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Aiming at the problem of multisensor resource scheduling in missile early warning operation, a scheduling decomposition
strategy for missile early warning tasks under cooperative detection is proposed. Taking the detection benefit factor, target
threat factor, and handover factor as the fitness function, we establish a sensor-subtask assignment (SSA) model and propose a
hybrid discrete artificial bee colony (HDABC) algorithm to solve the optimal solution of the SSA model. The HDABC
algorithm has the following improvements: in the initialization stage, a sensor-subtask-based coding method is designed to
reduce the solution dimension, and the heuristic rules are used to obtain excellent populations to improve the convergence
speed; in the employed bee and onlooker bee stage, a food source update strategy based on discrete differential mutation
(DDM) operation is proposed to improve the searchability of the algorithm, and a sorting-based adaptive probability (SAP)
selection method is applied to enhance the global search and local optimization capacities. Simulation experiments were
carried out in operation scenarios of different scales. Experimental results showed that the proposed HDABC algorithm can
obtain the optimal scheduling schemes and had a better solving performance when solving the SSA model, especially in the
medium-scale and large-scale operation scenarios.

1. Introduction

Missile early warning resource scheduling refers to dynami-
cally determining the multisensor detection and tracking
sequences of multitarget under the condition of limited sen-
sor resources and then determining the time for tracking
and resource assignment, so as to achieve continuous and
stable detection and tracking of threat targets. Its essence is
a kind of nonlinear combinatorial optimization decision-
making problem for multisensor detection of multitarget.
At present, most of the researches are aimed at single sensor
resource scheduling problems, focusing on scheduling
methods and algorithm optimization problems under the
constraints of time, energy, and computing resources
[1–4]. However, with the accelerated construction of missile
early warning systems in the future, missile early warning
operations will be characterized by multisensor cooperative
tracking and detection. The research on multisensor detec-

tion of multitarget resource scheduling problems under the
condition of resource conflict has become an urgent problem
to be solved.

Task priority determination and scheduling algorithm
design are the main problems of multisensor resource sched-
uling. Therefore, the multisensor scheduling solution
methods can be divided into two categories.

The first category refers to the optimization of task pri-
ority determination. Task priority determines the order of
resource invocation and reflects the importance of tasks. Set-
ting task priorities ensures that important tasks will not be
lost during scheduling, which requires that the determina-
tion of priority has good adaptability to environmental
changes. The traditional task priority determination method
adopts the past operation experience for fixed settings, but
this method is not flexible enough to effectively schedule
the new tasks in the scene. After that, the priority determina-
tion method is proposed, such as highest priority first (HPF)

Hindawi
Journal of Sensors
Volume 2022, Article ID 5094415, 16 pages
https://doi.org/10.1155/2022/5094415

https://orcid.org/0000-0002-2915-093X
https://orcid.org/0000-0002-0235-8992
https://orcid.org/0000-0002-9557-0852
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5094415


algorithm [5], earliest deadline first (EDF) algorithm [6],
and its improved algorithm: modified earliest deadline first
(MEDF) algorithm, highest priority, earliest deadline first
(HPEDF) algorithm [7–10], etc. However, the above algo-
rithm does not make full use of the prior information of
the target in the process of priority planning, and there is a
problem of too strong subjectivity caused by artificially
assigning the priority of the task mode. To enhance the reli-
ability and accuracy of resource scheduling, the multiparam-
eter synthesis priority determination algorithm is proposed,
which involves the optimal task benefit factor and target
threat factor. Cheng et al. [11] established a scheduling
model considering time and energy constraints from the
perspective of scheduling benefits; Chen et al. [12] proposed
a heuristic multibeam dwell scheduling algorithm based on
maximal scheduling benefits; Zhang et al. [13] proposed an
algorithm to calculate the synthesis priority of the task by
combining the threat density of the target and the deadline
of the task. The simulation results show the significant
improvement of the comprehensive multiparameter method
compared with the traditional task priority determination
method. On this basis, this paper will establish a multisensor
task priority determination method that is more suitable for
missile early warning.

The second category refers to the design of the
scheduling algorithm, such as the algorithm based on
the auction mechanism [14, 15], game-theoretic frame-
work [16], and approximate dynamic programming [17,
18]. These algorithms can effectively solve the problem
with smaller dimensions, but difficult to solve the prob-
lem with higher dimensions. Artificial intelligence algo-
rithm is a popular optimization algorithm to solve the
problem of target allocation and resource scheduling,
such as ant colony optimization algorithm (ACO) [19],
genetic algorithm (GA) [20], particle swarm optimization
algorithm (PSO) [21, 22], and artificial bee colony algo-
rithm (ABC) [23]. Through a lot of experiments [24,
25], it is proved that the ABC algorithm has better opti-
mization ability than other intelligent optimization algo-
rithms and is not easy to fall into local optima. At
present, the ABC algorithm has been applied to many
resource scheduling problems. For example, aiming at
the problems of slow convergence speed and low search
efficiency of weapon resource scheduling algorithm,
Chang et al. [26] proposed an improved ABC algorithm,
which adopted rule-based heuristic factors for initializa-
tion and improved the convergence speed and accuracy
of the algorithm. Pang et al. [27] proposed an improved
ABC algorithm based on double probability to obtain the
sensor management scheme based on the fitness function
of target detecting risk and target tracking risk. Xia et al.
[28] proposed an ABC algorithm based on a jamming
resource scheduling problem with few parameter adjust-
ments, and the proposed ABC algorithm has better per-
formance in convergence speed and accuracy. To sum
up, the ABC algorithm is selected in this paper to opti-
mize the multisensor resource scheduling problem, fur-
ther supporting the better application of the ABC
algorithm in the field of resource scheduling.

