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Analyzing human muscle states has attracted extensive attention. EMG (electromyography) pattern recognition methods based on
these works have been proposed for many years. However, uncomfortable wearing and high prices make it inconvenient for
motion tracking and muscle analysis by using robotic arms and inertial sensors in daily life. In this study, we propose to use
smart clothes integrated with flexible sensors to collect arm motion data, estimate the kinematic information of continuous
arm motion, and predict the EMG signal of each arm muscle. Firstly, the neural network regression model integrated with the
LSTM (long short-term memory) module is used to continuously estimate the sensor resistances collected by the smart clothes
and the angles collected by Kinect. Then, six types of shoulder and elbow movements’ angles and the corresponding EMG
signals of 5 subjects are preprocessed and aligned. The stacked regression model based on extremely randomized trees (extra
trees) is used for regression. Our experimental results show that the average estimation absolute error from the sensor
resistances to the joint angle is 3.45 degrees, and the absolute percentage error from the joint angle to the EMG signal is only
1.82%.

1. Introduction

Human motion posture tracking and muscle analysis cap-
ture the continuous motion of bone joints by various types
of sensors or multiple types of cameras to continuously esti-
mate the value of muscle activity at the moving parts [1]. It is
of great significance in medical rehabilitation, military and
national defense, animated cartoon, and other fields. Take
the postoperative rehabilitation of patients with cerebral
stroke as an example, there are about 2 million new stroke
patients in China every year, and up to 80 percent of stroke
patients have the sequelae of dyskinesia [2]. The existing
rehabilitation treatment is mainly concentrated in the hospi-
tal environment [3], under the guidance of professional
rehabilitation therapists. In contrast, the rehabilitation train-
ing of patients in the home environment lacks effective and
accurate monitoring methods. Unscientific rehabilitation
training may lead to an abnormal movement, leading to
poor recovery and even secondary physical impairment.

So, it is of great value to accurately track the movement pos-
ture of these people and analyze the muscle exercise situa-
tion for the development of personalized rehabilitation
programs.

A lot of early work is based on mechanical arm [4–6]
mechanical inertial sensor (MEMS) [7–9] to capture human
motion posture. The human motion posture tracking based
on an inertial sensor unit (IMU) is the current mainstream,
wearable method [10, 11]. IMU has the advantages of low
cost, small size, no interference, etc. It is suitable for human
motion posture tracking outdoors. Nevertheless, there are
three main problems: foreign-body sensation when wearing,
requiring calibration, and data drift. One reason for the
widespread use of inertial sensor units (IMUs) is that wear-
ing foreign body sensations is severely constrained, and
researchers are looking for ways to collect physiological data
in ways that make subjects more comfortable [12, 13]. In
recent years, the use of intelligent wearable sensors with
integrated flexible sensors to monitor human health state
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has aroused widespread interest [14, 15]. They provide good
user experience and comfortable wearing [16] with cheap
price [17].

Our work proposes a method of human posture tracking
based on a flexible sensor. The captured posture is calculated
to obtain the joint angle of the upper limb, which is used to
estimate the electromyographic signals of the upper limb
movement continuously.

Our work is aimed at solving the problem of muscle
analysis on a smart clothing platform. Muscle analysis using
a smart jacket is defined as two key subproblems:

(1) Using flexible sensors to track human body posture
so as to calculate upper limb joint angles

(2) Using the joint angle of the upper limb movement to
estimate the myoelectric signal continuously

There are two main contributions to this study:

(1) We provide a complete human posture tracking and
joint angle calculation solution. We use flexible sen-
sors to minimize interference with the users’ daily
activities and ensure the best comfort possible in
their experience. And the novelty of the method is
that it is not affected by the light, and the user does
not need to consider the illumination effect of the
environment

(2) We introduce a stacked regression model based on
the extreme random tree for continuous estimating
joint angles and EMG signals. Compared with other
traditional machine learning methods and regression
networks with short and long memory modules, this
regression model has a better regression effect

