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Due to the state of the gas to be measured, the detection mechanism of the pyroelectric detector and the temperature drift of the
peripheral circuit components and the detection of the ambient temperature will interfere with the measurement accuracy of the
nondispersive infrared gas sensor from many aspects. This paper proposes a temperature compensation method based on the BP
neural network. The compensation function of the gas sensor is realized by programming the various functional parameters in the
neural network through the program provided in the Matlab neural network toolbox. Experimental simulation results show that
the proposed method effectively reduces the influence of external temperature on the gas sensor output and improves its accuracy
and stability.

1. Introduction

Influenced by the state of the gas to be measured, the detec-
tion mechanism of the pyroelectric detector and the temper-
ature drift of the peripheral circuit components and the
detection of the ambient temperature will interfere with
the measurement accuracy of the nondispersive infrared
gas sensor from many aspects. Gas sensor temperature com-
pensation is generally divided into hardware compensation
and software compensation; the main idea of hardware com-
pensation is through the external equipment of gas sensor
chamber temperature in dynamic balance, so as to avoid
the measurement error caused by detection of environmen-
tal temperature change; representative is Yongquan et al. for
a gas sensor accurate temperature control method and
device, through real-time detection of the current ambient
temperature, to correct the temperature target using the
temperature control module [1]. However, due to the drift
of electronic components and the precision of component
welding, the measurement circuit of hardware compensation
is often of low reliability and high cost. The main idea of
software compensation is to fit the gas sensor according to
the temperature experiment results to correct the nonlinear

effects of the least squares method, interpolation method,
polynomial method, and the validity of the infrared gas sen-
sor. This paper tries to use BP neural network to compensate
the gas sensor for temperature.

2. States of the Art

The research on infrared gas sensor emerged in the 1970s.
After decades of development, it has a relatively mature
technology and is widely used in air pollutant monitoring,
automobile exhaust composition analysis, mine gas moni-
toring and special gas concentration detection, and other
fields of [2]. Representatives are the following: SM-SF6 SF6
gas sensor of SmartGas, measuring range of 0~1000 ppm,
detection accuracy of ±2% FS, resolution of 1 ppm, and pre-
heating time of 30s, and CozIR CO2 gas sensor of GSS, mea-
suring range of 0~5%, with warm compensation function.
Detection accuracy can reach ±0.03% FS, repetitive error less
than 1.7% Fs and S8 CO2 gas transmitter of SenseAir
0~2000 ppm and ±1.2%. TIF SF6 can set seven leakage con-
centration; detection accuracy can reach 3 g/year. In year
2010, Xiaodong of Zhengzhou University conducted a study
based on the design of the infrared absorption type COz
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concentration analyzer. Using the ATmega128 microcon-
troller as the control core, the measurement range is ranging
from 0 to 5%. Relative error is less than 2% [3]. In 2011, Jing
of Fudan University studied on the key technology of NDIR
portable gas sensor. We propose a novel MEMS microenri-
chator based on silicate-1 molecular sieve material. Midin-
frared hollow fiber is introduced as the gas chamber of
NDIR portable gas sensor, effectively improving the system
signal-to-noise ratio. The lower detection limit can reach
5 ppm [4]. In 2014, Harbin Institute of Technology con-
ducted research on gas concentration detection alarm device
based on NDIR technology. A quadratic polynomial fitting
curve was used for the calibration. The measurement range
is ranging from 0 to 5%. The detection accuracy can reach
±0.05% FS [5]. In 2016, Lili of the University of Science
and Technology of China conducted a study on the key tech-
nology of aircraft fire alarm detection based on CO2 gas con-
centration detection. The temperature compensation model
was established by using the polynomial partial least squares
method and by low temperature (4°C), room temperature
(25°C), and high temperature (40°C). The measurement
range is from 0 to 1000ml/m3 etc. [6].

With the continuous improvement of modern gas detec-
tion means, the detection results of gas sensors are becoming
more and more accurate.

