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The health management of weather radar plays a key role in achieving timely and accurate weather forecasting. The current
practice mainly exploits a fixed threshold prespecified for some monitoring parameters for fault detection. This causes
abundant false alarms due to the evolving working environments, increasing complexity of the modern weather radar, and the
ignorance of the dependencies among monitoring parameters. To address the above issues, we propose a deep learning-based
health monitoring framework for weather radar. First, we develop a two-stage approach for problem formulation that address
issues of fault scarcity and abundant false fault alarms in processing the databases of monitoring data, fault alarm record, and
maintenance records. The temporal evolution of weather radar under healthy conditions is represented by a long short-term
memory network (LSTM) model. As such, any anomaly can be identified according to the deviation between the LSTM-based
prediction and the actual measurement. Then, construct a health indicator based on the portion of the occurrence of deviation
beyond a user-specified threshold within a time window. The proposed framework is demonstrated by a real case study for the
Chinese S-band weather radar (CINRAD-SA). The results validate the effectiveness of the proposed framework in providing

early fault warnings.

1. Introduction

A weather radar is a type of radar used to find precipitation, cal-
culate its motion and intensity, and estimate the precipitation
type [1]. Typically, a weather radar consists of five main subsys-
tems including signal processor, transmitter, antenna, receiver,
and control/communication processor. The data is sent to the
data centre and is essential for timely and accurate weather fore-
casting. Modern weather radar has become more advanced with
higher levels of digitization and integration, which poses chal-
lenges to maintaining its operational efficiency [2]. There is a
need for proactive maintenance programs to monitor and man-
age the health condition of weather radar in a cost-effective
manner. In the current practice, a fault alarm scheme is imple-
mented by setting a predefined threshold for some state param-
eters, which often causes a large number of false alarms mainly
due to the evolving working environments and the weakness of
fixed threshold strategies [3].

The recent advances of machine learning provide power-
ful tools to explore the value of operational data in the health
monitoring of weather radar. However, it is still at an infant
stage for the meteorological community to use the data accu-
mulated through the operating experience of weather radar
[3-5]. Indeed, a wide range of methods has been applied in
other industrial sectors that utilize data analytics to extract
knowledge from historical data [6]. For instance, develop a
knowledge-based system approach for sensor fault detection
[7], diagnose the fault of rotating machinery based on deci-
sion tree and principal component analysis [8], monitor the
condition of bridges based on a clustering approach [9], and
identify contamination source using a sequential Bayesian
approach [10].

Growing attention has been paid to deep learning tech-
niques for end-to-end health management frameworks,
because of their capability to handle large datasets and to
automatically learn hidden features. Various deep learning
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architectures and their variants are employed for fault detec-
tion, diagnosis, and prognostics such as feedforward neural
network, convolutional neural network, recurrent neural
network, and autoencoder [11]. For instance, develop a con-
volutional neural network-based model to detect wafer
structural defect using wafer images [12], adopt a stacked
autoencoder for the fault diagnosis of rotating machinery
[13], and address the variable working conditions through
deep transfer learning [14, 15]. Note that most current stud-
ies are developed using simulation or lab-testing datasets.
There is still a gap for real field applications in aggregating
data from various sources, which raises the challenges of
data preparation [16]. The literature on deep learning appli-
cations in PHM is quite large and has received growing
attention in a broad range of sectors. We refer the interested
readers to the references in [17, 18] for a comprehensive
review on this topic.

In this paper, we propose a deep learning-based health
monitoring framework with real applications to Chinese S-
band weather radar (CINRAD-SA). In particular, we
develop a long short-term memory (LSTM) network-based
predictive model to capture the temporal patterns of work-
ing conditions of weather radar. The multidimensional
time-series data collected in the normal condition are used
to train the LSTM network and hence obtain an LSTM net-
work to represent the health state of weather radar. Given
any future time instant, the anomaly can be identified based
on the deviation between the actual measurement and the
prediction provided by the LSTM. Once the degree of devi-
ation goes beyond a user-specified threshold, the weather
radar would be considered at a fault condition. Ultimately,
the number of occurrences beyond the threshold within a
time window would signify the severity of abnormalities,
which is then used to construct the health indicator of the
weather radar.