2. Related Work

2.1. Motion Tracking Based on Flexible Sensor. The main
scope of monitoring human movement is divided into two
kinds. One is a large range of individual position movement;
the other is the individual joint movement, temperature, and
other physiological indicators. Because of its physical char-
acteristics, flexible sensors are mainly used to detect human
body states. And flexible sensors used for human body state
monitoring mainly convert the signals to be monitored into
the stretching and bending of the sensor through mechanical
deformation [18] or use the physicochemical mechanism
driven by temperature, humidity, and chemical reaction to
measure the changes in resistance or capacitance to achieve
monitoring purposes [19, 20]. Its functions mainly include
motion posture tracking and physical skin deformation.
Representative works are listed as follows. The Massachu-
setts Institute of Technology (MIT) group uses high-
density array-type pressure sensor gloves for object recogni-
tion [21]; Northwestern University research uses a wireless
passive flexible vibrator to realize tactile feedback in virtual
reality scene [22]; the Swiss Federal Institute of Technology
in Zurich uses the flexible gloves on finger movement track-
ing [23]; the United States Dartmouth College team uses the

flexible sheath on elbow motion tracking [24]; the National
University of Singapore research uses the sensor fusion of
leap motion controller and flexible sensor to track human
finger using Kalman filter [25]; Tsinghua University
researchers use the array-type pressure membrane to iden-
tify the interaction between the human body and the object,
etc. [26]; Northwestern Polytechnical University research
uses a small set of wearable sensors to estimate whole-body
pose in human bicycle riding [27]; Chinese Academy of Sci-
ences research uses micro flow on the skin surface tactile
sensing [28]; Institute of electronics, Chinese Academy of
Sciences research uses flexible pressure sensor to 3-
dimension force recognition [29]; Shenzhen University
research group realized noncontact human-computer inter-
action by using short-range capacitance sensor [30]; etc.

The human body motion posture tracking method based
on flexible (nonfabric) sensors achieves the target of finger
motion posture tracking [31] and arm deformation recon-
struction [32]. In the above work, the researchers collected
training data and established a deep neural network and
then realized the prediction of joint posture and skin defor-
mation. The human motion posture tracking method based
on the fabric sensor realizes the tracking of the whole body
[33], elbow [34], and back and shoulder [33]. The
researchers used a neural network of short- and long-
duration memory to interpret stretch sensor signals as body
posture but only did error analysis for specific movements
such as squatting and bending. Another work used stretch
sensors to track the posture of upper body movements (back
and shoulders). The researchers also used stretch sensors to
track elbow motion and analyzed motion tracking errors for
different arm circumferences and sensor position offset (up
to 1 cm). The pliable and flexible characteristics of the flexi-
ble sensor provide a convenient way of wearing and a com-
fortable user experience and provide more possibilities for
human motion posture tracking [17].

2.2. Muscle Analysis. According to the International Classifi-
cation of Functioning, Disability, and Health [35], muscle
power is the maximum power that can be released by a test
muscle under certain limits [36, 37]. And muscle power con-
trols the movement of our limbs. These forces must be esti-
mated by indirect means since the direct measurement is
usually neither possible nor practical. Therefore, many stud-
ies measure muscle strength through inverse kinematics [38,
39], including the fingers [40], upper limbs [41], and lower
limbs [42–44]. In experimental studies of human movement,
muscle strength tests are useful in assessing the recovery of
stroke patients [45]. And EMG signals are measured to
determine the electrical current generated by muscle con-
tractions in neuromuscular activity [46]. Therefore, electro-
myography (EMG) is often used as a tool to determine
muscle activity [47–50]. Bogey et al. [44, 51] recently devel-
oped a method to estimate force from EMG signals and
based on normalization of activation during maximum vol-
untary contraction to record maximum muscle force. Heintz
and Gutierrez-Farewik [52] adopted the numerical algo-
rithm established based on the traditional optimization tech-
nology, that is, the constraint minimization technology
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using the Lagrange multiplier method to solve constraints.
Lloyd and Besier [53] used EMG to predict knee torques
through inverse dynamic calculations under different
dynamic contraction conditions. They used a modified
Hill-type muscle model to better estimate living muscle
strength during exercise tasks. Amarantini et al. [54] used
two-step EMG and optimization methods to estimate mus-
cle forces under dynamic conditions. This method has the
ability to propose a method to account for agonist/antago-
nist cocontraction properly. In addition, the method can
improve the confidence of muscle force estimation. Hashemi
et al. [55] combined angle-based EMG amplitude calibration
and parallel cascade identification (PCI) modeling for EMG-
based force estimation in dynamic contractions, including
concentric and eccentric contractions of the biceps and tri-
ceps, in order to enhance dynamic EMG-force estimation.
Hsu et al. [47] used EMG sensors to study the sequence of
muscle contractions in patients from sitting to standing
(STS) after stroke. Kim et al. [56] estimated the muscle
strength of nine muscle groups of the lower limbs using a
static optimization method with inverse dynamics based on
motion data and compared it with EMG signals. It is proved
that establishing the relationship between EMG signal and
muscle force calculated by inverse kinematics is a practical
method to measure muscle strength in vivo.