This is due to the following two factors: first, the gas sen-
sor materials, the performance of the sensor accuracy, and
the optimization and development of the gas sensor detec-
tion model, especially the application of machine learning
algorithm to the sensor modeling analysis, replacing the tra-
ditional simple controller AD sampling data conversion pro-
cess. The sensor detection model input is no longer limited
to a single variable. Therefore, establishing a suitable mea-
surement model for the gas sensor is helpful to improve
the stability of the detection system.

The Slovenian Joseph Stefan Institute was the first to
attempt to use neural networks in short-term air pollution
prediction and to predict SO pollution around Slovenian
thermal power plants, proving that the method can reduce
the peak of pollutant concentrations in critical meteorologi-
cal conditions [7]. The University of Arizona has developed
a portable, low-power, battery-powered hydrogen detection
system. The system has a wide hydrogen detection range,
and a dual set point of sound and flashing alarms, and a
direct readout of the hydrogen concentration ppm [8].

Sudan Qaboos University of Oman has proposed O3
sensor modeling using neural networks in the lower atmo-
sphere to predict the relationship between tropospheric O3
concentration and meteorological conditions and various
air quality parameters. The results show that artificial neural
network (ANN) is an effective method for modeling air pol-
lution [9]. Huazhong University of Science and Technology
proposed a fiber hydrogen sensor based on BP artificial neu-
ral network, which uses the neural network to eliminate the
internal and external effects of light source fluctuations, light
loss, and optical fiber beam jitter, and the accuracy of the
sensor was improved to 0.1% [10].

Southeast University designed a hydrogen concentration
detector based on LPC2104 controller for the thermal con-

ductivity hydrogen sensor TCS208F, analyzed the hardware
circuit and software design of the system, and applied it to
the hydrogen purity detection of Changzhou Halipu Com-
pany [11]. Nanjing University of Information Engineering
adopts the improved genetic algorithm to optimize the back-
propagation neural network algorithm and realize the tem-
perature compensation of the HMP45D humidity sensor.
Compared with the measured data under multitemperature
conditions, it is found that the improved measurement sys-
tem improves the compensation accuracy somewhat, and
the convergence rate is also faster [12].

Nanjing University of Science and Technology designed
a multisensor hydrogen leakage detection system, through
the experimental test analyzed the temperature on the sensi-
tivity and response characteristics of metal oxide hydrogen
sensor, and through the concentration measurement sensor
and reference sensor resistance rate difference, reduce the
environmental temperature interference to the measurement
results [13].

New methods for simulation and digital hardware and
software for detecting hydrogen concentrations are pro-
posed by Amir Kabir University of Technology in Iran. With
the advantages of MEMS technology, the digital and analog
circuits of the MEMS hydrogen analyzer can calculate the
conductivity between the heating power loss and the tem-
perature difference between the sensor and the environment,
thus realizing the measurement of hydrogen concentration
with a maximum accuracy error of about 0.2% [14].

In 2016, Lamamra and Rechem proposed an artificial
neural network (ANN) modeling method for the metal oxide
gas sensor TGS2610 and optimized it through genetic algo-
rithm. The comparative results of ANN model and experi-
mental data showed good consistency, which verified the
reliability of this model [15]. China University of Mining
and Technology has developed a new MEMS gas sensor
based on neural network temperature compensation. In view
of the problem that the new thermal conductivity gas sensor
is greatly affected by temperature, BP neural network, and
RBF neural network, China University of Mining and Tech-
nology has developed a new MEMS gas sensor based on neu-
ral network temperature compensation, so that high and low
temperature can meet the requirements of the system [16].