Although the above methods are diverse, they still have
the following shortcomings: (1) most task priority methods
are aimed at aerodynamic targets, which do not conform
to the characteristics of time-sensitive target early warning,
such as ballistic missiles. (2) The convergence and accuracy
of the ABC algorithm are not good when dealing with multi-
sensor detection of multitarget problems. (3) The sensor-
target assignment scheme cannot match the capabilities of
the sensors well to obtain the optimal task benefit.

This study is aimed at building a multisensor resource
scheduling decision model to optimize the task priority
strategy and improving the scheduling algorithm to improve
convergence and accuracy. The main contributions of this
article can be summarized as follows:

(1) Under the premise of predictable trajectory, a missile
early warning task decomposition strategy based on
periodic scheduling and task decomposition is
adopted to transform the multisensor resource
scheduling problem into a sensor-subtask assign-
ment (SSA) optimization problem. Taking the coop-
erative detection of P-band ground-based early
warning radar (PBR) and X-band ground-based
early warning radar (XBR) as an example, a multi-
sensor resource scheduling decision model based
on target threat and detection benefit is constructed

(2) A hybrid discrete artificial bee colony (HDABC)
algorithm is proposed to solve the resource assign-
ment problem of multisensor cooperative detection.
The algorithm is improved from the aspects of cod-
ing rules, heuristic initialization strategy, food source
update strategy, and food source selection probabil-
ity, so that the improved algorithm could be more
excellent in dealing with such problems

2. Periodic Scheduling and Task
Decomposition Strategy

The periodic scheduling and task decomposition of missile
early warning tasks solve the problems of early warning
resource time planning and target grouping, that is, when
to generate the scheduling scheme and how to assign sensors
and targets [29]. Figure 1 illustrates the missile early warning
resource scheduling framework based on periodic schedul-
ing and task decomposition.

2.1. Periodic Scheduling. The duration of the scheduling
period greatly influences the scheduling effect [30]: if the
generated scheduling period is too long, with the increase
in the tracking error of target detection, the scheduling
scheme will not meet the detection reality; if the scheduling
period is too short, the workload of the solution will be sig-
nificantly increased. Therefore, the scheduling period should
be dynamically adjusted according to the measurement
results of the target and the changing trend of the task,
which mainly depends on the accuracy of the prediction
information of the early warning system and the complexity
of the battlefield space. The higher the accuracy of the
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forecast and the smaller the scale of operations, the longer
the required scheduling period and the higher the reliability,
and vice versa; the accuracy of the scheduling plan will be
affected. In addition, in emergencies such as the emergence
of new targets, the addition and withdrawal of early warning
resources, and the target deviation from the predicted ballis-
tics, the period must be dynamically calculated to ensure
self-adaptation to complex battlefield tasks.

The method for calculating the duration of the schedul-
ing period is as follows: assuming that the prediction accu-
racy of the early warning system to the target at the time
t0 is Pt , the number of targets to be scheduled is Nbm, the
number of sensors is Ns, the average time of scheduling
scheme generation is Cal, the frequency of generating new
targets in a scheduling period is Ftg, and then, the duration
of the next scheduling period is as follows:

T = f st Pt , Cal , Ftg,Ns

À Á��
t=t0

⇒ ST0 = t0, t0 + T½ �, ð1Þ

where f stð·Þ is the calculation function of the periodic sched-
uling length.

2.2. Task Decomposition Strategy. Task decomposition refers
to refining the complex visible relationship between sensors
and targets in a scheduling period into a sequence of sub-
tasks that can be directly executed and completed by sensors
[21]. Different task decomposition strategies often lead to
different subtask sequences, which eventually lead to differ-
ent scheduling schemes. At present, the most commonly
used task decomposition strategies are the “longest observa-
tion time” and “start and end time division” methods [22],
but they are all for the decomposition of single-target detec-
tion tasks. When the number of targets existing at the same
time and in the same space is too large, the complexity of the
decomposition of the aforementioned strategy increases
greatly. Therefore, we adopt the task decomposition method

of “minimum scheduling interval” to avoid the problem that
the amount of calculation increases significantly due to
excessive decomposition. Proceed as follows:

Step 1. Calculate the visibility of each sensor to the target in a
scheduling period and set the minimum scheduling time
Tsub according to the predicted trajectory of all targets.

Step 2. Divide the predicted trajectory based on the visibility
to generate k subtasks. The time of each subtask is Tiði ∈ kÞ.

Step 3. If there is Ti ≥ Tsub, the output is a subtask ST j = Ti; if
there is Ti < Tsub, then when Ti + Ti+1 +⋯+Ti+n ≥ Tsub, the
output is a subtask ST j =∑n

ni=0Ti+ni.

Step 4. Until ∀STj ≥ Tsub, output the subtask sequence; oth-
erwise, jump to Step 3.

After the aforementioned periodic scheduling and task
decomposition of the missile early warning task, each early
warning resource will correspond to a series of subtask
sequences. At this time, the scheduling problem of early
warning resources is transformed into a “sensor-subtask
assignment” (SSA) problem based on the scheduling period.
The scheduling scheme is periodically generated to deter-
mine which subtasks are to be detected and which early
warning resources are assigned for execution, thereby greatly
reducing the complex correspondence between tasks and
resources.