The effectiveness of our proposed framework is demon-
strated using the operational data obtained at a radar station
from 2019/01/01 to 2020/10/14. We discuss the issues in
problem formulation and our solution based on a two-
stage approach. Then, we validate the proposed framework
by successfully showing an early warning of a severe fault
that occurred on 2020/01/14. The results indicate the poten-
tial value of the proposed framework in support of practical
maintenance planning.

The rest of this paper is organized as follows. Section 2
describes the background of recurrent neural networks and
the data acquired through the operational experience of
CINRAD-SA. Section 3 presents the proposed framework
to predict and assess the health condition of weather radar.
Section 4 demonstrates the proposed framework using a real
case study. Section 5 presents the conclusions and discusses
future research.

2. Background

2.1. Data Available in the Chinese S-Band Weather Radar.
There are three types of data collected through the operation
of the CINRAD-SA: (1) the real-time monitoring data are
multidimensional time series in form of floating-point and
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are collected based on the built-in sensors of the weather
radar. There are typically hundreds of parameters for a
weather radar; (2) fault alarm records are stored as a binary
data format once some monitoring parameters go beyond a
prespecified threshold value. Note that most of the alarm
records are false alarm without the actual occurrence of
fault; and (3) maintenance records contain the repair start
and end times, the fault description, the replacement part,
and the affiliated subsystem. The maintenance records can
be used to locate the actual occurrence of a fault.

2.2. Long Short-Term Memory. An LSTM is a type of recur-
rent neural network (RNN) that is specialized for sequential
data such as time-series data, text stream, and audio clips.
RNN can learn the sequential characteristics of data by for-
mulating a looping mechanism through a stack of building
units, called the cells. Specifically, a cell can memorize the
information given the current input and then pass through
the same cell sequentially to produce a single output for each
step, namely, the hidden state. Then, feed this hidden state
and new data input to the next step. This allows the cell in
the next step to learn from the previous steps, to understand
the sequential characteristics of the data.

As the simplest RNN, the vanilla RNN only has one hid-
den gate and is facing a common problem of gradient van-
ishing given long sequences of data. Hence, various cell
designs lead to variants of RNN, such as gated recurrent unit
and LSTM [11], among which the latter is the most com-
monly used. LSTM cell consists of three gates: forget, input,
and output gates, the operations of which are shown in
Figure 1. The previous hidden state H, , and the current
data X, are fed into the forget gate to remove the informa-
tion that is not relevant to the previous cell. Then, update
the cell state given the past hidden state and the current state
using the input gate i, and generate a new hidden state H,
using the output o, based on the information of the updated
cell C,.

3. Proposed Health Monitoring Framework

This section presents the proposed framework as illustrated
by the flowchart in Figure 2. There are two main parts
including oftline development and online deployment. The
historical data would be prepared and preprocessed to be
used for the LSTM-based predictive model development in
the offline stage. Then, construct the health indicator of
weather radar by leveraging the LSTM-based prediction
and the online measurement. This results in a health moni-
toring framework that tracks the health condition of weather
radar and provides early warning one health indicator. The
details of each part are discussed in the following sections.

3.1. Problem Formulation. We develop a two-stage approach
to address the challenges involving problem formulation.
There are two main challenges as follows:

(i) The first challenge is data preparation to label the
available monitoring data as either faulty or healthy
conditions. Particularly, the monitoring data and



Journal of Sensors

FIGURE 1: A diagram of the cell design of the long short-term
memory (LSTM) network [19].

fault alarm records have the same timestamp. Ide-
ally, the fault alarm records can be applied to anno-
tate the radar condition. However, most of the fault
alarm records are false alarms and cannot properly
represent the actual radar condition and due to the
methodological deficiency of the prefixed threshold
strategy in the current practice. On the other hand,
maintenance records represent the actual fault
occurrence but have timestamps different from the
real-monitoring data and fault alarm records

(ii) The second challenge is the limited amount of actual
fault occurrence in the field. As such, it is not appli-
cable to formulate a classification problem and
directly use the binary state variable as the response
variable indicating the radar state