Nanjing University of Information and Engineering
studied the temperature and humidity sensor compensation
algorithm based on BP neural network. The BP neural net-
work is improved by the artificial fish swarm algorithm,
and the BP neural network is improved by the simplified
particle swarm algorithm, respectively, which can reduce
the interference of environmental factors to the sensor mea-
surement results to a certain extent [17]. Shandong Univer-
sity developed a hydrogen measuring instrument for the
containment of nuclear power plants, analyzed the influence
of pressure, temperature, and humidity factors on the mea-
surement results of the thermal conductivity probe, and
compensated the temperature and humidity digital accord-
ing to the fitting formula of the measurement data, and the
calibration accuracy can also meet the design requirements
[18]. The hydrogen detection system using the temperature
monitor is designed by the Tuxi University of Technology.
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The structure diagram of the hydrogen detection system
based on the temperature monitor is specially used for the
high concentration of hydrogen measurement in hydrogen
fuel cells. Based on the neural network algorithm, to mea-
sure the H2 concentration in a wide dynamic range by learn-
ing the solid temperature in a hydrogen-containing gas, the
system can measure hydrogen in the range of 40% to 100%
[19]. From the above studies, we can see that using the
appropriate algorithm for modeling can effectively improve
the gas sensor accuracy. From the above studies, we can
see that using the appropriate algorithm for modeling can
effectively improve the gas sensor accuracy. This paper pre-
sents a gas sensor temperature measurement method incor-
porating BP neural network compensation. This method
effectively reduces the influence of external temperature on
the gas sensor output and effectively improves the accuracy
and stability of the sensor. The overall method is shown in
the following Figure 1.

3. Methodologies

3.1. BP Neural Network.Multilayer feedforward artificial neu-
ral network (or multilayer perceptron, MLP) using the error
back propagation algorithm (BP: Error Back-propagation
Algorithm) is called BP neural network or BP neural network
model. Neural network has obvious characteristics.

3.1.1. Distributed Information Storage Mode. Neural network
stores information in the form of the state of the various
processors themselves and the connections between them.
One information is not stored in one place but is distributed
throughout the network by content. Instead of storing only
one external information, it stores parts of multiple informa-
tion. The entire network processes multiple information
before it is stored throughout the network, so it is a distrib-
uted storage mode.

3.1.2. Massively Parallel Processing. The storage and process-
ing of neural network information are combined; that is, the

storage of information is now in the distribution of neurons’
interconnection and is mainly processed in large parallel dis-
tribution, which is superior to the modern digital computer
with serial discrete symbol processing.

3.1.3. Self-Learning and Adaptability. The direct connection
weights of each layer of the neural network have a certain
tunability. The network can determine the weights of the
network through training and learning, showing a strong
adaptability to the environment and the self-learning ability
of external things.

3.1.4. Strong Robustness and Fault Tolerance. The distributed
information storage mode of neural network makes it have
strong fault tolerance and associative memory function, so
that if a certain part of the information is lost or damaged,
the network can still restore the original complete informa-
tion, and the system can still run.

According to statistics, in all neural network applications,
BP neural network accounted for more than 80%. BP neural
network is favored by many industries because of its good
nonlinear approximation ability and its ease of use. The back
propagation (BP algorithm) used by the BP neural network
is the most mature and widely used tutor learning algorithm
in the feedforward neural network. The application of pattern
recognition, image processing, information processing, intelli-
gent control, fault detection, enterprise management, market
analysis, and other aspects has achieved remarkable results.

3.2. The BP Neural Network Structure. The BP neural net-
work [20–24] is a multilayer feedforward network trained
by the error backpropagation algorithm, which is usually
used to classify and predict the data. The most important
part of BP neural network is the learning part of its weight
and threshold. Generally, the learning process is divided into
two parts. One part is the forward transmission process; that
is, the input sample is transmitted from the input layer layer
by layer to the output layer. The other part is the error
reverse transmission process; that is, if the actual output of
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Figure 1: Measurement method in gas sensor with BP neural network.
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the output layer is not the desired output, the error is an
adjustment signal layer by layer, processing the connection
weight matrix between neurons to reduce the error. After a
repeated learning process, the error is finally reduced within
the initially set range. The BP neural network is composed of
the loser layer, the output layer, and the intermediate layer
between the two. The middle layer can be a single layer or
a multilayer, because the middle layer is not connected to
the external environment, so it is also called the hidden
layer. The layers are connected between the input layer, the
hidden layer, and the output layer, but not between the indi-
vidual nodes of the single layer. The structural diagram of
the BP neural network is shown in Figure 2. The input layer
mainly sends the training samples to the network, while the
hidden layer and the output layer mainly train the sample
data. The parameters obtained by the network training sam-
ples are stored in the weights between the neuron and the
threshold of each neuron.

