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This study presents three different sinc estimators and a method to estimate complex-valued exponential tone signal frequency
using three DFT samples. The proposed method suggests using sinc interpolation together with the well-known Jacobsen
estimator. According to simulation results, the root mean square error (RMSE) of the proposed algorithm is lower than those
of the Jacobsen estimator and its improved version suggested by Candan. The price paid for improvements in the RMSE is a
slight increase in computation time.

1. Introduction

The frequency estimation problem plays an essential role in
communications, audio, medical, instrumentation, and
other applications. Nonparametric and parametric tech-
niques are the main tools used in spectrum estimation
methods. Nonparametric techniques do not assume a partic-
ular functional form but allow the form of the estimator to
be determined entirely by the data. These methods are based
on the discrete Fourier transform of either the signal seg-
ment or its autocorrelation sequence. In contrast, parametric
methods assume that the available signal segment has been
generated by a specific parametric model [1] (p. 195). Many
nonparametric and parametric methods, such as DFT-based
frequency shifting and filtering, phase-locked loop, maxi-
mum likelihood, wavelet, Prony’s, Taylor, interpolation,
and of multi-DFT-bins, artificial neural network design,
have been published [2–5].

In digital signal processing, the discrete Fourier trans-
form (DFT) is a frequently used tool to detect and estimate
the frequencies of a signal. Several estimation methods based
on DFT have been proposed. The well-known method for
frequency estimation is to use N-point Fourier transform
after sampling a signal. After applying an N-point DFT,

the frequency of interest rarely resides exactly on a DFT
bin center. In this case, frequency estimation resolution
depends on the bin spacing of the transform. However, we
always need better frequency estimation resolution. There
are lots of frequency estimation methods to improve that
resolution. These methods have been described in [6–21].

Equation (1) is the best-known Jacobsen peak location
estimator and has been used in the DSP business for
decades, which uses three DFT samples [22] (p. 733). This
spectral peak location estimator δ which is given by

δ = Re
X kp−1
Â Ã

− X kp+1
Â Ã

2X kp
Â Ã

− X kp−1
Â Ã

− X kp+1
Â ÃÀ Á" #

, ð1Þ

considers the bin with the maximum DFT value, X½kp� and
its adjacent right and left bin DFT values, X½kp − 1� and X½
kp + 1�, respectively, to calculate a correction factor δ for
the peak location (see Figure 1).

The frequency is estimated as kp + δ with the units of

DFT bins or f̂ = ðkp + δÞ/N in terms of the normalized fre-
quency. A bias-corrected version of the Jacobsen estimator,

Hindawi
Journal of Sensors
Volume 2022, Article ID 5200230, 14 pages
https://doi.org/10.1155/2022/5200230

https://orcid.org/0000-0002-8099-3190
https://orcid.org/0000-0002-8432-623X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5200230


proposed by Candan [10], is given in

δ = tan π/Nð Þ
π/N Re

X kp−1
Â Ã

− X kp+1
Â Ã

2X kp
Â Ã

− X kp−1
Â Ã

− X kp+1
Â ÃÀ Á" #

: ð2Þ

Clearly, for a large number of data samples (as N ⟶∞
), the two estimators coincide.

These estimators perform well when the actual signal
frequency happens to be in the center of the bin. When the
actual frequency moves toward either end of the bin, RMS
error of the estimators increases. In this paper, we developed
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Figure 1: DTFT and DFT of a complex tone in the absence of noise: (a) delta > 0; (b) delta < 0.
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estimators based on sinc function interpolations and mea-
sured their performances to find an answer to the question,
how could these sinc function-based estimators be used to
increase the performance of the Jacobsen estimator (1) and
its bias-corrected version (2).

2. Preliminaries

A complex signal with an amplitude Vm > 0, a phase θ ∈ ½0
, 2πÞ, and a normalized frequency f can be expressed as

x n½ � =Vm:e
j 2πf n+θð Þ, n = 0,⋯,N − 1, ð3Þ

where N is the total number of samples available. The signal
frequency f in bin values is defined as

f = kpeak/N , ð4Þ

(see Figure 1). The DFT of the sequence x½n� is

X k½ � = 〠
N−1

n=0
x n½ �:e−j 2π/Nð Þkn, ð5Þ

and can be expressed as

X k½ � =Vm:e
jθ:ej π N−1ð Þ/Nð Þ kpeak−kð Þ: sin π kpeak − k

À ÁÀ Á
sin π/N kpeak − k

À ÁÀ Á : ð6Þ

DFT of the x ½n� is given by Equation (6). The spectrum
would be continuous if N samples were increased infinitely.
But the DFT works for finite-length signals. Selecting more
samples means taking a longer signal and multiplying the
signal by a rectangular pulse. Since the multiplication of a
signal in the time domain results in the frequency domain
being convolved with a sinc function, this reduces frequency
resolution [23–27]. Therefore, some resolution improve-
ments are needed for better estimation.

