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Oil palm has become one of the largest plantation industries in Malaysia, but the constraints in terms of manpower and time to
monitor the development of this industry have caused many losses in terms of time and expense of oil palm plantation
management. The introduction to the use of drone technology will help oil palm industry operators increase the effectiveness
in the management of oil palm cultivation and production. In addition, knowledge gaps on drone technology were identified,
and suggestions for further improvement could be implemented. Therefore, this study reviews the application and potential of
drone technology in oil palm plantation, and the limitation and potential of the methods will be discussed.

1. Introduction

Oil palm has become one of the country’s main sources of
income apart from rubber and paddy cultivation. It has also
dominated the world’s vegetable oil producers such as soy-
bean, rapeseed, and sunflower by more than 35%. At the
present time, Malaysia and Indonesia have become the
world’s leading oil palm growing countries [1]. Furthermore,
Malaysia has become the second largest exporter of palm oil
and its related products. In 2020, Malaysia’s palm oil pro-
duction was projected to reach about 20 million tonnes
(350,000 barrels per day) with total export revenue about
RM72.30 billion. In terms of planting, oil palm is suitable
for planting in areas that have sunlight between 5 and 7
hours every day. They required temperature as above as 18
Celsius with an optimum temperature between 28 and 32
Celsius [2], while the optimal rainfall distribution is between
2000 nm and 3000nm [3].

However, an increase in demand requires more modern
approaches and technologies to be adopted in a sustainable

manner to increase the production. The development of
information and communication technology (ICT), espe-
cially the Internet of things (IoT) including drone technol-
ogy which provides mapping and data analysis services,
can provide more accurate and effective information for
precision agriculture technology. In general, IoT technology,
especially drones, can collect and process information
obtained from various sources and can help in collecting
weather information, soil profile, and drainage, and at the
same time, manage all crops in a more efficient way [4–7].
In plantation, drone technology is being utilized to monitor
large plantation area due to its success in photography, aerial
mapping, and surveillance [8, 9].

Drone which is also known as unmanned aerial vehicle
(UAV) is an aircraft that has no human pilot on board to
navigate the vehicle [10, 11]. Despite not having a pilot, it
still can fly thousands of kilometers, into confined space,
and fly remotely and autonomously [12]. It can carry lethal
or nonlethal payloads [13]. Drone technologist classified
drones based on its aerial platform. There are four major
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types of drones such as multirotor [14–19], fixed-wing
[20–22] single rotor helicopter [23], and fixed-wing hybrid
VTOL (vertical take-off and landing) [24]. Drones were first
made by the Austrians in 1849 using explosive-filled bal-
loons for military use which has been well known for nearly
150 years [25].

The first civilian drone was produced in the 80s in Japan
at the request of the Minister of Agriculture, Forestry, and
Fisheries [26]. The difference between civilian and military
drones can be seen in terms of the size of the engine and
its capability where civilian drones are powered by electric
motors while military drones are powered by internal com-
bustion engines. Most public drones are used for mapping
and imaging [27].

Drones with specialized sensors (Figure 1), or drones
that work in tandem with IoT, can record high-resolution
photographs and help monitor a variety of vegetation prop-
erties. Aside from that, many sensors might be used in the
agricultural sector [28]. However, the selection of type of
sensors to be incorporated into the drone or UAV highly
depends on the low payload capacity and the usage of minor
platforms. Commonly, the main criteria that a sensor must
meet to capture high resolution image are an acceptable
weight with appropriate size and to utilize enough energy.
In addition, different types of sensors can monitor specific
parameters such as the color and texture of vegetation and
the geometric outline of agriculture crops. Furthermore, cer-
tain sensors can monitor plant biomass, vegetation health,
and other critical agricultural properties at various phases
of plant development. This data can also be utilized to mon-
itor utilizing certain wavelengths of radiation [29].

The function of each sensor is depending on the function
of its thermal sensor to obtain data on the relative temperature
of a surface and is widely used for the purpose of designing
irrigation and drainage systems in the plantation sector.
Multispectral sensors are usually used to produce normalized
difference vegetation index (NDVI) images that help to distin-
guish between cultivated areas and vacant land [30]. It can also
detect crops that are under pressure by obtaining data on plant
fertility levels. On the other hand, hyperspectral sensors have
several hundred bands that are commonly used to obtain
and process information from the electromagnetic spectrum
in each pixel of the image taken. However, for light detection
and ranging (LiDAR) sensor, it was usually utilized to obtain
the slope elevation and structural data [31].

This article was written to highlight an overview of the
use of drones’ technology in the oil palm industry its weak-
nesses and recommend further research to enhance the
capabilities of more effective drone technology in the oil
palm industry. The following section reviewed a list of drone
applications in a wide range of oil palm management and
monitoring, accompanied by its lapses or gaps and recom-
mendation for improvement of the drone technology in
the oil palm industry.

2. Drone Capabilities: Endurance and Range

Drone configurations and features are varying according to
the platform and mission requirements. There are various

classifications for drones that focus on different parameters
that can be found in the literature reported by Hassanalian
and Abdelkefi [36]. The advantages of each drone always
depend on the user demand. For instance, in scientific
research, the drone was classified based on characteristics
such as size, duration, range, and durability [37]. According
to Arjomandi [38], drones are also classified according to
weight, flight distance, wingspan, maximum altitude, and
engine capability. For example, heavy drones are for those
over 2000 kg, heavy with a weight between 200 kg and
2000 kg, medium with a weight between 50 kg and 200 kg,
and light (5 kg-50 kg) and minidrones with weight less than
5 kg as shown in Table 1.