Figure 3 illustrates a flowchart of the proposed two-stage
approach. In the first stage, address the issue of abundant
false alarms by synchronizing between fault alarm records
and maintenance records. Specifically, we calibrate the fault
alarm records by labelling the alarm records as 1 if their
timestamp matches the maintenance records, otherwise 0.
This results in the calibrated fault alarm records, which are
representative of the actual radar faults. In the second stage,
we intend to explore the association between the monitoring
parameters and the calibrated fault alarm records. Then, for-
mulate the health monitoring task as a regression problem.
The response variable is set as the most relevant monitoring
parameter and uses the other associated monitoring param-
eter as the explanatory variable. Overall, it is important for
proper annotation of radar states and problem formulation
so that assure the quality of data for model development
and enable satisfactory predictive performance.

3.2. Predictive Model Development. Note that the working
condition of weather radar is evolving continuously and
pose challenges in learning predictive models with heteroge-
neity. Using the data of a large period would introduce much
heterogeneity and hence compromise the predictive perfor-
mance. Therefore, we recommend using the data two to
three weeks before the time of interest for model training
and learning to represent the latest working condition of

the weather radar. Suppose the condition of weather radar
can be represented by multidimensional time-series data, a
sliding window 1is firstly applied to segment the data into
batches and reshape the data into the format (number of
windows, window length, number of monitoring parame-
ters). This produces the data vector corresponding to each
LSTM cell as shown in Figure 4. Denote the training dataset
as D = {x, y}, where x represents the multidimensional time-
series data, and y represents the state parameter representing
the health state of the weather radar. The network training
aims to estimate the weights and bias parameters that char-
acterize the predictive model. This is conducted by gradient-
based optimization algorithms.

3.3. Health Indicator Construction. Suppose the LSTM-based
predictive model is well trained and is then deployed online,
given any time instant ¢, one can make a prediction y,,, for
a newly arrived real-time monitoring data x, within a time
window length n, where x, =[x, .-, x""! x]. As shown
in Equation (1). then calculate the deviation p, between the
prediction y, and the actual measurement y,, where o, mea-
sures the dispersion under healthy conditions and is calcu-
lated based on the entire training dataset.

p, =log ((yt_yt/\)2>. (1)

O

Given a time instant, fault alarm would be triggered once
its deviation p, greater than a user-specified threshold
Prhreshold> Which is set as 0.78 in this study. However, the like-
lihood of false alarms would be high due to the turbulence of
the working condition. To alleviate the issue, a health indica-
tor needs to be constructed by aggregating the features of
deviation within a time duration. The key idea is that the
number of occurrences beyond the threshold within a time
duration can be considered as a precursor of the possibility
or severity of abnormalities. Suppose the length of the time
window for health indicator construction is m, we derive
the health indicator as to the portion of occurrences less
than the threshold in Equation (2). The health indicator
can be used to track the health evolution of weather radar
and provides references to support maintenance planning.

Zr'ill(pt_j+1 < P hreshold)
H, == — k , (2)

where H, is the health indicator at time ¢, and I(e) is the
indicator function, which equals 1 for deviation less than
the threshold, and otherwise equals 0. The health indicator
ranges from 0 to 1. The higher the health indicator, the bet-
ter the performance of weather radar.

4. Case Study

This section demonstrates the real application of the pro-
posed framework to monitor the health evolution of weather
radar. Section 4.1 describes the problem formulation and
model development. Section 4.2 presents the results and
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FiGURE 2: Flowchart of the proposed health monitoring framework for the weather radar.

discussions. The proposed framework was developed based
on Python v3.6 and TensorFlow v1.5.0 using a desktop with
Intel Core i7 9700 CPU@3.00GHz and 32 GB DDR4 RAM.

4.1. Problem Formulation and Model Development. For
problem formulation, we apply the two-stage approach pro-
posed in Section 3.1 to process the historical data as follows.
(1) Use the maintenance records to calibrate the fault alarm
records. Any fault alert records that happen within 6
minutes forward or backward of the maintenance records
would be annotated as the actual faulty condition (1), other-
wise healthy condition 0; (2) investigate the association
between the monitoring parameters and the calibrated fault
alarm records using the stepwise regression method [20].
We start with no monitoring parameter and test the addition
of each monitoring parameter based on a linear regression
model. The monitoring parameter is added if its inclusion
can statistically significantly improve the model fit. Repeat
this process until no parameter can further improve the
model.