The DFT of the signal forms equally spaced N/2 samples
in the frequency spectrum. Each spectral value is at a differ-
ent interval of k:f s/N . These frequency intervals f s/N define
frequency resolution and k:f s/N are denoted frequency bins.
Frequency bins are integer values from 0 up to N − 1. Bin kp
has the largest DFT magnitude value (Figure 1). Bins next to
the kp bin, kp + 1, and the previous bin, kp − 1, are consid-
ered in estimating the tone frequency. The actual frequency
could be anywhere in the bin kp, depending on the bin kp + 1
and kp − 1 magnitude values. And this exact frequency can
be found by adding or subtracting the δ correction value to
the bin kp, since δ changes in the range of ±1/2.

The DFT magnitudes of X½kp − 1�, X½kp�, and X½kp + 1�
for Vm = 1 V, θ = 0, N = 32, and frequency f sitting any-
where in the tenth bin are shown in Figure 2. The signal fre-
quencies in bin 10 ± 1/2 are all represented in bin 10. If the
actual frequency f happens to be in the middle of bin 10,
the magnitude of X½kp� becomes maximum, and the previ-
ous and next bin’s magnitude values become zero. On the
other hand, when the actual frequency goes toward either

end of the bin, the magnitude of X½kp� decreases while mag-
nitudes of X½kp + 1� and X½kp − 1� increase. A closer look will
notice how symmetry exists between X½kp − 1� and X½kp + 1�.
Since the magnitude margins increase toward the bin ends,
any estimator which calculates the correction factor value
just by using the magnitude values of X½kp − 1� and X½kp +
1� would work well, while there is no doubt that it will not
work well where the tone frequencies are close to the bin
center.

3. Sinc-Based Estimators

Interpolation is a method of finding new data points based
on a set of known data. These data points represent the
values of a function for a limited value of the independent
variable. It is often required to estimate the value of the func-
tion for an intermediate value of the independent variable.
The DTFT of a single tone has the characteristics of a sinc
function. After performing the DFT of the signal, all the
DFT values of transformation will be on the continuous
spectrum of Fourier transformation in the noise-free cases.
We can find the correction factor δ by solving the sinc func-
tion equations defined by the maximum and the second
maximum DFT magnitudes, which is the main idea behind
sinc function-based estimators [28–30].

3.1. The First Sinc Estimator. The location of the signal fre-
quency we are trying to estimate is between the largest
amplitude and the second biggest one adjacent to it. The
position of the second largest magnitude could be before
or next to the largest amplitude. Both cases should be inves-
tigated to find a solution. Let us start to analyze the situation
depicted in Figure 1(a), where the second biggest amplitude
comes after the maximum. In this case, DFT values at
instances kp and kp + 1 can be found from Equation (6) after
substitutions k = kpeak − δ, and k = kpeak + ð1 − δÞ, respec-
tively. The following equations are obtained:

X kp
Â Ã

= Vm:e
jθ:ejπ/N N−1ð Þ:δ:

sin πδð Þ
sin πδ/Nð Þ , ð7Þ

X kp + 1
Â Ã

=Vm:e
jθ:ejπ/N N−1ð Þ: δ−1ð Þ:

sin π δ − 1ð Þð Þ
sin π/N δ − 1ð Þð Þ :

ð8Þ
The magnitude values of (7) and (8) are as follows:

X kp
Â Ã�� �� =Vm:

sin πδð Þ
sin πδ/Nð Þ , ð9Þ

X kp + 1
Â Ã�� �� =Vm:

sin π δ − 1ð Þð Þ
sin π/N δ − 1ð Þð Þ : ð10Þ

Equations (9) and (10) can be written as

X kp
Â Ã�� ��:sin πδ

N

� �
−Vm:sin πδð Þ = 0, ð11Þ
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X kp + 1
Â Ã�� ��:sin π