3. Resource Scheduling Model Based on Sensor-
Subtask Assignment

When sensors have a visible relationship to the same target,
in order to analyze the rationality of target detection by sen-
sors, a resource scheduling model based on sensor-subtask
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Figure 1: Missile early warning resource scheduling process framework based on periodic scheduling and task decomposition.
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assignment (SSA) is used to describe it. The SSA model is
established as follows.

3.1. Fitness Function. The fitness function is composed of
factors such as detection benefit factor, target threat factor,
and target handover factor, which are expressed as follows:

max J Xð Þ = J X 1ð Þ
� �

+ J X 2ð Þ
� �

+⋯ + J X kð Þ
� �� �

, ð2Þ

where the multisensor cooperative detection benefit JðXÞ is
calculated as

J X kð Þ
� �

= 〠
m

i=1
〠
n

j=1
a kð Þ
i,j · Ben kð Þ

i,j · Thri,j

 !
· Han kð Þ, ð3Þ

where BenðkÞi,j is the detection benefit factor, Thri,j is the tar-
get threat factor, HanðkÞ is the target handover factor, and

aðkÞi,j is a decision variable, describing the detection of the i
-th target’s j-th subtask by the k-th sensor, and the calcula-
tion formula is

a kð Þ
i,j =

1,

0,

(
the k − th sensor detects the j − th subtask of the i − th target,

otherwise:

ð4Þ

3.1.1. Detection Benefit Factor. The detection benefit factor is
expressed as

Ben kð Þ
i,j = l1 · Dis

kð Þ
i,j + l2 · Los

kð Þ
i,j + l3 · Pri

kð Þ
i,j , ð5Þ

where l1, l2, and l3 are the weight factors and l1 + l2 + l3 = 1.
(1) Spatial Distance DisðkÞ:i,j DisðkÞi,j is to indicate the influ-

ence of the distance between the target and the sensor on the
detection effect. The closer the target distance is, the better it
is to improve the precision of the target tracking informa-
tion, expressed as

Dis kð Þ
i,j =

D kð Þ
max −D kð Þ

i,j

D kð Þ
max

, ð6Þ

where DðkÞ
max is the maximum detection range of the k -th sen-

sor and DðkÞ
i,j is the average distance of the k-th sensor for

each subtask.

(2) Line-of-Sight Angle LoaðkÞi,j . Loa
ðkÞ
i,j is to measure the devi-

ation between the line-of-sight angle (LOA) of the sensor to

detect the target and the optimal angle. LoaðkÞi,j affects the sen-
sor’s ability to identify the target. The further away from the
optimal angle, the worse the detection effect, expressed as

Loai,j = 1 −
α

kð Þ
i,j − α

kð Þ
ibest

��� ���
α

kð Þ
ibest

, ð7Þ

where αðkÞi best is the optimal LOA of the k-th sensor to the i-th

target and αðkÞi,j is the LOA for each subtask of the i-th sensor.

(3) Detection Coverage ArcðkÞi,j . Arc
ðkÞ
i,j is to indicate the detec-

tion coverage capability of the sensor to the subtask. The
longer the ballistic arc length is covered by the sensor’s
detection of the subtask, the better it can avoid the target
loss, expressed as

Arc kð Þ
i,j =

l kð Þ
i,j

li missile
, ð8Þ

where li missile is the total predicted arc length for the i-th tar-

get and lðkÞi,j is the detection arc length of the i-th sensor for
each subtask.

(4) Detection Priority PriðkÞ. PriðkÞ is to indicate the detection
priority of the sensor. The higher the identification accuracy
of the sensor, the higher its priority, expressed as

Pri kð Þ =
1, when sensor k is PBR,

2, when sensor k is XBR:

(
ð9Þ

3.1.2. Target Threat Factor. In missile early warning opera-
tions, ballistic targets usually appear as cluster targets and
perform saturated strikes at strategic positions. Therefore,
under the condition of limited resources, it is necessary to
conduct a threat assessment on all targets to distinguish
the detection priority and realize the reasonable assignment
of resources. The threat factor of the i-th target is expressed
as

Thri = Idei η1 · Clai + η2 · Finið Þ, ð10Þ

where η1 and η2 are the weight factors and η1 + η2 = 1.

(1) Friend or Foe Information Idei. Idei is to indicate the
friend or foe information of the target. Targets identified as
ours are not detected.

Idei =
0, Identified as our target,

1, Identify as enemy target:

(
ð11Þ

(2) Target Category Information Clai. Clai includes informa-
tion such as warhead target confidence and target type and
indicates the threat level of the target by matching the mis-
sile model and type. Clai is determined by matching in the
feature database after the target is comprehensively identi-
fied. The greater the value, the more likely the target is to
be a warhead target, and the greater the level of threat. The
value range is

Clai ∈ 0, 1ð Þ: ð12Þ

(3) Flight Data Fini. Fini includes information such as the
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predicted range of each target, the speed of the shutdown
point, the remaining flight time, the ballistic inclination,
and the range between the striking point and the defense
point, expressed as

Fini =〠μi,f i · ωi,f i, ð13Þ

where ωi,f i is the threat value corresponding to the f i-th fac-
tor, which is obtained from the prediction information of the
early warning system. The value range is (0, 1), and the
larger the value, the higher the threat degree; μi,t is the
weight of each factor and ∑μi,f i = 1.