Drone endurance is described as the total duration during
take-off. For an electric fixed-wing helicopter or quadrotor,
this is primarily associated with the battery’s capacity as well
as the ability of the motor to produce current to keep the heli-
copter on air. There are several factors that can be used to
determine the endurance; however, a simple endurance com-
putation can be estimated using the below equation [39].

Endurance hrsð Þ = Battery Capacity Ahð Þ
Current Ampsð Þ : ð1Þ

The endurance of the helicopter depends largely on its
size, weight, and the weight of the payload. For instance, a
macrofixed-wing aircraft with a large wingspan will have lon-
ger endurance compared to a miniquadrotor. Another key
point is that the endurance also will have a factor on the range
of the aircraft. The distance with an uncrewed aerial vehicle
can go is known as its range. Furthermore, the range of the air-
craft is dependent on the amount of current that is being
applied for the aircraft to be lifted, the endurance itself, flight
speed, and the aerodynamic performance which can be deter-
mined by using the range of a drone.Meanwhile, the range can
be calculated by calculating the fixed-wing and quadrotor by
the equation below [39].

Range milesð Þ = kV:V:60:Pitch
12:5260 Endurance hrsð Þ, ð2Þ

where kV is the amount of revolutions per minute, the motor
will turn when 1V was applied to the motor, pitch is the pitch
(in inches) of the propeller on the UAV, and the endurance is
the amount of time in hours the aircraft can stay in the air.

This equation will enable a rough calculation of the total
UAV’s range. However, to effectively estimate the range, fac-
tors like wing area, weight, and the coefficient of lifting of the
air foil used on the helicopter will be crucial.

3. Application of Drone in Oil Palm Plantation

Malaysia is the world’s second largest exporter after Indone-
sia with about 5.08 million ha of oil palm plantations. Most
of the plantations are owned by private farmers who work
on a small scale [41]. They desperately need an autonomous
platform with an affordable price for the use of monitoring,
inventory, crop yield assessment, spraying, health assessment,
and disease detection. The capability of drone technology in
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taking high-resolution aerial photographs has changed the
way oil palm cultivation into more economical [42]. Conven-
tional methods have been replaced with the use of drone tech-

nology [43, 44] that can provide more quick and accurate
information to help in making smart decisions. Drone tech-
nology which is an emerging technology is capable of provid-
ing significant functions in precision agriculture and smart
farming, to enable the increases in long-term production
[45] by the acquisition of real-time environmental data. Drone
is one of the breakthroughs for smart and precision agriculture
farming, which is utilized for monitoring vast and cultivated
lands and provides practical solutions for precision farming
[5, 29]. With that, the main purpose of precision farming to
optimize yields and maintain sustainable crop production
capacity based on crop monitoring and crop health assess-
ment [44] can be effectively achieved.

By recording high spatial and temporal resolution
photos, drone can be vastly utilized in a wide range of
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Figure 1: Examples of sensors used by UAVs for PA: (a) thermal sensor [32], (b) RGB sensor [33], (c) multispectral sensor [34], and (d)
hyperspectral sensor [35].

Table 1: The proposed drones’ categorization by [38] based on
their weight.

Designation Weight range

Extremely heavy > 2000 kg

Heavy 200 kg ≤ 2000 kg
Medium >50 kg ≤ 200 kg
Light >5 kg ≤ 50 kg
Mikro ≤ 5 kg
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applications, including crop management. Through photo-
graphs, it can intelligently, simply, and cost-effectively mon-
itor crop and vegetation factors. UAVs for crop monitoring
and management will provide opportunities for the farmers
to monitor, map, and survey a diverse range of crops, located
in many countries around the world [46]. Recently, globally,
many have been considering using drone for agriculture
purposes for crop irrigation [47] and growth for yield esti-
mation, health determination, disease detection [47], and
for spraying [48].

Drone technology has bridged the gap between ground
base observation and satellite data, and it has increased its
capabilities in terms of crop monitoring, yield mapping, soil
profile and soil property mapping, crop health, and disease
monitoring and spraying [40]. This technology is easy-to-
operate, flexible, and in addition, low-cost drone has greatly
revolutionized smart farming technology from the beginning
of the planting process up to the harvesting. Drones can
also provide live data from various types of sensors as
shown in Figure 2 (multispectral, near infrared reflectance
(NIR), LiDAR etc.), with high resolutions imagery up to
less than one centimeter per pixel. With this information,
it can help a lot in replanting planning, oil palm data cen-
sus for inventory data, calculation of land use, distance
between crops, canopy size, oil palm height, and crop den-
sity. With all the data and information, it is very useful in
the development of support systems in decision-making
and estimating plantation management-based results.
Figure 3 suggests the suitability of each sensor usage at var-
ious stages of cultivation in order to obtain relevant data
and information, and Table 2 shows summary of drone
application in plantation.