3.3. The BP Neural Network Training Process

3.3.1. Forward Propagation. The input sample is processed
from the input layer layer by layer and then transmitted to
the output layer, and the state of each layer only affects the state
of the next layer. The output layer compares the actual output
with the desired output, and if the actual output does not equal
the desired output, it enters the backpropagation process.
Figure 3 is a flow chart of the BP neural network algorithm.

There are n input layer nodes, q hidden layer nodes, and
m output layer nodes, the weights between input layer and
hidden layer are vki, and the transfer function of hidden
layer is f1ð:Þ. The weight between the hidden layer and the
output layer is wki, and the transfer function of the output
layer is f2ð:Þ [25]; then, hide the layer node output wki f2.

zk = f1 〠
n

i=0
vkixi

 !
, k = 1, 2,⋯, q: ð1Þ

Output layer node output:

yj = f2 〠
q

k=0
wjkzk

 !
, j = 1, 2,⋯,m: ð2Þ

In this way, the BP network completes the approximate
mapping of the n-dimensional space vectors to the m
-dimensional space.

3.3.2. Back Propagation. First, the error function is defined
with p learning samples, with x1, x2,... For the xp represen-
tation, the pth sample that enters the network gets the out-
put ypj , j = 1, 2,⋯,m, using the squared error function:

Ep =
1
2〠

m

j=1
tpj − ypj
� �2

: ð3Þ

The expected output is given in the formula for tp:j .
For the p samples, the global error is

E = 1
2〠

P

p=1
〠
M

j=1
tpj − ypj
� �2

= 〠
p

p=1
Ep: ð4Þ

For backpropagation, the error signal is transmitted back
by the original forward propagation path, and the weight
coefficient of each neuron in each hidden layer is constantly
modified, so that the global error signal E tends to be mini-
mized. During the learning process, the standard BP algo-
rithm uses a unified learning speed for all the weights, and
the length of each step is proportional to its directional
slope. The updated basic weight formula [26] is

Wjk nð Þ = −η ∂E/∂Wjk

� �
: ð5Þ

In the formula, Wjk is the step length parameter (learn-
ing rate); ∂E is the nth weight correction; and ∂Wjk is the
negative gradient of error squares.

Since BP only uses local gradient information, the value
must be small, thus making the algorithm skip the minimum
value, which leads to slower learning convergence speed. In
order to speed up the convergence speed, the common
method is to add the momentum factor, whose weight
update formula is as follows:

Wjk nð Þ = −
∂E

∂Wjk nð Þ + μWjk n − 1ð Þ: ð6Þ

In the formula, μ is the momentum factor used to damp-
ing local oscillations.. In order to meet the requirements of
accelerating training speed and avoid local minimum value,
the method to improve BP algorithm is proposed:

(1) Different learning rate is used for each weight and
represented by the exponential decay function (k).
This allows the learning rate to increase faster in flat-
ter regions than in steeper regions

(2) In the learning process, the learning rate can be
adaptively adjusted according to the gradient infor-
mation of the error function E, to improve the gen-
eralization ability of the network and improve the
network convergence performance [27]
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Error e
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–

Figure 2: Basic structure of the BP network.
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(3) The momentum term is used in the algorithm, and
the momentum term, like the learning rate, also
changes