3.1.3. Target Handover Factor. The target handover factor
HanðkÞ is used to express the influence of the number of tar-
get handovers on the cooperative of sensors. To avoid mis-
taking and losing track in the process of tracking the
target, the number of target handovers should be minimized.
In addition, HanðkÞ is an important factor to control the sta-
bility of the solution. The calculation formula is

Han = 1 −
∑m

i=1∑
n−1
j=1 a

kð Þ
i,j ⊗ a kð Þ

i,j+1

C kð Þ
max

, ð14Þ

where aðkÞij ⊗ aðkÞi,j+1 is an XOR operation, indicating whether

the k -th sensor switches the tracking target and CðkÞ
max is

the maximum trackable target capacity of the k -th sensor.

3.2. Constraints

(1) From the overall perspective of missile defense and
resource optimization, it is necessary to ensure that
each ballistic target can be detected as much as pos-
sible and that subtasks with detection overlap only
occupy one sensor, that is

〠
s

k=1
a kð Þ
i,j ≤ 1, if 〠

s

k=1
Ben kð Þ

i,j > 0
 !

ð15Þ

(2) From the limitation of tracking capacity, the number
of targets tracked by the sensor cannot be higher
than its target capacity, and a certain redundancy
should be reserved to avoid being unable to respond
to emergency due to resource overload, so it is
expressed as

〠
m

i=1
a kð Þ
i,j ≤ C kð Þ

max, ð16Þ

where CðkÞ
max is the maximum trackable target capacity of the

k -th sensor

3.3. Generation of Scheduling Scheme. Solving the SSA model
can obtain the decision matrices Ai of all subtasks detected
by the sensor. By combining the decision matrix according
to the sensor number, a scheduling scheme S = ½A1, A2,⋯,
As� within a scheduling period can be generated.

S =

a 1ð Þ
1,1 ⋯ a 1ð Þ

1,n

⋯ a 1ð Þ
i,j  

a 1ð Þ
m,1 ⋯ a 1ð Þ

m,n

⋯ a sð Þ
1,1 ⋯ a sð Þ

i,n

⋯ ⋯ a sð Þ
m,n ⋯

⋯ a sð Þ
m,1 ⋯ a sð Þ

m,n

2
6664

3
7775: ð17Þ

4. Hybrid Discrete Artificial Bee
Colony Algorithm

The proposed SSA model is a typical nonlinear combinato-
rial optimization problem, and there are plenty of algo-
rithms to solve such problems. The artificial intelligence
algorithm is one of the effective ways to solve this NP-
Hard problem, which can get a satisfactory solution within
a given period after iterations and optimum search, but has
some disadvantages, such as slow convergence speed, low
efficiency, and instability solution [26]. The artificial bee col-
ony (ABC) algorithm is an efficient artificial intelligence
algorithm by simulates honeybees’ foraging behavior [31,
32], which has been applied in many fields, such as dynamic
clustering [33], shortest path problem [34], and traveling
salesman problem [35]. Compared with PSO, DE, and EA
[36], the ABC algorithm has the characteristics of flexible
structure, fewer control parameters, strong optimization
ability, and great advantages in large-scale solution problems
[37–39]. Considering the efficient optimization ability of the
ABC algorithm, we adopt the ABC algorithm to solve the
SSA problem in the study.

However, the original ABC algorithm was first devel-
oped to solve continuous problems [40] and cannot be
directly applied to solve problems with discrete variables,
such as the SSA model. Like other artificial intelligence algo-
rithms, the ABC algorithm has the disadvantages of weak
local convergence ability and slow convergence speed [41].
In order to solve the above problems, many studies have
proposed the discrete ABC (DABC) algorithm [42, 43] and
improved on it. Up to now, this improved DABC algorithm
has been successfully applied in combinatorial optimization
problem. For example, Masdari et al. [44] proposed the cha-
otic discrete ABC to solve discrete problems such as cluster-
ing of sensor nodes in the wireless sensor networks; Li et al.
[45] presented a sorting-based discrete artificial bee colony
algorithm to solve the flow shop scheduling problem; He
et al. [46] proposed a multitask bee colony band selection
algorithm with variable-size clustering to solve the multitask
optimization problem in band selection.

Based on the above research, we propose the hybrid dis-
crete artificial bee colony (HDABC) algorithm to solve the
SSA model. We first redefine the integer coding strategy
and then improve the initialization rules, food source update
strategy, and food source selection probability to improve
the ABC algorithm. The solution process of missile early
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warning resource scheduling based on HDABC is shown in
Figure 2.

4.1. ABC Algorithm. The ABC algorithm divides bee colony
into three categories: employed bee, onlooker bee, and scout
bee. The goal of the bee colony is to find the optimal food
source, and the food source represents all possible solutions
in the solution space and is measured by fitness value.
Employed bee focuses on food source detection. Onlooker
bee receives food source information shared by other bees
and is responsible for mining food sources. Scout bee
searches for new food sources randomly when food sources
are abandoned. The algorithm process is as follows:

(1) Initialization Stage. In a D-dimensional search space,
the population number is NP, and the position of
each food source after the t-th iteration is

X tð Þ
i = x tð Þ

i,1 , x
tð Þ
i,2 ,⋯, x tð Þ

i,D

h i
, ð18Þ

where i = 1, 2,⋯, NP. The fitness value of food source is fi
ti = fitðXðtÞ

i Þ

(2) Employed Bee Stage. Each employed bee chooses a
food source randomly and then generates a new food
source vid by the food source update strategy. The
fitness fiti ′ value of the new food source is calculated,
and the food source with better fitness value is
retained by the greedy strategy

(3) Onlooker Bee Stage. After receiving the information
of the employed bee, the onlooker bee selected sev-
eral food sources according to the food source selec-
tion strategy, searched for new food sources
according to the food source update strategy for fit-
ness comparison, and selected the food sources with
better fitness for retention