3.1. Oil Palm Plantation Inventory. In most underdeveloped
countries, land registration is a big problem such as in
Malaysia. Failures in land registration caused many difficulties
such as title disputes, control, and distribution of aid such as
pesticides and fertilizers. Land registration in the form of ter-
restrial measurements is projected to be addressed in the next
decades. For urban planners, monitoring urban development
has become a vital issue. Drone technology is an alternative
step to speed both processes because it is a unique instrument
that can fly without a human operator on board and conduct
sophisticated and viable duties such as monitoring, cadastre,
and earthwork analysis. The photogrammetry method used
in drone is to obtain an ortho map.

3D mapping is an integral part of geological surveying
[61]. Recently, drone usage for visual surveying through
the generation of 3D images of sites has become a necessity
[62]. Drone’s technologies can acquire high-resolution
images converted into 3D surface models used for topo-
graphic mapping, volumetric calculations, or showing the
site in the 3D format [63].

Drone technology for the oil palm plantation industry
includes all relevant information, including crop density,
drainage, crop area, and basic infrastructure information
such as plantation road network, and crop yield estimates.
Figure 4 shows the images and information on the inventory
using drone technology.

Drone is capable of capturing the crown formation of
palm trees images by using high spatial resolution images.
Here, it uses the template matching algorithms to detect
the object’s boundary of the image as a criteria [64]. In some
instances, the problem of image distortion or occlusion can
be overcome by using the method of object base analysis to
reduce the influence of scale and geometry of objects
through segmentation [56]. However, parameter selection
will result in inaccurate detection in trees. To obtain the best
inventory information, the use of satellite images with fine
resolution is particularly suitable for large areas of oil
palm [57].

Nevertheless, the limitations of satellite data such as fre-
quency of public coverage, cost, and time make it less suit-
able for the estimation of structural parameters. In order to
improve accessibility, low operating costs, and enhance
usage, the development of lightweight drone platforms was
developed as an effective mechanism in oil palm plantation
management. For this development, the UAV teams had
been established by major commercial oil palm companies
for a routine acquisition of aerial imagery [65].

3.2. Tree Counting. Tree counting is vital for estimation of
yield, observation, replanting, and layout preparation. Nev-
ertheless, it is costly, labor-intensive, and prone to human
error when done in the field. Furthermore, due to the vari-
ability of the plantations, most plantations used to estimate
cost estimates by multiplication of the total location by the
amount of palms per hectare, which is inaccurate because
of the diverse land mass such as hilly, undulating, or flat
and presents of natural features such as river, land, or forest.
Remote sensing was a possible option for seeing the planta-
tion area and automatically counting the trees to solve this
problem.

In the mid-1980s, studies into automatic detection of
trees and feature extraction from digital imagery began. Pinz
[66] offered aerial imaging utilizing a vision expert system;
although, various detection methods have been proposed.
This system powers the centrifuge. The center of the tree
crown was successfully detected using this approach, and
the radius was estimated using local brightness, followed
by the valleys between the tree crowns using ground sam-
pled distance digital aerial images.

Individual trees, on the other hand, were detected using
software. To distinguish individual trees, Woodham and Pol-
lock [67] use model-based template matching approaches.
Kattenborn et al. [59] proposed a method for automatically
detecting single palm trees using photogrammetric point
clouds (Figure 5).

VisualSFM was used to process single camera images
with a structure from a motion tool chain. Each image was
divided into three categories: palms, shrubs/trees, and the
ground. A multiscale dimensionality criterion were utilized
to train and evaluate the data set for classification purposes,
in which the classifier was set in a separate scale factor. Palm
trees and their ground soil were classified using point cloud
local dimensionality features. Algorithms are limited while
training a classifier for a dataset. Because training a classifier
takes time and requires more computer resources for each
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type of tree species, the classifier must be coached before
detecting trees.

For this study, a structure from the motion toolchain
with VisualSFM was used to process single-camera images.
The images were classified into three classes: palm, shrubs/
trees, and ground. For classification, a multiscale dimension-
ality criterion was used whereby the classifier was set to a
different scale factor that trained and tested the data set.
Local dimensionality characteristics of point clouds were
applied to classify palm trees and their ground soil. Training
a classifier for a dataset leads to a constraint for algorithms.
Since training a classifier is time-consuming and needs more
computational power for each tree species, one must coach
the classifier before detecting trees.

Mansur et al. [68] utilized drone data capture and spatial
filtering to acquire data for counting oil palm tree using
ground control points. They used the concept of crown geom-
etry and vegetation response to radiation in their research. A
spatial convolution processing approach, such as a low pass fil-
ter, was used to detect the tree crown in the enlarged image.
After applying a spatial filter to the data set, morphological
analysis was used to perform object extraction, image filtering,
and image segmentation processes.

Wang et al. [69] improved on Brandtberg and Walter
[70] work by first using edge detection methods to detect
the boundaries of tree crowns, then intersecting the results
of local nonmaximum suppression on grey level images
and local maximum values of morphological transformed
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Figure 3: Schematic overview showed the different ways to extract spatial information in the areas, the useful platforms and the optimal
UAV sensors, throughout a growing season of a crop. The optimal sensors for UAVs were also shown. Abbreviations: RGB: red-green–
blue [60].
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Figure 2: Typical components of a UAV-based remote sensing platform for precision agriculture in oil palm [40].
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distance between pixels. By combining the two methods, a
decent estimate of the treetops was obtained, which were
subsequently tallied using contour-based methods. The pres-
ence of background objects, such as buildings and roads,
however, causes this method to fail.