3. Method

We built a sparse sensor network on the smart jacket to cap-
ture the sensor resistance value of human right upper limb
movement to estimate the EMG signal continuously. The
workflow of our algorithm is shown in Figure 1.

We split the task into two subtasks:

(1) Prediction from sensor signal to joint angle

(2) Continuous estimation from joint angle to EMG sig-
nal. We use a neural network with long short-term
memory (LSTM) [57–59] module to regress the sen-
sor data and joint angle data to solve the nonlinear
and hysteretic problems of the sensor itself. Joint
angle data and EMG data were fitted by stacking a
regression model based on extreme random tree.
Thus, a new method of continuous estimation from
sensor signal to EMG signal is provided

3.1. Hardware Preparation. We prepared a smart jacket pro-
totype (Figure 2(a)) with integrated, flexible sensors to com-
plete our study. The smart jacket cloth has five flexible,
stretchable sensors, four around the shoulder and one under
the elbow, as shown in Figure 2(b). And the above parts con-
tain 20 cm sensors, respectively, as the total cost is about
15.1488 dollars. Sensors are fixed to the garment by hand
sewing. The clothes are tight tracksuits, ensuring the sensors
fit snuggly and better capture shoulder and elbow move-
ment. The fabric is made of 80% polyester fiber and 20%
polyurethane fiber. The sensor we use is a conductive rubber
wire stretch sensor manufactured by Adafruit [60, 61]. The
sensor is 2mm in diameter and made of carbon-black
impregnated rubber. As for the traditional sensor, multi-

point instruments need to be used; the production and use
are complex; the experimental conditions are not conve-
nient; also users cannot use them directly at home. In addi-
tion, traditional sensors are more expensive compared to
flexible, stretchable sensors. As a result of fact, the conduc-
tive rubber wire stretch sensor is more suitable and practical,
and for the sensor, in the relaxed state, the resistance is
about 350 ohms per inch. The human body posture tracking
is realized by monitoring the resistance changes of the five
flexible sensors. At the elbow, for example, when the user
bends the elbow, the sensor is stretched and its resistance
increases. The resistance sampling frequency of the sensor
is 32Hz. The server receives sensor data through the Ardu-
ino UNO3 development board and is responsible for all sub-
sequent calculations. The server comes with Intel Core I7 (6
cores), 16GB of RAM, and NVIDIA GTX 1080Ti.

3.2. Sensor Resistance and Joint Angle Data Collection. For
the participant, the experiment involved a 30-year-old doc-
toral student in the lab. The participant is familiar with the
whole experimental design and the experimental process
before the investigation. For the collection process, before
the experiment, the participant got to know the purpose of
the experiment, put on the intelligent jacket with integrated,
flexible sensors; and took part in some guiding activities to
get familiar with the collection system and experimental
process. The participant started and stopped the data collec-
tion experiment by listening to voice instructions. He
adjusted his position towards a Kinect camera that could
collect depth information, allowing the camera to capture
the full movements of his right upper limbs. If the partici-
pant gets tired during the collection process, he can termi-
nate the collection process at any time.

The data collected each time is saved to the server. The
sensor resistance data includes the collection time and resis-
tance values of five sensors. The data collected by Kinect
includes the collection time and three-dimensional position
of each node of the right upper limb. The joint angles of each
part were calculated according to ISB (International Society
of Biomechanics) convention [62]. These angles are calcu-
lated by the following methods. First, create local coordinate
systems based on marker points and then, decompose the
rotation matrix into Euler sequences proposed by ISB for a
particular skeleton. The data are in the y-axis upward direc-
tion, which is consistent with the joint angle data introduced
in the next section.