Indeed, the parameters considered important for fault
detection might vary accordingly in different radar stations.
This would detrimentally affect the stability of the prognos-
tic model. Therefore, the feature selection is conducted using
the historical data from 31 radar stations as summarized in
Table 1. For instance, in the first radar station, we analyzed

the data collected between 1/1/2019 and 10/14/2020. The
data contains 177814 examples with 139 monitoring param-
eters, each of which is collected every 6 minutes, 57625 fault
alarm records, and 8 maintenance records. The number of
false fault alarms is far greater than the actual number of
faults when comparing the number of fault alarm records
and the maintenance records. This highlights the limitation
of the current practice using a predefined threshold as dis-
cussed in Section 3.1.

We proceed to identify the top monitoring parameters
for each radar station, respectively, which account for 95%
of the sum of the absolute value of the regression coefficient.
Then, aggregate all the identified monitoring parameters.
For the parameters shared in multiple stations, we sum up
their regression coefficient in each station, namely, aggre-
gated regression coefficient. The importance of each param-
eter can be further measured by the percentage of
contribution to the total aggregated regression coefficient.
As such, 38 monitoring parameters are identified as summa-
rized in Table 2 in descending order. Expert judgment from
the radar specialist is used as additional data for aiding fea-
ture selection. Accordingly, we screen out the parameters
with an index within a range [24, 25] and [30, 38]. Finally,
this results in 27 monitoring parameters in this study. This
could help eliminate the parameter that is not important
from a perspective of radar operation and also reduce the
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TaBLE 1: Summary of the historical dataset from 31 radar stations.
Index Starting date Ending date Number of data Number of fault alarms Number of maintenance records
1 1/1/2019 10/14/2020 177814 57625 8
2 1/1/2016 12/31/2017 326441 1119 4
3 1/1/2016 12/31/2017 168695 1332 4
4 1/1/2016 12/31/2017 174460 168 4
5 1/1/2016 12/29/2017 150898 1168 3
6 1/1/2016 12/31/2017 360754 1673 3
7 1/1/2016 12/31/2017 224993 2783 2
8 1/1/2016 12/31/2017 293327 3647 2
9 1/1/2016 12/31/2017 180917 25 2
10 1/1/2016 12/31/2017 196358 3012 2
11 1/1/2016 12/31/2017 168769 3963 2
12 1/1/2016 12/31/2017 355831 1069 2
13 1/1/2016 12/31/2017 174854 1796 2
14 1/1/2016 12/31/2017 185265 1571 2
15 1/1/2016 12/31/2017 265552 1063 1
16 2/25/2016 12/31/2017 248989 4734 1
17 1/1/2016 12/5/2017 167021 1233 1
18 1/1/2016 12/31/2017 164983 635 1
19 1/1/2016 12/31/2017 181167 8682 1
20 1/1/2016 12/31/2017 314534 5571 1
21 1/1/2016 12/31/2017 174489 391 1
22 1/1/2016 12/31/2017 180082 2781 1
23 1/1/2016 12/31/2017 116269 2222 1
24 1/1/2016 12/31/2017 172160 136 1
25 5/23/2016 12/31/2017 143409 981 1
26 1/1/2016 12/31/2017 224820 4674 1
27 5/23/2016 12/31/2017 143994 119 1
28 1/1/2016 12/31/2017 187362 8693 1
29 1/1/2016 12/31/2017 437120 776 1
30 1/1/2016 12/31/2017 203572 4423 1
31 1/1/2016 12/31/2017 140639 3316 1

dimensionality of the data to facilitate the following mode
development.

The parameter of ANT_AVG_PWR has the strongest
relationship with a regression coefficient far greater than
that of the other monitoring parameters. Therefore, the
parameter of ANT_AVG_PWR is set as the response var-
iable to represent the radar state, referred to as the state
parameter in the following discussions. The other moni-
toring parameters constitute a 27-dimensional feature
matrix describing the operating condition of weather radar
and are used as the explanatory variables in the predictive
model.