3.3. Drone for Spraying. In the present era, various develop-
ments in precision agriculture are being carried out to
increase the crop productivity. For example, in the develop-
ing countries like India, over 70% of the rural people who
depends upon the agriculture fields need to be feed. How-
ever, their agriculture fields often face dramatic losses due
to the plant diseases. These diseases either come from the
pests or insets, which have possibilities to reduce the produc-

tivity of the crops. Pesticides and fertilizers were used to kill
the insects and pests to enhance the crop quality. Hence, the
WHO (World Health Organization) has estimated one
million cases of ill caused by the pesticides spraying activity
in the field. Therefore, precision agriculture to cater the
growing population is so demanding. In precision agricul-
ture, the drone’s technology is being utilized to spray the
pesticides to avoid the health problems of the users when
they spray manually. Drones can be operated easily for this
purpose [71]. This system was first developed in Japan in
the 1980s, by the combination of unmanned aircraft with
small pesticide tanks [72]. Today’s drones were developed
to be able to lift big tanks with up to 10 liters of capacity.
Furthermore, the rate of liquid discharge could be set to

Table 2: Summary of drone application in plantation.

Literature work Objective Task Technical characteristics and payload

[49] [50] To detect the drainage pipe For a monitoring purposes VIS-C, MS, and TIR camera

[51] To monitor the vegetation level For a monitoring purposes

Camera
GNSS
IMU
LiDAR

Multispectral

[52] Monitoring vegetation state For a monitoring purposes

Camera
Compass

First person view platform
FlightCTRL
GPS system
GSM modem
Magnetic

Multispectral
NaviCtTRL

[53] Evaluation water stress For a monitoring purposes

3-axis accelerometer
8 GPS system
Digital compass

FlightCtrl
NaviCtrl

Pressure sensor
Storing device
Thermal sensor

[54] Monitoring vegetation state For a monitoring purposes

IMU
LiDAR

Multispectral sensor
Single-board computer

[55] Spraying with consideration of climate conditions For a spraying process Spraying device

[56] Spraying fruits and trees For a spraying process

Barometer
IMU

Magnetometer
Multispectral sensor

Servos
Spraying device

[57] Estimating chlorophyll density For a monitoring purposes

Autonomous power supply
Control switches
GPS system

Hyperspectral sensor
LCD screen
Storing device

[58] Oil palm harvest prediction For a data acquisition 20.2 mega pixel digital camera

[59] Palm tree detection For a data acquisition Panasonic Lumix G3 with a 20mm lens
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one liter per minute that makes it possible to cover a large
area in 10 minutes. Also, drone-based spraying platform
integrated with an aerial crop monitoring process will be
able to provide efficient and accurate use of the agrochemical
products. This will reduce the number of agrochemical
products usage and is also a part of environmental protec-
tions. According to Zhang et al. [73], drones using M-18B

and Thrust 510G model can fly at heights of five meters
and four meters, respectively. He found that height differ-
ences had a significant effect for effective and uniformity
spray on crops. Meanwhile, Kurkute et al. [74] used a quad-
copter (4 rotor drone), which uses a universal spraying
mechanism to spray liquid and solid contents. The author
reported different control systems for agricultural purposes

Osprey drone Correlating between palm heights, ages, and yield
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Figure 4: Mapping and inventory of oil palm plantation tree counting analysis [40].

Figure 5: Automatic single palm tree detection using photogrammetric point clouds [59]. Palm: red; other vegetation: blue; ground: green
(center) with modeled palms (bottom). Green shapes represent the convex hull of the crown, vertically surrounded by crown margins
(purple). Yellow cones represent the top (z) and the position (x, y).
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and found that the Atmega 644PA model is the most suit-
able and efficient drone. Meanwhile, Sadhana et al. [75] used
a different approach in developing drone modules for sim-
pler pesticide spraying mechanisms in improving yields as
well as crop protection. By using a quadcopter drone, the
author identified it that it was able to carry a load of 1 kg
and use to spray pesticides at a height as shown in
Figure 6. In this study, the author detected that the quadcop-
ter drone was operated by Arduino UNO AT mega328 sys-
tem and brushless direct current (BLDC), electronic speed
control (ESC), MPU-6050 consisting of MEMS accelerome-
ter, and MEMS gyro in one chip, radio receiver, and LiPo
battery.

Kedari et al. [77], also used quadcopter drones that is
suitable for indoor and outdoor crops. It is an autonomous
flight that sprays pesticides as well as fertilizers using
Android devices as well as Bluetooth that operates in real
time. It can be used in agricultural sectors to reduce the time
and the hazardous effects that can present during spraying of
pesticides and fertilizers.

3.4. Biomass Estimation. A major requirement for precision
farming is to monitor biomass which is an important step
throughout the oil palm tree life circle [5, 78]. However,
due to the presence of natural influences, precision farming
must be modeled to determine the level of nutrient supply,
water availability, soil quality, and healthiness because these
parameters will contribute to the oil palm biomass. In preci-
sion farming, an effective management of the oil palm bio-
mass need to be considered. Modeling the yield of a field
through a satellite image by stratification often turns out to
be mostly outdated, too cloudy, and not available for specific
dates as of when needed. Another downside of the method is
in field measurements, as it is hard to replicate and to cover
wide plantation area that has too many plots. Besides that, it
can hardly take care of small segment of the field apart from
the cost and labor-intensive that is required for the whole
process. Conclusively, it is an expensive venture that does
not bring a perfect solution in biomass modeling. However,
dynamic progression of drone systems enables to join air-
borne surveying with precision and resolution of terrestrial
methods [63, 79, 80]. With this, drones became advanta-
geous in biomass monitoring for oil palm modelling assess-
ments via photos taken by consumer-grade RGB camera

mounted on a small octocopter [81]. Further, some scholars
use multispectral cameras, e.g., near-infrared in addition to
RGB [82].