3.3. Joint Angle and EMG Data Alignment Preprocessing.We
used the data set published by Bolsterlee et al. [63], Shoulder
Database, for continuous estimation from shoulder elbow
angle to EMG signal. The data set contained data on six
movements of five healthy young adults. No one has uncom-
fortable shoulder joints or has been specially trained. Kine-
matic data were collected using a four-device Optotrak
system (Northern Digital, Inc., Waterloo, Ontario, Canada)
to collect marker location information for six groups of
markers in the subjects’ chest, scapula, humerus, forearm,
and hands. The acquisition frequency is 100Hz. EMG data
were collected using surface electrodes (Ambu N-00-SECG)
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and a 16-channel Porti system (TMS International,
Enschede, the Netherlands, Sampling frequency: 1000Hz).
EMG data were collected from 14 muscles, including the tri-
ceps and biceps (Figure 3). The electrodes are placed as rec-
ommended by SENIAM [64]. Since the frequency of
kinematic data and EMG data are not the same, we need
to preprocess the data for alignment. Due to the fast-
sampling frequency of EMG data, we first performed linear
interpolation on the joint angle data to obtain 1000 pieces
of data per second and then aligned the joint angle data with
EMG data through the acquisition time.

3.4. Regress from Sensor Signal to Joint Angle. From the
description of the sensor manufacturer and our experiments,
it is found that the relationship between the resistances of
the sensors is nonlinear when subjected to tension. More-
over, the sensor has a lag problem, and it needs to be station-

ary for a period of time to return to the initial state.
Therefore, we propose to use the LSTM model to regress
sensor signals and joint angles in order to obtain more accu-
rate angle prediction values.

LSTM is an artificial recursive neural network (RNN),
which can effectively process temporal data. The network
model we designed has an LSTM layer with five hidden cells,
followed by a full connection layer with ten cells, and finally,
a full connection layer with only one cell as output. The
input to the network is a vector:

S
!
= St− Np−1ð Þδt ,⋯, St−δt , St
n o

, ð1Þ

where St is the sensor resistance at a specific time t, δt is the
time step read by the sensor signal, and Np is the number of
sampling points. In our experiment, δt and Np were set to
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Figure 2: Smart jacket with five flexible sensors: (a) smart jacket prototype; (b) sensor layout.
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0.286 and 50, respectively. The output of the LSTM network
is the estimated joint angle. LSTM regression model is used
to solve the nonlinear and hysteresis characteristics of the
sensor, which realizes the precise prediction of the joint
angle.

3.5. Regress from Joint Angle to EMG Signal.We chose to use
a stacked regression model based on extra trees [65] to pro-
cess from joint angle to EMG signal. The extreme random
tree algorithm builds a set of nonrunning decision trees or
regression trees based on the classical top-down process.
The two main differences between it and other tree-based
integration approaches are that it splits nodes by randomly
selecting complete pointcuts and uses the entire learning
sample to grow the tree. From the perspective of the bias dif-
ference, the basic principle behind the extreme random tree
approach is that explicit randomization of pointcuts and
attributes combined with integrated average should be able
to reduce variance more effectively than the weaker random-
ization schemes used by other methods. Using the complete
original learning sample rather than the boot stringing copy
is aimed at minimizing bias. From a computational point of
view, suppose there is a balanced tree, the complexity of the
tree growth is order N log N with respect to the learning
sample size, just like most other tree growth processes. Our
stacked model (Figure 4) integrates extreme random tree,
random forest [66–68], and K-nearest neighbor [69] algo-
rithm as the basic model and uses a linear regression model
in the metalearner [70]. The metamodel is trained based on
the prediction results of the training samples output by the
basic model. The stacked model can solve the problem of
the prediction errors made by different models which are
not correlated or have low correlations.

4. Result Analysis

4.1. Evaluation Criteria. The following six evaluation criteria
were used to evaluate our experimental results: mean abso-
lute error (MAE), mean square error (MSE), root mean
square error (RMSE), R square (R2), root mean square loga-
rithmic error (RMSLE), and mean absolute percentage error
(MAPE). The values of MAE, MSE, RMSE, and MAPE are in
the range of ½0,∞Þ; when the predicted value is exactly the
same as the true value, the value is 0; the larger the error,
the larger the value. MAE and RMSE can roughly estimate
the difference between the predicted value and the true
value; when the predicted value is entirely consistent with
the true value, the value is 1; when each predicted value of
the sample is equal to the mean value, the value is 0; it
may also be negative, and the regression effect is poor.