(4) Scout Bee Stage. If the food source did not improve
after lim iterations, the food source is abandoned
and recorded in the tabu list. At the same time, the
bees corresponding to the food source turned into
scout bee and generated a new food source according
to the initialization strategy randomly

(5) Repeat steps (2) to (4) until the termination condi-
tion is met and the optimal food source location is
output

4.2. Improvements to the Initialization Stage

4.2.1. Discrete Integer Coding Strategy Based on Sensor-
Subtask Sequence. The decision variable aðkÞi,j in the SSA
model corresponds to the bee colony individual of the algo-
rithm. For the problem of s sensors, m targets, and n sub-
tasks, if 0-1 coding is used, a D-dimensional (D = s ×m × n
) vector will be generated, which will cause a dimensional
disaster as scene complexity increases. To reduce the com-
putational complexity of the algorithm, a discrete integer

coding method based on sensor-subtask sequence is pro-
posed as shown in Figure 3.

In this method, the decision matrix Ai is encoded as the
target number corresponding to the sensor, and the position
without a visual relationship is filled with 0. At this time, the
coding length is determined by the maximum tracking capa-
bility Cmax of each sensor; that is, D =∑s

k=1C
ðkÞ
max. Through

this coding method, the dimension of the algorithm is effec-
tively reduced, and the number of targets assigned by each
sensor does not exceed the target capacity, which is conve-
nient for directly expressing the scheduling scheme.

4.2.2. Heuristic Initialization Rules. The heuristic initializa-
tion rules are aimed at generating an initial feasible solution
to improve the quality of the initial solution and speed up
the convergence [18]. According to the characteristics of
SSA model, we propose the initialization rules based on
target-threat-priority and resource-balance-priority.

(1) Heuristic Initialization Process Based on Target-Threat-
Priority.

Step 1. To select the target with the maximum threat degree,
assign it to the sensor S1 which has the highest detection pri-
ority, and remove the target.

Step 2. Continue to assign the target with the maximum
threat degree to the sensor S1 and remove the target until
S1 reaches the maximum capacity.

Step 3. According to the methods of Steps 1 and 2, assign tar-
gets to S2-Sk in turn until there is no target or the sensor
resources are saturated.

Step 4. To take the assignment scheme as a heuristic initial
individual to replace the initial solution.(2) Heuristic Initial-
ization Process Based on Resource-Balance-Priority.

Step 1. To select the target with the largest detection benefit
for S1, assign it to S1, and remove the target; continue to take
the target with the largest detection benefit for S2-Sk and
assign the target to each sensor, and remove the target. So
far, each sensor has been assigned a target with the largest
detection benefit.

Step 2. Repeat Step 1 until there is no target or the sensor
resources are saturated.

Step 3. To take the assignment scheme as a heuristic initial
individual to replace the initial solution.

4.3. Improvements to the Food Source Update Strategy. Since
the adoption of the integer coding strategy, the traditional
strategy of updating food sources in the employed bee stage
and the scout bee stage [47] is not applicable. Based on
Zhang et al.’s research [48], a food source update strategy
based on discrete differential mutation (DDM) operation is
proposed to enhance the algorithm’s search capacity. The
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food source update formula is as follows:

V tð Þ
i = φ1X

tð Þ
i ⊕ φ2 ⊗ X tð Þ

i − X tð Þ
k

� �h i
, ð19Þ

where the scale factors ϕ1 and ϕ2 are random numbers in [0,

1], XðtÞ
i , XðtÞ

k , ði, k ∈ ½1,NP�Þ is the i -th food source and the k

-th food source, respectively, and V ðtÞ
i is the new food

resource. The operation process is divided into the following
three parts:

Step 1. Calculate the part of ðXðtÞ
i − XðtÞ

k Þ:

The operation is defined as

Δi = X tð Þ
i − X tð Þ

k ⇔ δid =

xkd , xid ≠ xkd ,

rand i Nð Þ, xid = xkd = 0,

0, xid = xkd ≠ 0,

8>><
>>: ,

ð20Þ

where d = 1, 2,⋯,D and Δi = ½δi1, δi2,⋯, δiD�. Through this
operation, the codes of the i -th food source and the k -th
food source are compared bit by bit. If the code of d -th
bit is nonzero and the same, it is 0; if the bit is all zero, it will
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sources based on the heuristic rules

Scouting bee stage

Whether
termination
conditions

are met 

Employed bees use food source
update strategy based on discrete

different mutation (DDM) operation
for global searching

Employed bee stage

Initialize population based
on sensor-subtask coding

strategy and heuristic rules

Initialization stage

END

BEGIN

N

Y

Output the global
optimal solution

Figure 2: The solution process of missile early warning resource scheduling based on HDABC.
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Figure 3: Discrete integer coding strategy based on sensor-subtask sequence.
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take a random integer in ½1,N�; if the bit is different, it will
take the bit encoding of the i -th food source.

Step 2. Calculate the part of ϕ2 ⊗ Δi.
The operation is defined as

Ρi = φ2 ⊗ Δi ⇔ ρid =
round δd ·

D
N

� �
, φ2 > rand,

0, otherwise,

8><
>:

ð21Þ

where Ρi = ½ρi1, ρi2,⋯, ρiD� is the mutation operator and
roundð·Þ is the rounding function. After this operation, the
code of a certain bit is probabilistically converted into an
integer in ½1,D�.

Step 3. Calculate the part of φ1X
ðtÞ
i ⊕ Ρi.

