 -5.720 -22.250 11.090

2019/6/10 17 : 16 : 25 -9.810 -3.520 -7.340 10.423

2019/6/11 17 : 16 : 58 -11.350 -2.070 -17.100 11.538

2019/6/12 17 : 15 : 23 -14.520 -5.010 -26.350 15.361

2019/6/13 17 : 15 : 26 -13.240 -3.490 -17.030 13.693

2019/6/14 17 : 16 : 55 -13.470 -1.800 -14.870 13.590

TABLE 3: Comparison of prediction accuracy between different prediction models.

Evaluation criteria TRA-Bi-GRU-ATT Bi-GRU-ATT Bi-GRU Bi-LSTM GRU LSTM SVR

RMSE (best) 0.495 1.219 1.507 1.575 1.643 1.813 1.682

RMSE (mean) 0.543 1.318 1.527 1.597 1.699 1.838 1.682

MAE (best) 0.391 1.026 1.223 1.304 1.361 1.479 1.396

MAE (mean) 0.445 1.085 1.270 1.325 1.409 1.531 1.396

TABLE 4: Some prediction results of different models.

The measured displacement
Predictive value of displacement

TRA-Bi-GRU-ATT Bi-GRU-ATT Bi-GRU Bi-LSTM GRU LSTM SVR

7.181 7.276 7.551 7.676 7.686 7.749 7.695 7.694

6.987 7.301 7.447 7.622 7.637 7.634 7.711 7.640

7.655 7.721 7.750 7.805 7.811 7.813 7.953 7.863

8.807 8.570 8.246 8.232 8.213 8.293 8.186 8.149

10.066 9.322 8.969 8.921 8.899 8.793 8.586 8.570

10.542 9.495 9.220 9.113 9.017 9.033 8.627 8.729

4.307 5.526 6.244 6.401 6.459 6.486 7.189 6.645

3.529 4.230 5.858 6.059 6.197 6.385 6.686 6.385

3.798 4.412 6.076 6.375 6.398 6.490 6.751 6.475
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GRU, Bi-LSTM, and Bi-GRU with the attention mechanism,
and the transfer network model, i.e., the Bi-GRU with the
attention mechanism and transfer learning, is evaluated
employing a testing data set.

Since deep learning methods have a specific degree of
uncertainty, model training and predictions may differ each
time. Each algorithm runs 100 times to evaluate the mean
prediction accuracy of the model so as to reduce the uncer-
tainty of the prediction results. For the SVR, the kernel func-
tion is linear and the penalty factor (C) is set at 200, the best
prediction accuracy. The structural parameters and the
training method of the Bi-GRU-ATT (the Bi-GRU model
with the attention mechanism) and the TRA-Bi-GRU-ATT
(the Bi-GRU model with the attention mechanism and
transfer learning) are consistent: they comprise two layers
of the Bi-GRU; the nodes in the hidden layers of the Bi-
GRU-ATT and the TRA-Bi-GRU-ATT are also 64 and
128, respectively. The batch size and epochs are also set at
30 and 120, respectively.

Tables 3 and 4 and Figures 9–11 present the compari-
sons, and Figure 10 shows the absolute prediction errors of
the different models. Since the stochastic gradient descent
method maintains a special learning rate for training, the
convergence speed is relatively low. Therefore, the Adam
optimization algorithm is adopted to adapt each parameter
to the learning rate.

The experimental results confirm that model TRA-Bi-
GRU-ATT proposed in this paper achieves the highest
degree of prediction accuracy. According to the best values
of RMSE and MAE, the degree of single prediction accuracy
can be higher in order: TRA − Bi −GRU −ATT > Bi −
GRU −ATT > Bi −GRU > Bi − LSTM > GRU > SVR >
LSTM. According to the mean values of the RMSE and the

MAE, the mean prediction accuracy can be higher in order:
TRA − Bi −GRU −ATT > Bi −GRU −ATT > Bi −GRU >
Bi − LSTM > SVR > GRU > LSTM. Although model TRA-
Bi-GRU-ATT obtains the highest degrees of single and mean
prediction accuracy, its stability is less than that of the SVR.
During multiple experiments, when a suitable kernel func-
tion is chosen, the prediction accuracy of the SVR remains
unchanged. However, due to too many parameters that must
be tuned, the prediction stability of the TRA-Bi-GRU-ATT,
Bi-GRU-ATT, Bi-GRU, Bi-LSTM, GRU, and LSTM is
slightly poor.

Figure 11 shows the box plots comparing the prediction
performance of the different models: the distribution of the
absolute errors. The absolute error distribution of model
TRA-Bi-GRU-ATT is more concentrated than that of the
other models, and its prediction performance is superior to
the others. Moreover, it can be concluded that transfer learn-
ing enhances the prediction performance of the model by
extracting the critical features from the historical displace-
ment sequence to assist with learning new data. It can
entirely exploit the historical information within a long
period and provide a good weight initialization for the train-
ing of the slope displacement model.

5. Conclusions and Future Perspectives

This work developed a predictive model combining transfer
learning and the deep neural network, where the deep neural
network adopted the Bi-GRU to extract the forward and
backward information from the analyzed displacement
series. The attention mechanism was introduced to highlight
the critical information and reduce the loss of historical
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information, thereby further stabilizing the model and
enhancing its prediction efficiency.

Due to complex external conditions, monitoring systems
can be destroyed, and monitoring interruption results in
data missing for model training. Aiming at this problem,
we introduce transfer learning employing historical data to
assist with learning new data for displacement prediction.
Taking the slope of the JinYu Cement Plant as an example,

the experimental results demonstrated that the model pro-
posed herein offered a higher degree of accuracy in predict-
ing the slope displacement and had the potential to estimate
the displacement of landslides, particularly in case of limited
sample data.

The shortcoming of the developed model was that the
displacement prediction curve showed evolution characteris-
tics from a single monitoring point. However, there were
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nine monitoring points, and the spatial correlations between
them were overlooked. Thus, it was difficult to reveal the dis-
placement changes in the entire monitoring system. In the
future, we plan to discuss the correlation between the dis-
placement series of different monitoring points and devise
a spatiotemporal prediction method based on time-series
data from an entire monitoring system containing multiple
points.

Furthermore, since machine learning methods have a
specific degree of uncertainty, model training and predic-
tions may differ. Ref. [10] compared the performance of five
popular machine learning methods, and the experimental
results showed that no method achieved the best results in
all three aspects: the highest single accuracy, the mean accu-
racy, and the stability. Therefore, improving the stability of
the prediction model while ensuring its accuracy can be
one of the future research focuses.
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