N δ − 1ð Þ
� �

−Vm:sin π δ − 1ð Þð Þ = 0:

ð12Þ
If we solve Equations (11) and (12) for δ, we get the fol-

lowing equation:

tan π:δ

N

� �
=

X kp + 1
Â Ã�� ��:sin π/Nð Þ

X kp
Â Ã�� �� + X kp + 1

Â Ã�� ��:cos π/Nð ÞÀ Á : ð13Þ

Let us take the Taylor series expansion of the function
tan ðπ:δ/NÞ around δ = 0 to find a closed-form equation
for δ.

tan π:δ

N

� �
= π:δ

N
+ π3:δ3

3:N3 + 2:π5:δ5

15:N5 +⋯: ð14Þ

Assuming small δ and/or large N , we obtain the follow-
ing estimator

bδ1 ≅
N
π
:

X kp + 1
Â Ã�� ��:sin π/Nð Þ

X kp
Â Ã�� �� + X kp + 1

Â Ã�� ��:cos π/Nð ÞÀ Á , ð15Þ

bδ1 ≅
X kp + 1
Â Ã�� ��

X kp
Â Ã�� �� + X kp + 1

Â Ã�� �� asN ⟶∞, ð16Þ

after taking the first term of the expansion.
On the other end, let us find out how the estimator

behaves in the situation depicted in Figure 1(b), where the
second biggest magnitude comes before the largest one. In

this case, DFT values at kp and kp − 1 can be found from
Equation (6) after substitutions k = kpeak − δ, and k = kpeak
− ðδ + 1Þ, respectively. δ is defined as a negative variable in
this region. The following equations are obtained:

X kp
Â Ã

= Vm:e
jθ:ejπ/N N−1ð Þ:δ:

sin πδð Þ
sin πδ/Nð Þ , ð17Þ

X kp − 1
Â Ã

=Vm:e
jθ:ejπ/N N−1ð Þ: δ+1ð Þ:

sin π δ + 1ð Þð Þ
sin π/N δ + 1ð Þð Þ :

ð18Þ
After taking the magnitudes of Equations (17) and (18)

and solving for δ, we obtain the following equations:

bδ1 ≅
N
π
:

− X kp − 1
Â Ã�� ��:sin π/Nð Þ

X kp
Â Ã�� �� + X kp − 1

Â Ã�� ��:cos π/Nð ÞÀ Á ,
bδ1 ≅

− X kp − 1
Â Ã�� ��

X kp
Â Ã�� �� + X kp − 1

Â Ã�� �� , asN ⟶∞:

ð19Þ

3.2. The Second Sinc Estimator. Now, let us find an estimator
that calculates the correction factor by looking at the DFT
magnitude values adjacent to the maximum DFT value.
We have to define the magnitude values of X½kp + 1� and X
½kp − 1� for δ > 0 to get a solution

X kp + 1
Â Ã�� �� =Vm:

sin π δ − 1ð Þð Þ
sin π/N δ − 1ð Þð Þ , ð20Þ
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Figure 2: DFT magnitudes jX½kp − 1�j, jX½kp�j, and jX½kp + 1�j vs. actual bin frequency in the absence of noise.
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X kp − 1
Â Ã�� �� = −Vm:

sin π δ + 1ð Þð Þ
sin π/N δ + 1ð Þð Þ : ð21Þ

If we solve Equations (20) and (21) for δ, we get the fol-
lowing equation:

bδ2 ≅
N
π
:
X kp + 1
Â Ã�� �� − X kp − 1

Â Ã�� ��
X kp + 1
Â Ã�� �� + X kp − 1

Â Ã�� �� :tan π

N

� �
, ð22Þ

bδ2 ≅
X kp + 1
Â Ã�� �� − X kp − 1

Â Ã�� ��
X kp + 1
Â Ã�� �� + X kp − 1

Â Ã�� �� , asN ⟶∞: ð23Þ

The magnitude values of X½kp + 1� and X½kp − 1� for δ < 0
are defined as follows:

X kp + 1
Â Ã�� �� = −Vm:

sin π δ − 1ð Þð Þ
sin π/N δ − 1ð Þð Þ , ð24Þ

X kp − 1
Â Ã�� �� = Vm:

sin π δ + 1ð Þð Þ
sin π/N δ + 1ð Þð Þ : ð25Þ

The solution of Equations (24) and (25) for δ gives the
same result as in Equation (22).