The operation is defined as

φ1X
tð Þ
i ⊕ Ρ = Vi ⇔ vid =

swap xi,ρd , xid
� �

, φ1 ≤ rand,

insert xi,ρd , xd
� �

, φ1 > rand,

9>=
>;ρd ≠ 0,

xid , ρd = 0,

8>>>><
>>>>:

ð22Þ

where swapð·Þ is the function to swap two numbers and
insertð·Þ is the function that inserts the first number before
the second number. The process of mutation can be illus-
trated as follows: if ρd = 0, remain xid unchanged; if ρd ≠ 0
and φ1 ≤ rand, then swap the ρd-th and d -th bits of XðtÞ

i ; if

ρd ≠ 0 and φ1 > rand, insert the ρd-th bit of XðtÞ
i into the d

-th bit, and move the rest of the bits backward in turn, as
shown in Figure 4.

An illustration is given for the operation of Step 3. After
the comparison between φ1 and rand, ρ2 = 8 corresponds to
swap xi2 and xi8; ρ4 = 3 corresponds to insert xi3 into the 4-

th bit of XðtÞ
i , and the other bits are moved backward in turn;

ρ7 = 5 corresponds to swap xi7 and xi5; ρ9 = 6 corresponds to
insert xi6 into the 9-th bit of XðtÞ

i , and the other bits are
moved backward in turn; ρ11 = 5 corresponds to insert xi11
into the 5-th bit of XðtÞ

i , and the other bits are moved back-
ward in turn; ρd = 0 corresponds to the d-th bit does not
change.

4.4. Improvements to the Onlooker Bee Stage. In the tradi-
tional ABC algorithm, the onlooker bee usually uses the rou-
lette method to select the food source [14–16]. However, the
roulette method has some shortcomings. For example, in the
early stage of the iteration, due to the large differences in fit-
ness value, food sources with low fitness will be quickly elim-
inated, which will destroy the individual diversity; in the
later stage of iteration, due to the small difference in fitness
value, the selection probability of each food source tends to

1 4 5 0 2 7 0 3 6 8 0 0

3 5 6 0 1 7 0 2 4 8 0 0

3 5 6 2 1 0 3 2 4 0 3 7

0 8 0 3 0 0 5 0 6 0 5 0

01 4 5 22 7 0 0 03 6 8

1 3 0 5 8 0 0 0 2 4 0 6

Compare 𝜑2 and rand

Swap Insert Swap Insert Insert

Compare 𝜑1 and rand

Xi
(t)

Xk
(t)

Δi = Xi
(t) − Xk

(t)

Pi = 𝜑2 ⊗ Δi

Pi = 𝜑2 ⊕ Δi

Xi
(t)

Figure 4: Food source update operation based on DDM.
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1/NP, and the ability to select dominant food sources will be
reduced.

Aiming at the above problems, we propose a sorting-
based adaptive probability (SAP) selection method. The
selection probability calculated by this method has no direct
relationship with the fitness value but is only related to the
order of the dominant food source and the number of itera-
tions [49]. It is an effective method to control the selection
ability in the iterative process. Its calculation formula is as
follows:

Pc tð Þ = a + 1 − að Þ · e
b t r−1ð Þ/T NP−1ð Þð Þ − 1

eb t/Tð Þ − 1
, ð23Þ

where r is the sequence index after sorting all the food
sources according to the fitness value; the greater the fitness
of the food source, the higher the ranking; a is the lowest

Table 1: Typical trajectory information in the threat airspace.

No. Launch point Strike point Altitude Time of flight Others

1_1 (42.3°, -156.7°) (40.2°, -85.7°) 1240.6 km 1490.7 s 1_2 and 1_3 are decoy targets

1_4 (42.2°, -156.8°) (36.4°, -86.3°) 1152.3 km 1459.3 s 1_5 and 1_6 are decoy targets

1_7 (42.2°, -156.7°) (36.2°, -86.2°) 1209.6 km 1491.9 s 1_8 and 1_9 are decoy targets

1_10 (42.3°, -156.8°) (40.1°, -85.6°) 1215.3 km 1476.4 s 1_11 and 1_12 are decoy targets

1_13 (42.3°, -156.7°) (40.1°, -85.7°) 1252.4 km 1495.7 s 1_14 and 1_15 are decoy targets

Table 2: Missile target threat information (t0 + 792 s).

No.
Friend
or foe

Target category
information

Flight data

Warhead target
confidence

Target
type

Predicted
range

Speed of
shutdown
point

Ballistic
inclination

Remaining
flight time

Distance between striking
point and defense point

Fini

1_1 1 (foe) 0.90
1

(ballistic)
5783.67 km 6.085 km/s 36.88° 698.7 s 12.87 km 0.848

1_2 1 (foe) 0.55
1

(ballistic)
5772.82 km 6.086 km/s 36.50° 693.8 s 24.26 km 0.762

1_3 1 (foe) 0.40
1

(ballistic)
5781.60 km 6.085 km/s 36.81° 697.6 s 17.44 km 0.804

1_4 1 (foe) 0.90
1

(ballistic)
5967.08 km 6.108 km/s 37.23° 677.3 s 5.85 km 0.910

1_5 1 (foe) 0.55
1

(ballistic)
5969.32 km 6.107 km/s 37.29° 676.9 s 10.23 km 0.878

1_6 1 (foe) 0.40
1

(ballistic)
5958.63 km 6.108 km/s 37.12° 672.4 s 14.93 km 0.842

Description: Fini is calculated according to formula (13), where threat value wi,f i is calculated by normalizing the ratio of the five factors in Table 2 to their
global maximum or optimal value, and ui,t = 0:2.