Tree geometric parameters from an orchard can also be
estimated from data collected from the drone [83, 84]. By
using an information collected from the drone, one acquired
the crop parameters such as biomass that plays a significant
part in yield forecast and in optimizing plantation manage-
ment. Biomass can be assessed through spectral reflectance
measurements [85] from space [86, 87] and from the air
[88, 89]. Nevertheless, these measurements frequently con-
sist of refined and costly apparatus that necessary for vigilant
standardization. Drones occasionally denoted as remotely
piloted aerial systems (RPAS) or unmanned aerial systems
(UAS) actually are the evolving implements to be used for
small-scale remote sensing [78, 89, 90]. UAVs can be used
for oil palm biomass modeling, for instance, crop status
investigation using near-infrared or thermal data. Figure 7
below shows the research methods that was summarized
with reference to some previous research.

3.5. Crop Growth Monitoring and Yield Estimations. The
combination of real-time remote sensing images and infor-
mation from related sensors can provide information that
can increase plantation productivity through the mapping
of spatial information changes in the field. Information on
the status of the cultivation area such as soil profile and crop
fertility can help in fertilization planning, watering schedule,
weather analysis data, and also crop yield estimates. The col-
lection of all this information by using drone technology can
provide a more effective management plan [86].

Bura et al. [58] used drone technology in predicting the
yield of oil palm harvest, by dividing the study into two
stages, namely, by the configuration of the drone system
and in the image processing for predicting the yield of oil
palm harvest. The drone system configuration included the
use of an X-8 airframe with Pixhawk control system, electric
motor, and 20.2 mega pixel digital camera RGB (red, green,
and blue) sensor. High-resolution images were once taken at
a 6-year-old oil palm plantation in North Sumatra. The
resulting image was used to calculate the forecast of crop
yield by using the number of crops. The estimated harvest
for that particular area was detected as an average of 50.5
tonnes per hectare per year, which is more than the manage-
ment company’s estimation at 23 tonnes per hectare per
year.

An accurate early yield prediction is beneficial to farmers
as well as the plantation industry. With drone technology,
the use of high-resolution sensors can map accurate crop
information such as crop height, canopy cover, and crop dis-
tribution, which can be used to predict crop yields. Distribu-
tion using RGB sensors [92, 93] and multispectral sensors
[94, 95] is used to predict crop yields.

Drones can be used to observe the crop with different
indices. It can also cover large parcel of land in a single flight
using either thermal or multispectral cameras [79, 96]. It will
capture the reflectance of the vegetation canopy mounted
beneath the quadcopter. The camera captures one image
per second and records it in the memory and transferred

Figure 6: Drone for crop spraying [76].
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to the ground station via wireless telemetry that uses MAV-
LINK protocol. The images were recorded in visible five
brands with contradicting wave lengths, for example, blue
wavelength 440-510nm, (ii) green wavelength 520-590 nm,
(iii) red-wavelength 630-685nm, (iv) red-edge wavelength
690-730 nm, and (v) near-infrared wavelength 760-850nm.
The data retrieved from the multispectral camera through
telemetry was analyzed using the geographic indicator
NDVI [97–99] that was represented in the equation below.

NDVI = RNIR–RREDð Þ
RNIR+RREDð Þ , ð3Þ

where RNIR represents the reflectance of the near-
infrared band, and RRED is the reflectance of the red band.
A computation value of -1 to +1, or close to 0 (zero), means
that there is no vegetation on the crop, and a value close to
+1 (0.8 to 0.9) signifies that the highest density of green
leaves was grown on the crops. For these results, farmers
can effectively point out the spot to spray pesticides and
fertilizer. The equipped GPS (Global Positioning System)
module will manage the GPS coordinates of each acquired
image. The GPS coordinates of the image are then saved in
the UAV to pesticides or fertilizer spraying simultaneously
without control.

There are various types of drone that were invented for
agriculture purposes. Drones such as the DJI Agras MG-1
[100] were designed to apply liquid pesticides, fertilizers,
and herbicides. On the other hand, multispectral and hyper-

spectral aerial and satellite imagery used to create NDVI
maps will help differentiate the soil from grass or forest
and detect plants under stress and differentiate between
crops and plant growth stages. There are strong correlations
between NDVI data measured at certain point with the crop
yield and plant growth stages [101]. Hence, tracking the
plant growth will help provide an accurate estimation of
the crop yield and address any plant growth issues earlier.
For the purpose of obtaining soil profile and plant fertility
by using drones, suitable sensors used are multispectral,
hyperspectral, and infrared sensors. Agricultural informa-
tion with a combination of NDVI data with crop-water
stress index (CWSI) and canopy-chlorophyll content index
(CCCI) can provide more accurate results. The response of
the plant leaf reflection to the sensor can provide informa-
tion on the fertility level of the plant whether it is a state of
dehydrate or stress (Figure 8). The information can also dis-
tinguish between cultivated areas and non-crops.