(4) In order to avoid too large learning rate or momen-
tum, set the upper limit

(5) Parameters and probability P are used to control the
memory and recovery of the network learning pro-
cess; that is, if the number of error increases is
greater, the learning rate and momentum coefficient
will be reduced, and the best point will be searched
to learn again. In order to avoid fluctuations, the
search is carried out randomly in the way of proba-
bility P

3.4. Hybrid PSO-BP Neural Network. Since the initial
weights and thresholds of the BP neural network are ran-
domly generated, when the selection of the two is inappro-
priate, problems such as slow network convergence and
local minimum may occur. For this problem, this paper fur-
ther uses the PSO algorithm to optimize the BP neural net-
work, reduce the influence of the initial value on the
prediction results of the BP neural network, and improve
the network convergence speed and prediction accuracy.
When the PSO algorithm is used to optimize the BP neural
network, the degree of the particle search results is usually
determined by the fitness value, which can be based on the
mean squared error function.

And the formula is

fitness = 1
n
〠
n

t=1
〠
q

p=1
Yp ið Þ − Y

Λ

p ið Þ
� �2

, ð7Þ

where n is the number of network learning samples and Yp

ðiÞ is the expected output value of neurons in the network
output layer. The process of optimizing the BP neural net-
work by the PSO algorithm is shown in Figure 4. When
the fitness value meets the accuracy requirements or the
number of iterations reaches the set upper limit, the best
speed and position of the PSO algorithm in finding the par-
ticle in the solution space are taken as the weight and thresh-
old of the BP neural network, and the PSO-BP hybrid neural
network prediction model is established.
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Figure 4: Optimizing the BP neural network flow.
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4. Result Analysis and Discussion

4.1. Basic Test Circuit. The basic test circuit is shown in
Figure 5. In the figure, Vc is the working voltage, Vh is the
heating voltage, the output voltage V is the amount to be
measured, and the sensitivity S is V0/Vg, where V0 and V
g are the output voltage of the sensor in the air and the mea-
sured gas, respectively.

4.2. Gas Sensor Test Calibration Data. The use of BP neural
network for temperature compensation is because of the
basic characteristics of the neural network, so that the sensor
has a complex nonlinear mapping, self-organization, self-
learning, and reasoning capabilities [28].Only the sample
needs to be trained to simulate the intrinsic relationship of
input and output. The input amount of the BP neural net-
work is the sensitivity S. Under the influence of temperature,
the sensitivity S of the gas will change, and the output is the
concentration C′, requiring the output C′ of the neural net-
work to approximate the calibrated target amount C, so as to
achieve the temperature compensation of the concentration
C. To meet the above requirements, the neural network
should be first trained, and the training samples are provided
by the experimental data calibrated by the laboratory. The
sensor used in the experiment is an ethanol sensor with tin
dioxide as a sensitive material. The schematic diagram of
the sensor is shown in Figure 6, the heating voltage is 4V,
and the calibration results are shown in Table 1.

To better converge the neural network, [29] the experi-
mental data were first normalized before feeding the sample
data into the network. The formula is as follows:

�Si,m = Si,m − Si,min
Si,max − Si,min

, ð8Þ

�Cm = Cm − Cmin
Cmax − Cmin

, ð9Þ

where Si,m and Cm are the normalized values of the input
and output of neural network; Si,m and Cm are the input and
output of m-m sample; Si,max and Si,min are the maximum
and minimum calibration values of voltage sensitivity mea-
sured in group i experiment; and Cmax and Cmin are the maxi-

mum and minimum calibration values of concentration. After
normalizing the data, the data shown in Table 2 are available.

4.3. Simulation Studies and Results. The data were processed
for [30] using the BP Neural Net toolbox for Matlab2012.
Data processing in the Matlab environment is mainly
divided into two parts: constructing the BP neural network
and integrating the samples and obtaining the structure
coefficient. The detailed process is shown in Figure 7.