3.3. The Third Sinc Estimator. The previous two estimators
compute the correction factor δ from the DFT magnitude
values. Now, let us find an estimator that calculates the cor-
rection factor by looking at the maximum and second max-
imum complex DFT values. We have to go through similar
steps as before. We obtain the following equations for the
situation depicted in Figure 1(a). where δ is defined as pos-
itive

X kp
Â Ã

=Vm:e
jθ:ejπ/N N−1ð Þ: δð Þ:

sin π:δð Þ
sin πδ/Nð Þ =Um:

sin π:δð Þ
sin πδ/Nð Þ ,

ð26Þ

X kp + 1
Â Ã

=Vm:e
jθ:ejπ/N N−1ð Þ: δ−1ð Þ:

sin π δ − 1ð Þð Þ
sin π/N δ − 1ð Þð Þ ≅

−Um:
sin π δ − 1ð Þð Þ

sin π/N δ − 1ð Þð Þ , asN ⟶∞:

ð27Þ
Equations (26) and (27) can be rewritten as follows:

X kp
Â Ã

:sin πδ

N

� �
−Um:sin π:δð Þ = 0, ð28Þ

X kp + 1
Â Ã

:sin π

N
δ − 1ð Þ

� �
+Um:sin π: δ − 1ð Þð Þ = 0:

ð29Þ
We obtain the third estimator δ3 after solving Equations

(28) and (29) as follows:

bδ3 ≅ Re N
π
:

X kp + 1
Â Ã

:sin π/Nð Þ
−X kp
Â Ã

+ X kp + 1
Â Ã

:cos π/Nð Þ

 !
, ð30Þ

bδ3 ≅ Re
X kp + 1
Â Ã

−X kp
Â Ã

+ X kp + 1
Â Ã !

, asN ⟶∞: ð31Þ

Now, let us find the estimator for the situation depicted
in Figure 1(b). We should repeat the same steps to find
DFT complex values at kp and kp − 1, which can be found
from substitutions k = kpeak − δ and k = kpeak − ð1 + δÞ,
where δ is negative. The following equations are obtained:

X kp
Â Ã

=Vm:e
jθ:ejπ/N N−1ð Þ: δð Þ:

sin π:δð Þ
sin πδ/Nð Þ =Um:

sin π:δð Þ
sin πδ/Nð Þ ,

ð32Þ

Table 1: Summary of estimators.

Estimators

bδ1 ≅

N
π
:

X kp + 1
Â Ã�� ��:sin π/Nð Þ

X kp
Â Ã�� �� + X kp + 1

Â Ã�� ��:cos π/Nð ÞÀ Á for α2 > 0 ; if α1 is true

N
π
:

− X kp − 1
Â Ã�� ��:sin π/Nð Þ

X kp
Â Ã�� �� + X kp − 1

Â Ã�� ��:cos π/Nð ÞÀ Á for α2 < 0 ; if α1 is false

bδ2 ≅
N
π
:
X kp + 1
Â Ã�� �� − X kp − 1

Â Ã�� ��
X kp + 1
Â Ã�� �� + X kp − 1

Â Ã�� �� :tan π

N

� �
for any α2 ; for any α1

bδ3 ≅

Re N
π
:

X kp + 1
Â Ã

:sin π/Nð Þ
−X kp
Â Ã

+ X kp + 1
Â Ã

:cos π/Nð Þ

 !
for α2 > 0 ; if α1 is true

Re N
π
:

−X kp − 1
Â Ã

:sin π/Nð Þ
−X kp
Â Ã

+ X kp − 1
Â Ã

:cos π/Nð Þ

 !
for α2 < 0 ; if α1 is false

Decision criteria α1 = X kp + 1
Â Ã�� �� > X kp − 1

Â Ã�� �� ; α2 = Re X kp − 1
Â Ã

− X kp + 1
Â Ã

/X kp
Â ÃÂ Ã

When X½kp + 1� is equal to X½kp − 1�, δ equals to a bin frequency.
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X kp − 1
Â Ã