Table 3: Basic parameters of radars.

Name Position Detection range Azimuth angle Elevation angle Capacity

PBR1 26.2°N, 97.4°W 4000 km -105~15° 0~85° 10

PBR2 54.8°N, 106.9°W 4000 km 140~260° 0~85° 10

XBR1 32.5°N, 87.3°W 1500 km -98~8° 10~85° 5

XBR2 45.8°N, 88.6°W 1500 km 170~276° 10~85° 5

Figure 6: Medium-scale missile early warning simulation scenario.
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selection probability; and b is the adaptive control coeffi-
cient. The variables a and b are set as a = 0:05 and b = 10
[49]. When NP = 50, the change curve of the adaptive food
selection probability is shown in Figure 5.

It can be seen that the selection probability of food
sources calculated by this method is balanced at the begin-
ning of the iteration, which can increase the selection prob-
ability of poor food sources, maintain the diversity of the
population, and increase the global search ability of the algo-
rithm, and in the later stage of the iteration, which can
increase the selection probability of excellent food sources
and enable the algorithm to converge quickly.

5. Simulation Results and Comparisons

In the same experimental environment, we designed a simu-
lation analysis experiment and an algorithm comparison
experiment to verify the feasibility of the model and the per-
formance of the algorithm. We used MATLAB 2021 and
STK 11.0 to build the simulation scenario and generate tar-
get motion data. All experiments were run on a Windows
11 personal computer with a Core i7-11800H, a 2.3GHz
CPU, and 16GB RAM.

5.1. Evaluation Indicators. The performance of the algorithm
is evaluated by the following indicators.

5.1.1. Value Rate of Scheduling EVR. EVR is defined as the
ratio of the cooperative detection benefit of the subtask
assignment in the scheduling scheme to the sum of the coop-
erative detection benefit of all subtasks in the scheduling
period, which is used to reflect whether the result is optimal
[50].

EVR =
∑Ne

i=1BTi

∑Nall
i=1 BTi

, ð24Þ

where BTi is the cooperative benefit composed of the detec-
tion benefit factor and the threat factor of a single subtask

Table 4: Parameter settings of all algorithms.

Parameters Variables Values

The search dimension D 120

The food source scale NP 50

The maximum number of iterations Tmax 500

The maximum number of the food source without updates lim 50
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Figure 7: Comparison of solution results of different ABC algorithms.

Table 5: Comparison table of evaluation results of ABC
algorithms.

Algorithm
Best
fitness
value

Average
fitness
value

EVR EWT

Average
running
time

HDABC 24.7183 24.2329 95.69% 92.33% 14.67 s

ABC-1 24.7183 23.8753 93.03% 89.33% 14.24 s

ABC-2 24.7038 23.1592 91.97% 87.33% 10.86 s

ABC-3 24.6359 23.0537 90.97% 86.67% 14.31 s

ABC 24.2358 22.5984 84.35% 83.67% 9.83 s
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and Ne and Nall are the number of assigned subtasks and the
number of all subtasks, respectively.

5.1.2. Warhead Target Assignment Rate EWT . EWT is defined
as the ratio of the number of the assigned warhead to the
total number of targets, which is used to reflect whether
the algorithm results are valid, as follows:

EWT =
nw
Nwf

, ð25Þ

where nw is the number of warhead targets assigned in the
scheduling scheme and Nwf is the total number of targets.

5.2. Performance Analysis of HDABC Algorithm. This exper-
iment analyzed the performance of the HDABC algorithm
when dealing with the SSA problem. Build a medium-scale
missile early warning simulation scenario as follows: assume
that the attacker launched 5 missiles from 3 launch plat-
forms (the launch time is t0) to strike at D1 and D2 points
of the defender. Each missile carried 2 companion decoys;
that is, there were at most 45 targets at the same time. The
missile parameters are shown in Tables 1 and 2. The
defender deployed 2 PBR and 2 XBR for missile early warn-
ing operations. Among them, PBR can track up to 10 targets
at the same time, and XBR can track up to 5 targets. The
basic parameters are shown in Table 3. The simulation sce-
nario is shown in Figure 6.

After t0 + 792 s, all targets entered the detection range of
all sensors; the subtask sequence was generated according to
the strategy described in Section 2, and the scheduling inter-
val ½t0 + 792, t0 + 940� was taken for simulation analysis.

The traditional discrete ABC algorithm (ABC), the
HDABC algorithm in this paper, the HDABC algorithm
without heuristic initialization rules (ABC-1), the HDABC
algorithm without DDM (ABC-2), and the HDABC algo-
rithm without SAP (ABC-3) were compared in this section,
and the purpose of the comparison was to verify the effec-
tiveness of the improved algorithm. The parameter settings
of all algorithms are shown in Table 4. The results of differ-
ent algorithms are compared in Figure 7.

It can be seen that the result of the HDABC algorithm
was the best, and the convergence performance of the other
four algorithms was not as good as this algorithm. Among
them, the difference between HDABC and ABC-1 was small,
because the heuristic initialization rule made the HDABC
algorithm has a better food source in the early iteration,
and the convergence speed was improved; the big difference
between HDABC and ABC-2 was that the addition of the
DDM food source update strategy increased the algorithm
optimization ability.

Monte Carlo simulation was performed 20 times for the
above simulation scenario, and the average value was taken.
The simulation comparison results of the five algorithms are
shown in Table 5. The calculation results showed that all
these ABC algorithms could obtain effective scheduling
schemes, and the HDABC algorithm had obvious

Figure 8: Small-scale and large-scale missile early warning simulation scenarios.