4.2. Regression Results of Short- and Long-Term Memory
Network Regression Model. Sensor data is composed of resis-
tance signals from five sensors numbered 1-5 (Figure 2(b)).
Joint angle data is calculated by the spine points, shoulder
points, elbow points, and wrist points collected by Kinect,
including shoulder angle and elbow angle. We defined that
the elbow angle has only one degree of freedom, and the
shoulder angle has three degrees of freedom. Then, the
LSTM regression model was used to perform training
regression on sensor data and joint angle data. 70% of the
collected data were trained in the front segment, and the rest
was used for predictive testing.

We compare the LSTM regression model with the tradi-
tional machine learning regression model and polynomial
regression model, and the true value is also involved. In this
paper, the gradient lifting decision tree (GBR) with the best
regression effect in the traditional machine learning regres-
sion model and the regression results of the fourth-order
polynomial regression are selected for comparative display,
as shown in Figure 5.

It can be seen from the experimental results that the
LSTM regression model (red curve) fits the real value curve
(black curve) well, and there is a smooth transition between
each point. While the regression results of the gradient lift-
ing decision tree (blue curve) are consistent with the real
curve at some points, it fluctuates greatly at many points.
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Although the fitting result of the fourth-order polynomial
(green curve) is relatively smooth, the error between some
values and the real values is huge.

We also conducted absolute error statistics for these
three regression models, as shown in Figure 6. The mean
absolute errors of the LSTM regression model, GBR regres-
sion model, and polynomial regression method are 3.45,
7.48, and 7.98, respectively. The LSTM regression model
has the smallest overall regression error range.

Table 1 shows the statistics of LSTM regression model
prediction results. It can be seen from the table that all error
evaluation criteria are quite small, R2 value reaches 0.9839,
the absolute error value is only 3.45 degrees, and the average
absolute error percentage is only 3.17%. Therefore, the
LSTM regression model can get accurate angle prediction
results.

4.3. Comparison of Regression Results between Extreme
Random Tree Regression Model and Other Traditional
Machine Learning Regression Models. In this section, we
show the results of comparing the first subject’s elbow’s
slow-motion data and EMG data when using extreme ran-
dom tree regression models with other traditional machine
learning regression models in the Regression Shoulder Data-
base. The objective of regression was the EMG signal of the
coracobrachialis. There are 18,729 pieces of data set shown
in Figure 7(a). We select 70% of the data as the training set
and the rest as the test set. The number of folds in cross-
validation is 10. Data is normalized using Z-score.

The regression results are shown in Table 2. We show
the three models, extreme random tree (ET), random forest
(RF), and K-nearest neighbor (KNN) regression models,
with the best regression effect among the traditional
machine learning regression methods; the extreme random
tree takes 4.06 seconds in training time. However, the final
R2 value of extreme random tree regression is the highest,
and other error evaluation items are the smallest. We can
intuitively see the estimated difference between the predicted
value and the actual value through the mean absolute error
(MAE) and root mean square error (RMSE). The extreme
random tree regression error is the smallest, and it is almost
54% of the regression error of the random forest model,
which has the second-best regression effect. Finally,
Figure 7(b) shows the residual prediction results and resid-
ual distribution of the extreme random tree regression
model. The residual is concentrated below the absolute value
of 1000 (about 3% of the original EMG data).

Table 3 shows the prediction results of the extreme ran-
dom tree regression model on the test set. The data are even
better than the training results. Therefore, in the experiment,
the extreme random tree regression model has the best
regression effect and is much better than any other tradi-
tional machine learning regression model.

4.4. Stacked Regression Model. In order to further reduce the
regression error, we designed a stacking model based on the
extreme random tree (Figure 4), stacked the three regression
models in Table 2 (including extreme random tree, random
forest, and K-nearest neighbor regression model), and then
trained and predicted the data.

The first row (beginning with T) of Table 4 shows the
training results of the stacking model. The average absolute
error and root mean square error are more than 100 smaller
than the extreme random tree regression method in the tra-
ditional machine learning method (see Table 2), indicating
that our stacking model effectively reduces the regression
error. Moreover, from the second row of Table 4 (beginning
with P), we can see that the stacked regression model also
achieved 312 as the results of average absolute error and
457 as the root mean square error, which is about 22% less
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Table 1: LSTM regression model prediction results statistics.

MAE MSE RMSE R2 RMSLE MAPE

3.45 18.95 4.35 0.9839 0.0186 0.0317
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than the regression model with only extreme random tree.
The average absolute percentage error is only 0.96%.