Forecasting plantation production is something that is
important in this industry. Drone technology promises the
accuracy of information obtained through the use of appro-
priate sensors in the collection of images and data such as
RGB and multispectral sensors to estimate crop densities
and biomass. Through appropriate analysis of the method,
the accuracy of the yield estimation can be improved.

3.6. Crop Health Monitoring. In precision agriculture appli-
cation, the most common technique to assess vegetation
health is remote sensing techniques and image analytics.
Meanwhile, one of the most widely used RS approach is
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Figure 7: Biomass mapping flow chart.
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aerial inspection, using satellite acquired imagery and
manned aircrafts, as well as drones [102, 103]. In the context
of precision agriculture, exploring satellite images is a big
investment for a typical farmer, and sometimes, their quality
and resolution are not acceptable and technical. However,
conversely to previous cases, aerial photos acquired by
manned aircrafts reveals a more acceptable quality com-
pared to satellite images. On the other hand, drone is less
cost-effective and can provide high-resolution images.
Drone, an unmanned aircraft, will be operated remotely by
an operator. It can carry several cameras such as multispec-
tral and hyperspectral that acquire aerial photos. More so,
these images will be used for the extraction of vegetation
indices that allows farmers to inspect crop variability and
stress conditions constantly.

Duan et al. [104] used the application of NDVI in mon-
itoring plant growth. This NDVI technique calculated pho-
tosynthetic and assessing the canopy status of green plants.
He used a multispectral sensor (RedEdge) at low flight alti-
tudes to record images from various bands from various
stages of plant growth with a transformation ratio measured
between the reflectance measured at the red wavelength
range and NIR wavelength range. With all the data obtained
from multispectral sensors and field verification using hand-
held sensors (e.g., Green Seeker), this range of information
had assisted in the development process of crop growth
mechanisms.

Reinecke and Prinsloo et al. [97] were more focus in
studying the capabilities and limitations of drones in maxi-
mizing crop yields and crop management. By using two
drone camera technologies, namely, UVIRCO and Aerobic,
his study concluded that many farmers invested in drone
technology to improve their crop management capabilities.
It is because his technology has the ability to produce digital
maps that can provide crop information such as crop health,
crop loss, irrigation system, and crop spraying.

Kerkech et al. [105] used a convolutional neural network
(CNN) system and color information to detect plant health
status. CNN used diverse color space with various crop
indexes with a combination of the information analyzed
using six methods: capture the image, divide the image into
blocks, create two sliding window schemes, color conversion
from RGB to HSV, and separate the intensity information

chrominance by using LAB and YUV. The results were clas-
sified according to healthy plant, potentially diseased and
diseased plant classes, mapping disease plant generation,
postprocessing steps such as mathematical morphology,
removal of small areas, contour detection, and overlapping
disease maps on RGB images.

3.7. Pest and Disease Detection. The detection of pest and
disease has become a significant concern in oil palm planta-
tion. This is a result of timely detection of pest and disease
that can be of help in prevention of an outbreak. The most
common disease in the oil palm industry is caused by Gano-
derma boninensis. This disease often causes huge losses in oil
palm management. A fungal disease internally rots the oil
palms trunk, and this makes it to be fundamentally vulnera-
ble and collapse due to strong wind [106]. It is a highly con-
tagious disease. However, in the early stage, the infected
palms often show sign till it deteriorates. If the diseases
invested oil palms can be identified earlier, it can be quaran-
tine and remove properly to prevent the spread of this dis-
ease to other plants [107]. Using remote sensing and UAV
imagery system, the status of palms can be assessed on the
basis of the signs shown at given spots earlier, and the dis-
eases or pest infestation can be diagnosed as soon as possible
[108]. On the basis of research hypothesis, oil palm infected
by Ganoderma will show noticeable signs at the beginning;
therefore, several researches were carried out to remove the
oil palms infected with Ganoderma from the plantation at
the early phase of infection. The use of NIR cameras inte-
grated in the UAV able implies the high reflectance of vege-
tation in the NIR region that is invisible to the human eye.
This can be used to demonstrate the health of a particular
plant. The RGB and NIR images coupled with geographic
information system (GIS) analysis will be successfully used
to monitor Ganoderma BSR in oil palm plantation.

Day by day, chemical usage is increasing, which has led
to the environmental impact and health risk aspect on the
user and has become crucial to be considered. Indeed, che-
micals may threat the important inhabitants that live around
the areas. Furthermore, pesticides are also being adopted by
crop and natural resources like water and soil and result to
some concealed substances in the food chain. This can also
increase the risk for both livestock and humans. However,
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by autonomous precision agriculture, these effects can be
controlled. Additives, like fertilizer and pesticides, are
sprayed when necessary, rather than being sprayed over a
vast or specific area that crucially need will be identified
beforehand through drones in agriculture. Many vegetation
indexes involving several data characteristics such as the
NDVI have been developed. Unique camera systems capable
of acquiring data from an invisible part of the electromag-
netic spectrum known as NIR and extract adequate informa-
tion, which includes the presence of algae in the rivers or oil
spills near costs, were developed [109]. Currently, drone
usage has recently been introduced for big areas to inspect
and target areas that need to be irrigated and fertilized
[110]. This approach can be time saving for agronomists,
water resources, and minimize chemical application. This
type of farming method has the tendency to improve of crop
production and quality. Specifically, lack of water, nutrient
stress, or diseases can also be recorded and localized.