=Vm:e
jθ:ejπ/N N−1ð Þ: δ+1ð Þ:

sin π δ + 1ð Þð Þ
sin π/N δ + 1ð Þð Þ ≅

−Um:
sin π δ + 1ð Þð Þ

sin π/N δ + 1ð Þð Þ , asN ⟶∞:

ð33Þ
After solving Equations (32) and (33) for δ, we obtain

the following equations:

bδ3 ≅ Re N
π
:

−X kp − 1
Â Ã

:sin π/Nð Þ
−X kp
Â Ã

+ X kp − 1
Â Ã

:cos π/Nð Þ

 !
,

bδ3 ≅ Re
−X kp − 1
Â Ã

−X kp
Â Ã

+ X kp − 1
Â Ã !

, asN ⟶∞,
ð34Þ

which are a similar estimator as in (30) except for a sign
difference.

3.4. Decision Criteria. Table 1 summarizes all the sinc-
function-based estimators. The first and third estimators con-
sist of two parts. Before computing the correction factor, there
must be a decision criterion for identifying which part of the
expression should be used. One of the criteria would be a com-
parison of magnitude values of X½kp − 1� and X½kp + 1� as

α1 = X kp + 1
Â Ã�� �� > X kp − 1

Â Ã�� ��: ð35Þ

If the signal frequency is near the bin center, the error of
the estimators would be high due to the declining margin
between X½kp − 1� and X½kp + 1�, as shown in Figure 2. How-

ever, the criterion becomes more stable when the signal fre-
quency goes toward the bin ends.

Figure 3 depicts how the DFT complex values of X½kp − 1�,
X½kp�, and X½kp + 1� varies vs. bin frequency for a complex sig-
nal having an amplitude of Vm = 1 V, θ = 0, and a frequency
changing from 9.5 to 10.5. Figure 3 shows that X½kp� has the
value of 32 when N = 32, while X½kp − 1� and X½kp + 1� are
zero when the signal frequency is in the bin center. X½kp� starts
decreasing as the actual signal frequency goes from bin 10 to
bin 10 + 1/2, which means that the second biggest DFT mag-
nitude value comes after the maximum value. Meanwhile, X½
kp − 1� and X½kp + 1� start increasing. When bin frequency
goes from bin 10 to bin 10.5, the contour line of X½kp� begins
at point A and goes to point B. At the same time, X½kp − 1�
and X½kp + 1� contour lines start at the origin, as the first one
follows the path toward D, and the second one goes toward
point C in the opposite direction. When bin frequency goes
from bin 10 to bin 9.5, the contour line of X½kp� starts at point
A, but goes toward point C. Similarly, X½kp − 1� and X½kp + 1�
contour lines start at the origin, while the first one follows the
path toward B, and the second one goes toward point E. In
Figure 3, the complex DFT values of the maximum bin and
its adjacent bins are depicted in circles for the actual frequency
of bin 10.25. On the other hand, the complex DFT values are
indicated in squares for the actual frequency of bin 9.75. The
phase of the DFT values vs. actual bin frequency is depicted
in Figure 4, which shows that the rate of phase change for all
DFT values is equal to each other. As δ goes toward a positive
end, the phase change of X½kp� and X½kp − 1� is identical but
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Figure 3: The variation in the complex DFT values as bin frequency changes from bin frequency 9.5 to bin frequency 10.5 in the absence of
noise.
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has opposite signs with X½kp + 1�. The same situation can be
seen as the δ goes toward a negative end.

Let us analyze Figure 3 to find another decision criterion

for the estimators bδ1 and bδ3. When the actual signal fre-
quency is in bin 10.25, the complex DFT values of bin ten
and its adjacent bins are shown in Figure 3. They have the
following complex values: X½kp� = 28:81∠0:7608
,X½kp − 1� = 5:77∠0:6626, and X½kp + 1� = 9:61∠−2:2826. If
we add the negative of X½kp + 1� to X½kp − 1� and divide the
sum by X½kp�, we get 0:531∠0:024, which has a positive real

value. The result of this operation is always positive for all
δ > 0 because both the nominator and denominator have
similar signs. If we make a similar calculation for the actual
frequency of bin 9.75, we end up with negative real values for
all negative values of δ because both the nominator and
denominator have opposite signs. For this reason, we pro-
pose the following decision criterion:

α2 = Re
X kp − 1
Â Ã

− X kp + 1
Â Ã

X kp
Â Ã" #

: ð36Þ
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Figure 5 shows a comparison of the decision criteria
between α1 and α2 for N = 8 at SNR = 8dB. This comparison
was made by looking at the values of Expressions (35) and
(36). If α1 and α2 are true and positive, a positive sign is
assigned for this operation; meanwhile, a negative sign is
assigned for false and minus values. Both decision criteria
should give a positive sign for δ > 0 but a negative sign for
δ < 0. Figure 5 shows that false decisions mainly concentrate

around δ = 0, which is a cause of RMSE deterioration. The
decision criterion α2 outperforms α1 in numbers of correct
decisions even in small sample sizes and low SNR levels.

Figure 6 shows a comparison of estimators bδ1 and bδ3
with the two different criteria in terms of RMSE vs. SNR.
Two different criteria were applied to each estimator simul-
taneously. The RMS errors of the estimators which use the
criterion α1 are shown with dashed lines. Solid lines

0
0 2 4 6 8

SNRdB (dB)

10 12 14 16 18 20

0.1

0.3

RM
S 

er
ro

r i
n 

D
FT

 b
in

s

0.5

0.2

0.4

0.6

𝛿3

𝛿3

𝛿1

𝛿1

Figure 6: RMSE of sinc function estimators with the two different decision criteria vs. SNR for N = 8, δ = 0:10.

0
0 2 4 6 8

SNRdB (dB)

10 12 14 16 18 20

0.05

0.15

RM
S 

er
ro

r i
n 

D
FT

 b
in

s

0.25

0.1

0.2

Jacobsen
Candan
𝛿1

𝛿2

𝛿3

Figure 7: Comparison of RMS errors of the estimators for N = 64 and δ = 0:35.

8 Journal of Sensors



represent the RMS errors of the estimators which use the cri-

terion α2. This comparison indicates that estimators bδ1 andbδ3 have better performance with decision criterion 2.

4. Simulation Results

This section compares sinc estimators, as stated in Table 1,
with the Jacobsen estimator (1) and its modified version sug-
gested by Candan (2) in terms of complex and real signals.

4.1. Simulation Results for Complex Signals. During numeri-
cal simulations, a complex signal with an amplitude of 1V, a
randomly changing phase between 0 and 2π, and a fre-
quency f = kpeak/N have been used. The signal has also been
contaminated with a white Gaussian noise

x n½ � =Vm:e
j 2π kpeak/Nð Þn+θð Þ +w n½ �, n = 0,⋯,N − 1: ð37Þ

Here w½n� is a circularly symmetric complex white
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Figure 8: Comparison of RMS errors of the estimators for N = 32 and δ = 0:35.

0
0 2 4 6 8

SNRdB (dB)

10 12 14 16 18 20

0.05

0.15RM
S 

er
ro

r i
n 

D
FT

 b
in

s

0.25

0.1

0.2

0.3

0.45

0.5

0.4

0.35

Jacobsen
Candan
𝛿1

𝛿2

𝛿3
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Gaussian noise with mean zero and variance σ2w. The signal-
to-noise ratio is defined as SNR =V2

m/σ2
w.

Figures 7 and 8 examine how sample size N and SNR
levels affect estimators’ behavior for the signal frequency at
bin ten with an offset of δ = 0:35. Both figures show that
the RMSE decreases as the sample size increases. The first
and third sinc estimators outperform the other estimators
at all levels of SNR values.

Figure 9 compares the sinc estimators with the estima-
tors of Jacobsen and Candan. The number of samples was
reduced to 8, but the signal frequency was kept the same
as in Figures 7 and 8. Figure 9 shows that the sinc estimators
perform well even at a small sample size of N = 8. Also,
RMSE improvements are so distinct at low SNR values.

Table 2 shows how much execution time is needed for
each estimator at bin frequency 10 for a sample size of N =
32. Execution times have been measured in a loop and then

averaged to find the time for a single run. The price to be paid
for improvements in RMSE is roughly a microsecond.