4.5. Stacked Regression Model Regression Results on Different
Person Data. We used the stacked regression model to carry
out the regression test on the joint angle and EMG signal of
shoulder and elbow activity data of different people. The
results are shown in Table 5. It can be seen from the average
absolute error and root mean square error that the average
difference between the predicted value and the real value is
within 370; while MAPE showed that the absolute errors of
the five subjects were about 1.14%, 0.08%, 0.08%, 2.61%,
and 5.18% of the original EMG signal, respectively. The
experimental results show that the stacking model can well

regress the joint angle and EMG data. Due to the large indi-
vidual differences of each person, there will be great differ-
ences in the relationship between each person’s joint angle
data and EMG data. Therefore, before using the smart coat
for daily activity tracking and EMG signal prediction, users
are required to collect standard angle data and correspond-
ing EMG signal data in the hospital according to profes-
sional guidance [26] to build a stacked regression model.
Therefore, everyone needs to train a unique stacked regres-
sion model to facilitate the subsequent regression and anal-
ysis of EMG signals.

4.6. Comparison between the Stacking Regression Model and
LSTM Regression Effect. We compared the stacking model
with the regression model with LSTM module. Table 6
shows the statistics of regression results of the LSTM regres-
sion model.

Compared to the regression prediction results of the
stacking model in Table 4, better regression results cannot
be obtained on this data set by the LSTM regression model
than by the stacked regression model. The MAE value of
the LSTM regression model reached 547.39, which was
235.45 higher than 311.94 of the stacked regression model.
Moreover, the average absolute percentage error of the
LSTM regression model is 13.23%, while that of the stacked
regression model is only 0.96%. Combining the results of
this section with the analysis in Section 4.2, the LSTM
regression model is dominant in solving the problems of
nonlinearity and hysteresis of flexible sensors, but not in
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Figure 7: (a) EMG distribution of the first subject’s elbow in slow motion; (b) the extreme random tree regression model predicts residual
results and their distribution.

Table 2: Comparison of regression results among extreme random tree (ET), random forest (RF), and K-nearest neighbor (KNN)
regression models.

Model MAE MSE RMSE R2 RMSLE MAPE TT (sec)

ET 470.03 443522.74 665.71 0.9281 0.0205 0.0145 4.06

RF 867.68 1168076.13 1080.65 0.8108 0.0333 0.0268 4.37

KNN 1180.42 2146966.71 1465.03 0.6522 0.0451 0.0365 0.75

Table 3: Extreme random tree regression model prediction results
statistics.

MAE MSE RMSE R2 RMSLE MAPE

404.43 313466.77 559.88 0.9492 0.0172 0.0125

Table 4: Stack regression model training and predicted results (T:
train; P: predicted).

MAE MSE RMSE R2 RMSLE MAPE

T 369.24 297341.21 544.81 0.9518 0.0168 0.0114

P 311.74 208847.27 457.00 0.9661 0.0140 0.0096
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the data set of this section, which requires us to select an
appropriate regression model for the data from different
sources. Our method also has some limitations. Because
the training data is limited to the data collected by profes-
sional equipment in a short time, it is impossible to predict
the irregular changes of myoelectric signals caused by mus-
cle fatigue due to long-term exercise.

5. Conclusions

This paper presents a method for continuously estimating
upper limb EMG signals by using an intelligent jacket with
integrated, flexible sensors. Firstly, we use the long short-
term memory network regression model to continuously
estimate the sensor signals collected by the smart coat and
the joint angle information collected by Kinect. Then, the
shoulder elbow angle information and the corresponding
EMG signals of five subjects were aligned and preprocessed,
and the stacked regression model based on the extreme ran-
dom tree was used for regression. The experimental results
show that the long short-term memory network can effec-
tively solve the nonlinearity and hysteresis of flexible sen-
sors, and the stacking model can well regress the joint
angle data and EMG signal data. This method provides more
possibilities for home health monitoring and exercise guid-
ance in the future; for example, users can achieve online
medical treatment and online diagnosis based on this sys-
tem. However, there are still some problems to be solved
and studied, such as the sensor position offset and the defor-
mation caused by clothing wrinkles, which will affect the
accuracy of the prediction results. Therefore, we will con-
tinue to solve the above problems in the follow-up work
and the proposed machine learning based pipeline can be
applied to other fields, such as bioinformatics and computa-
tional biology [67, 71–74].
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