Furthermore, an object-based image analysis (OBIA)
was performed to classified oil palms in a selected area into
three categories such as healthy, moderately infected, and
severely infected. These results showed that the OBIA can
be used to analyzed multispectral images of oil palms to
detect moderate and severe infection of Ganoderma disease.
Izzudin et al. [111] stated that the Ganoderma disease sever-
ity index (GDSI) can be obtained from the aerial images of
the infected oil palms. Through this, the detection of early
infection of Ganoderma has become more feasible with an
advanced algorithms and classifiers which incorporated with
multispectral and hyperspectral aerial images application.

Detection of pest hotspots using drones is known as
sensing drones, while drones used for precision distribution
are known as actuation drones. Both types of drones could
be used together to initiate a communication to establish a
closed-loop (integrated pest management) IPM solution
(Figure 9). Using drones in precision pest management are

very cost-effective and reduce harm to the environment.
Meanwhile, sensing drones could reduce the time required
to scout for pests, while actuation drones could reduce the
costs of dispensing natural enemies [37, 112].

3.8. Weed Mapping and Management. Biotic threats such as
weeds, insects, bacteria, fungi, and viruses are major factors
influencing crop quality and yield. Weed problems are the
main threat causing huge losses in crop yields globally
[113]. Weeds are the main competitors for crops in obtain-
ing their nutrients [114], light [115], space [116], and water
[117]. Besides that, the weeds’ formation of toxic molecules
and chemical signals will also interfere with crop develop-
ment [118].

Drone technology is very suitable in weed detection, and
the main advantage of drones in comparing to the conven-
tional conditions in shorter time and optimal control of
resistance on crops planted in rows [119] is to increase the
effectiveness of drone usage for this purposes. In just a few
minutes, a drone can be able to collect data covering several
acres of area and provide images to detect the weed patches
[120]. Later, those images will be processed using deep neu-
ral networks [121], convolutional neural networks, and
OBIA [29, 60]. The final data will be concluded in three
types of sensors such as RGB, multispectral, and hyperspec-
tral sensors.

Weed infections in farm areas are usually uneven, and
drone technology systems offer the best methods to map
weeds and provide site-specific weed management (SSWM)
methods. Two methods of weed detection are used, namely,
the detection of spectral band differences between weeds and
crops, and the second is the use of remote sensing data that
is not from a multitemporal drone [122]. By using a drone
application, the data obtained can be processed by super-
vised classification method only by using RGB sensors if
the difference of the spectral signal is successfully identified

Agricultural field Agricultural field

Sensing drone

Digital Map of Post Infestation
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Digital Map of Post Infestation
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Sensing droneActuation drone

Figure 9: Drone used for detection of pest hotspots adapted from [37, 112].
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between weeds and plants [123, 124] as it can produce a map
that can pinpoint the location for herbicide spraying [125].
However, there is no guarantee that it can be fully resolved
[126]; drone handling techniques and related tools such as
accurate and fast field data support can help in effective solu-
tions in a timely manner [127]. The second approach is for
early monitoring at the beginning of the crop development
using high-resolution images drones and a unique method
called OBIA. This method analyzes nonpixel objects like
the traditional method, and the RGB sensors are very suit-
able to use because their spatial resolution exceeds the spec-
tral resolution [128]. Using the latest technology can save a
lot of labor and time identifying weeds and their eradication
methods [129, 130]. This drone technology has been shown
to significantly reduce the use of poisons without affecting
crop yields [122]. In the future, high-resolution hyperspectral
with a combination of spectral discrimination and OBIA will
be utilized effectively. Figure 10 shows the weed management
phase in a plantation system using drone technology.

3.9. Irrigation Management. In recent years, crop irrigation
information can be obtained through satellite remote sens-
ing images from various platforms as it has an advantage
in terms of crop coverage area. However, the problem of
public coverage and satellite remote sensing that is not in
the orbital position during the plant development stage
affects drone technology’s use completely [132]. Izzuddin
et al. [133] proposed an installation of thermal infrared sen-
sor on a drone to enable the system to obtain the canopy
temperature as this sensor is lighter and can produce more
stable information; however, it will easily influence by air
temperature and human activity [134] compared to multi-
spectral sensors.

Besides that, drones equipped with thermal cameras can
detect possible pooling or leaks in any irrigation system. A
single high-resolution integrated with geolocated map of
the field will highlight stressed areas. This map can also be
used in the context of variable rate irrigation (VRI) applica-
tions. VRI applications can optimize the irrigation system

around the fields and automate the process based on data
collected by sensors, maps, and GPS [135]. It can also con-
tribute to identifying the water pollution around courses
and bodies and consequent degradation of water-related
ecosystems that might raise due to usage of agricultural che-
micals that seep into nearby water system. Furthermore,
drone application can also observe serious soil degradation,
which threatens plant productivity [136].

4. Challenges of Drone Application/Limitations

The use of drone technology for the plantation sector is
among the main challenges. The cost of procuring drones,
sensors and related materials, flight time, limited payload,
and frequently changing regulations by the relevant authori-
ties increases the chances of utilizing the drone effectiveness.
More comprehensive information on the opportunities and
challenges of drone application for the plantation and envi-
ronmental sectors were effectively discussed by Hardin and
Jensen [137], Zhang and Kovacs [138], and Ken and Hugen-
holtz [139].