Table 6: Parameter settings of all algorithms for the medium-scale scenario.

Algorithms Parameter setting

HDABC Parameter settings are the same as in Table 4.

IGA
The population NC is 50, the largest genetic iterations GEN is 500, the length of chromosome m is 120, the crossover

probability Pc1 is 0.9, Pc2 is 0.6, the mutation probability Pm1 is 0.1, and Pm2 is 0.01.

SAPPSO
The number of particles is 50, the total number of iterations is 500, the particle dimension is 180, and the weight factor of

particle update is 0.5.

PSO-VNS
The population size P is 120, the maximum number of iterations G is 200, the inertia weight w is 0.9, the learning factor c1 is 2,
c2 is 2, the period of evolutionary stagnation gen is 10, the number of elite solutions N is 25, and the maximum number of

iterations in VNS MaxIter is 5.
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Figure 9: Comparison of solution results of different algorithms.
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Table 7: Comparison table of evaluation results of different algorithms.

Scale Algorithm Best fitness value Average fitness value EVR EWT Average running time

Small scale

HDABC 13.8313 13.8313 100.00% 100.00% 6.05 s

IGA 13.8313 13.2940 97.63% 98.67% 11.35 s

PSO-VNS 13.8313 17.8102 98.88% 99.33% 5.37 s

SAPPSO 13.8313 13.8313 100.00% 100.00% 4.34 s

Medium scale

HDABC 24.7185 24.5092 96.22% 92.67% 14.32 s

IGA 24.6475 23.8964 93.13% 89.67% 37.92 s

PSO-VNS 24.8657 24.3332 94.86% 90.33% 13.23 s

SAPPSO 24.3818 24.0474 93.09% 89.33% 9.28 s

Large scale

HDABC 51.2601 51.0129 93.51% 91.37% 31.26 s

IGA 49.7513 48.6283 76.79% 74.93% 63.35 s

PSO-VNS 51.2091 49.7843 82.77% 79.67% 29.35 s

SAPPSO 50.1064 49.5799 82.10% 77.82% 18.87 s
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improvements in various indicators. However, as the com-
plexity of the algorithm increased, the running time of the
HDABC algorithm increased, but it was within the accept-
able range.

5.3. Comparative Analysis of Different Algorithms. This
experiment compared the performance of different algo-
rithms and the HDABC algorithm when dealing with SSA
problem of different scales. We used the HDABC algorithm,
the IGA algorithm [20], the SAPPSO algorithm [21], and the
PSO-VNS algorithm [22] for comparison. The purpose of
the comparison was to verify the ability of the proposed
HDABC algorithm in solving SSA problem.

The scenarios were set to small-scale (1 PBR, 1 XBR, 5
targets, and 10 decoys), medium-scale (2 PBR, 2 XBR, 15
targets, and 30 decoys), and large-scale operation (4 PBR, 4
XBR, 30 targets, 60 decoys) scenarios. The small-scale and
large-scale simulation scenarios are shown in Figure 8, and
the medium-scale scenario is the same as Figure 6. The
parameter settings of all algorithms for the medium-scale
scenario are shown in Table 6.

The results of different algorithms are compared in
Figure 9. It can be seen from the results that HDABC had
a better convergence ability compared with other algorithms
in dealing with problems of different scales. For medium-
scale and large-scale SSA problems, the HDABC algorithm
had the fast convergence speed and can get the best solution.

After performing 20 Monte Carlo simulations on the
above small-, medium-, and large-scale SSA problems and
taking the average value, the box plots for comparative anal-
ysis are shown in Figure 10, and the analysis results are
shown in Table 7. For the small-scale SSA problem, the four
algorithms can obtain the optimal solution, but the IGA
algorithm was relatively poor, and the convergence result
was unstable. For medium- and large-scale SSA problems,
the HDABC algorithm can find the optimal solution com-
pared with other algorithms and had better convergence,
and the algorithm results were more reliable. From the
experimental data of large-scale scenarios, it can be con-
cluded that the value rate of schedule obtained by the
HDABC algorithm was 16.72%, 10.74%, and 11.41% higher
than IGA, PSO-VNS, and SAPPSO algorithms, and the war-
head target assignment rate was 16.44%, 11.70%, and 13.55%
higher, respectively. In conclusion, the advantages of the
HDABC algorithm were more reflected in the solution of
medium-scale and large-scale SSA problems. However, the
efficiency of the HDABC algorithm needs to be further
improved.

6. Conclusions

In this paper, some exploratory research is carried out on the
problem of missile early warning multisensor resource
scheduling. The multisensor and multitarget resource sched-
uling problem is transformed into a sensor-subtask assign-
ment problem through periodic scheduling-task
decomposition, and the SSA model of this problem is estab-
lished to solve the cooperative scheduling problem under the
operational background of the missile early warning system.

Through the adaptive improvement of the ABC algorithm, it
has better performance in dealing with such problems. Com-
pared with other algorithms, the HDABC algorithm has the
advantages of fast convergence speed, high solution accu-
racy, and good search performance; in addition, the HDABC
algorithm has great advantages in solving the problems of
large-scale missile early warning operation.

However, this paper has the following shortcomings: the
analysis is mainly carried out on the cooperative scheduling
problem of ground-based early warning radars, such as PBR
and XBR; the established model and simulation scenarios are
simple; the efficiency of the HDABC algorithm needs to be
further improved. In the follow-up work, we will further
study the cooperative resource scheduling method of multi-
source sensors such as early warning satellites and early
warning radars in complex scenarios.
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