Figure 10 expresses the RMS errors as a function of the
correction factor δ when the sample size N = 8 and SNR =
8dB. It shows that as the frequency, we are trying to estimate
is at a location toward the bin edges; the RMS errors of the
sinc estimators get smaller when δ is greater than +0.20 or
less than -0.20. We examined RMSE variation with δ for
sample sizes ranging from N = 8 to N = 64 at different SNR
values to get a whole picture of the behavior of the estima-
tors. It has been observed that when the sample size is large,
the RMS errors of the sinc estimators become lower than
those of the Jacobsen and Candan estimators when δ is
greater than +0.15 and less than -0.15. When the sample size
is reduced to as small as N = 8, as in Figure 10, the RMS
errors of the sinc estimators go below those of the others
when δ is greater than +0.20 or less than -0.20.

Table 2: The proposed frequency estimation method for small sample values.

Step 1
(i) Search the peak sample from the N-point DFT and its left and right neighbors
X kp
Â Ã

,X kp − 1
Â Ã

, and X kp + 1
Â Ã

Step 2
(i) If δ calculated from (1) is δ ≥ 0:2, recalculate the correction factor from the following equation:bδ3 ≅ Re N

π :
X kp + 1½ �:sin π/Nð Þ

−X kp½ � + X kp + 1½ �:cos π/Nð Þ

� �

Step 3
(i) If δ calculated from (1) is δ ≤ −0:2, recalculate the correction factor from the following equation:bδ3 ≅ Re N

π :
−X kp − 1½ �:sin π/Nð Þ

−X kp½ � + X kp − 1½ �:cos π/Nð Þ

� �
Step 4

(i) Calculate kpeak and f as follows:
kpeak = kp + δ and f = kpeak/N , for normalized frequency
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Figure 10: RMS errors of the estimators with respect to δ for N = 8 and SNR = 8 dB.
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Figure 11 shows how the bias of the estimators changes
with respect to SNR for N = 8 and δ = 0:3. The sinc estima-

tors bδ1 and bδ3 have lower biases than those of the Jacobsen
estimator, while their biases are almost the same as those of
the Candan estimator.

Figure 12 shows how the RMS errors of the estimators’
changes vs. number of periods for N = 32, while the SNR level

was kept at 10dB. The sinc estimators bδ1 and bδ3 have lower

RMS errors than the Jacobsen and its bias-corrected version
estimator for all spectrum ranges. The number of periods does
not significantly affect the RMS errors of the estimators.

4.2. Simulation Results for Real Signals. In this section,
numerical simulations have been carried out in order to deter-
mine how the proposed estimators behave in real signals. A real
signal with an amplitude of 1V, a randomly changing phase
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Figure 11: Biases of the estimators vs. SNR for N = 8 and δ = 0:3.
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between 0 and 2π, and a frequency of f = kpeak/N have been
used.

The signal x½n�

x n½ � = Vm:cos 2π kpeak/N
À Á

n
À Á

+w n½ �A, n = 0,⋯,N − 1,
ð38Þ

has also been contaminated with a white Gaussian noise, w

½n� which has zero mean and variance σ2w. The signal-to-
noise ratio is defined as SNR =V2

m/σ2w.
Figures 13 and 14 examine how the estimators behave in

real signals for different sample sizes N and SNR levels for the
signal frequency at bin ten with an offset of δ = 0:35. Both fig-

ures show that bδ1 and bδ3 estimators give estimation errors of
0.0196 and 0.011 bin widths for SNR = 20 dB, N= 32, and N
= 64, respectively. These RMS errors indicate that bδ1 and bδ3
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Figure 13: Comparison RMS errors of the estimators vs. SNR for N = 16 and δ = 0:35, in case of real signal.
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estimators developed for complex signals perform as well as for
real signals.

5. Conclusions

The estimator proposed by Jacobsen has drawn wide atten-
tion because of its fast and accurate computation. There
have been contributions regarding its further improvements.
This study is another attempt to increase its accuracy.

All the simulations performed showed that the improve-

ments suggested by the sinc estimators, bδ1 and bδ3, are
remarkable even for small sample sizes and in a wide range

of SNR values. When the sinc estimators bδ1 and bδ3 are com-
pared with Jacobsen and Candan estimators for SNR = 20
dB, N = 8, and an offset of δ = 0:45, estimation errors are
roughly 0.0150, 0.0327, and 0.0285 bin widths for the sinc,
Jacobsen, and Candan estimators, respectively. So, we pro-
pose a frequency estimation method for the Jacobsen estima-
tor (1), as stated in Table 3. The price paid for the reduced
RMS errors is a slight increase in the computational
workload.
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