4.1. Regulations. Drones equipped with the right sensors can
aid a farmer to navigate the location in the fields, observe it,
and generate statistics data related to the health and status of
the crops. Under the Department of Civil Aviation (DCA)
regulations, all measurements and observations done using
a drone must fall within the drone operator’s visual line of
sight (VLOS). The problem in drone application is most
larger farms have larger VLOS distance. It is impossible to
conduct multiple operations continuously and stitch the
multiple images together into a larger map as this will take
a lot of time and need technical expertise. Moreover, the
use of UAVs for agriculture is more commercial-based,
and all relevant legislation and national rules should be
followed.

4.2. Operating Time. For legal and safety purposes, drones
need to have an active pilot. Using a drone in agriculture

Phase 1: UAV weed recognition and classification Phase 2: UGV operating to remove unwanted weeds

Weeds
to keep

Weeds to
remove

Crop
Phase 3: crop growth with unwanted weeds removed

Figure 10: Weed management phase in a plantation system using drone technology [131].
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does not facilitate multitasking. There must be someone to
be present if something goes wrong. Even if a farmer is exe-
cuting an autopilot flight, the pilot cannot walk away to take
care of something else.

A common problem that usually arises is the estimation
of the flight durations as it usually affects ideal conditions. A
software may predict a time of flight based on a given area of
interest, but in real conditions, it may take four or five times
longer than the software prediction. Besides that, once the
images are acquired, it need to be processed and analyzed
to extract all the useful information. With an average super-
computer, few hours will be taken to analyze thousands of
photos.

4.3. Disadvantages of the Use of UAVs. Though drone appli-
cations for precision agriculture are growing, there is a num-
ber of barriers to their successful widespread adoption.
Various issues must be considered when employing a drone,
and these includes the path-planning process that does not
utilize an expert pilot, the high-speed ultra-low scenario,
data downloading task in real-time application, size, and
payload to prevent bottlenecks and software for automatic
analysis [138]. Another deterrent to invest in drone applica-
tions is the high cost of purchasing an unmanned aerial
system. On the other side, the lack of a consistent workflow
encourages stakeholders to use ad hoc procedures for imple-
menting precision applications. Furthermore, because preci-
sion agriculture necessitates data-intensive techniques for
utilization of the collected images, qualified personnel and
professionals are frequently required as a result, and an aver-
age farmer may require training or the assistance of an
expert to assist with picture processing, thereby increasing
the cost. Therefore, each farmer with a few and tiny agricul-
tural lands may be unable to use drone technologies. Hence,
stakeholders with vast cultivated areas who has higher profit
rates can use more advanced and expensive drone manage-
ment systems. The most industrial drones have a shorter
flight duration, ranging from 20min to 1 h, which can only
cover restricted area at each flight. On the other hand,
longer-flying drones are more costly. Furthermore, the suc-
cessful utilization of drones is influenced by the weather.
The flight should be postponed, for example, on a very bad
day. The weight and size of the sensors in the low-cost drone
are the drone’s other restrictions such as smaller and
medium-sized drones are usually less steady and precise,
and less powerful engines and low-cost drones have diffi-
culty reaching a specific altitude [140].

5. Conclusion and Recommendations

Precision agriculture has incorporated cutting-edge technol-
ogies to boost crop output over the last decade. These tech-
nologies are important in situations where it is impossible to
spray chemicals on crops due to a lack of labor. This method
also makes the work of spraying easier and faster. The sug-
gested solution explains how to monitor crops using a mul-
tispectral camera mounted on a drone. The camera gathers
photographs, and the geographic indicator analyzes them
throughout a single trip. It may be easier to pinpoint the

areas that require pesticide or fertilizer application based
on the findings. The pesticides will be sprayed by the drone
sprinkling system using GPS coordinates exclusively on
affected regions where the NDVI has identified no vegeta-
tion. This could help cut down on resource waste like water
and chemicals. Precision agriculture with drones is still in its
early stages, and drone technology for agriculture applica-
tions has room for improvement. Enhanced image process-
ing approach, less costly, minimum flight duration, new
sensor designs, batteries, low volume sprayers, and nozzle
types are all expected to be examined as drone technology
advances. Drones based on remote sensing for agricultural
applications should be the subject of a large number of
experimental research. In the not-too-distant future, these
systems will be more prominent in precision agriculture
and environmental monitoring.

Abbreviations

BSR: Basal stem rot
CCCI: Canopy-chlorophyll content index
CNN: Convolutional neural network
CWSI: Crop-water stress index
DCA: Department of Civil Aviation
DSM: Digital surface model
GDSI: Ganoderma disease severity index
GIS: Geographic information system
GNSS: Global navigation satellite system
GPS: Global positioning system
GSM: Global system for mobile communications
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ICT: Information and communication technology
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IoT: Internet of Things
IPM: Integrated pest management
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LCD: Liquid-crystal display
LiDAR: Light detection and ranging
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communicating with drones
MEMS: Microelectromechanical system
MS: Multispectral
NDVI: Normalized difference vegetation index
NIR: Near infrared reflectance
OBIA: Object-based image analysis
PA: Precision agriculture
RGB: Red-green-blue
RPAS: Remotely piloted aerial systems
RS: Remote sensing
SSWM: Site-specific weed management
TIR: Thermal infrared
UAS: Unmanned aerial systems
UAV: Unmanned aerial vehicle
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