The BP algorithm is used to process the samples. One
node is selected for the input layer, and six nodes are
selected [31] for the hidden layer. The number of hidden
layers is not fixed, and the output layer selects one node.
The range of the input vector is [0,1], the implicit layer
adopts the losig function, the output layer adopts the purelin
function, and the network training function is trainlm
[32–34]. The training error was set to 0.0001, and the

Table 2: The normalized NN input-output samples

(a)

m
�Cm

�Si,m m
�Cm

�Si,m
18°C 20°C

1 0 0 1 0 0

2 0.2 0.172 2 0.2 0.138

3 0.4 0.278 3 0.4 0.227

4 0.6 0.571 4 0.6 0.492

5 0.8 0.765 5 0.8 0.703

6 1 1 6 1 1

(b)

m
�Cm

�Si,m m
�Cm

�Si,m
22°C 24°C

1 0 0 1 0 0

2 0.2 0.117 2 0.2 0.053

3 0.4 0.371 3 0.4 0.328

4 0.6 0.53 4 0.6 0.49

5 0.8 0.672 5 0.8 0.779

6 1 1 6 1 1

Table 1: Sensor input and output calibration values at different
ambient temperatures.

C on centration
C/(g•m-3)

Sensitivity S
18°C 20°C 22°C 24°C

0.500 3.465 3.776 3.987 4.182

1.000 4.107 4.316 4.432 4.692

1.500 4.507 4.664 5.404 5.486

2.000 5.601 5.704 6.008 6.137

2.500 6.328 6.528 6.554 7.281

3.000 7.208 7.693 7.803 8.161
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Figure 6: Schematic diagram of the gas sensor.
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training number was set to the maximum 3000. The data in
Table 3 can be obtained by processing the trained network
data of Table 2. The percent absolute error of the BP neural
network prediction is shown in Figure 8.

4.4. Analysis of the Algorithm Compensation Effect. Through
the Matlab drawing function, writing the corresponding
program to simulate each temperature point before compen-
sation and after compensation, it can be found that Figure 9
(working curve at different temperatures after compensa-
tion) is better overlapping than Figure 10 (working curve
before compensation), effectively reducing the impact of
external temperature on the output.

5. Conclusions

With the development of automation level, the application
of gas sensor is more and more extensive in all kinds of con-
trol systems of automation equipment. Among them, the
application of infrared gas sensor is particularly prominent,
but the infrared gas sensor will be affected by the tempera-
ture, resulting in zero-point drift and sensitivity drift.
Because temperature is the most important interference
amount of the sensor system, it is extremely important to
compensate the sensor temperature in practical application.
To improve the measurement accuracy and improve the
error output characteristics caused by the temperature
change of the sensor, measures must be taken to correct
the temperature error. Experts and scholars take tempera-
ture compensation as an important way to improve the
accuracy of gas sensors, and there are a lot of researches,
regarding the maturity and development of computer algo-
rithms. It is a new trend to predict temperature compensa-
tion based on mature models. In this paper, an ethanol
sensor with tin dioxide as a sensitive material is an example.
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Table 3: Output results after the training period.

C on centration
C/(g•m-3)

Sensitivity S
18°C 20°C 22°C 24°C

1.000 0.204 7 0.199 6 0.199 6 0.196 3

1.500 0.403 0.396 7 0.399 5 0.400 6

2.000 0.600 1 0.601 7 0.599 8 0.598 5

2.500 0.799 7 0.801 8 0.799 0.799 4

3.000 1 1 1 1
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Figure 8: Percent absolute error of BP neural networks
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Based on the BP neural network method, through the pro-
grams provided in the Matlab Neural Network toolbox, var-
ious function parameters in the neural network are
programmed to realize the compensation function of the
gas sensor. By comparing the working curve diagram before
and after the compensation, it is found that this method
effectively reduces the influence of the external temperature
on the gas sensor output at all temperature levels and effec-
tively improves the accuracy and stability of the sensor.
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