To demonstrate the proposed framework, we examine
that whether the proposed framework can provide an early
warning of the occurrence of an actual fault on 2020/01/14.
A detailed failure analysis report showed that the root cause
is the inverse peak overcurrent resulting from a transmitter
modulator failure. We adopt the data collected both before
and after the fault occurrence that is from 2019/11/01 to

2020/01/02 for model development. Specifically, the radar
worked under healthy conditions from 2019/11/01 to 2020/
01/02, and hence the corresponding data is used as the train-
ing dataset with 15435 examples; use the data between 2020/
01/03 and 2020/01/20 as the test dataset with 4022 examples
in either faulty or health condition. The training and test
datasets are standardized and are reshaped with a time win-
dow length of 15. The model architecture consists of an
LSTM layer.

4.2. Results and Discussions. Figure 5 shows a comparison
between the actual state parameter and the LSTM-based pre-
diction in both training and testing phases, where the x-axis
is the operational time of weather radar, and the y-axis is the
state parameter. The prediction shows a good fit for the
actual measurement in the training phase. A significant dif-
ference is observed between the prediction and actual mea-
surement in the testing phase, which indicates the
occurrence of a radar fault.
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TaBLE 2: The top monitoring parameters associated with the calibrated fault alarm records of weather radar based on the historical dataset

from 31 radar stations.

Index Monitoring parameters Aggregated regtession Importance Description
coeficient measure
1 ANT_AVG_PWR 71.19 35.12% Average power of horizontally oriented antennas
2 XMTR_AVG_PWR 35.28 17.41% Average power of transmitter
3 ANT_PEAK_PWR 26.49 13.07% Peak power of horizontally oriented antennas
4 XMTR_PEAK_PWR 14.88 7.34% Peak power of transmitter
5 EXPECTED_REFL_AMP8 7.29 3.60% Reflectivity expectation 8
6 MEASURED_RF8_AMP3 4.19 2.07% KD calibration measurement 3
7 MEASURED_REFL_AMP7 4.02 1.98% Reflectivity measurement 7
8 MEASURED_REFL_AMP2 39 1.92% Reflectivity measurement 2
9 MEASURED_REFL_AMPS8 3.56 1.76% Reflectivity measurement 8
10 UNFILTERF}RV—EIN—CHAN— 32 1.58% Power of the horizontal channel before filtering
11 ANT PWR MTR ZERO 581 1.39% Power zero-calibration of horizontally oriented
- = = : =77 antennas
12 MEASURED_RF8_AMP2 2.4 1.18% KD calibration measurement 2
13 MEASURED_REFL_AMP3 2.2 1.09% Reflectivity measurement 3
14 EXPECTED_REFL_AMP6 1.7 0.84% Reflectivity expectation 6
15 EXPECTED_RF8_AMP3 1.52 0.75% KD calibration expectation 3
16 MEASURED_RF8_AMP6 1.48 0.73% KD calibration measurement 6
17 MEASURED_REFL_AMPI1 1.45 0.72% Reflectivity measurement 1
18 MEASURED_RF8_AMP4 1.43 0.71% KD calibration measurement 4
19 FILTEREDP—VI\}III{\I ~CHAN_ 1.31 0.65% Power of the horizontal channel filtered
20 MEASURED_REFL_AMP4 1.31 0.65% Reflectivity measurement 4
21 MEASURED_RF8_AMP5 1.25 0.62% KD calibration measurement 5
22 EXPECTED_RF8_AMP1 1.18 0.58% KD calibration expectation 1
23 MEASURED_RF8_AMP1 1.16 0.57% KD calibration measurement 1
24 EXPECTED_RF8_AMP4 1.1 0.54% KD calibration expectation 4
25 IDU_TEST DETECTIONS 1.1 0.54% Number of interference detections
26 EXPECTED_REFL_AMP1 1.08 0.53% Reflectivity expectation 1
27 MEASURED_REFL_AMP6 0.95 0.47% Reflectivity measurement 6
28 XMTR_PWR_MTR_ZERO 0.85 0.42% Power zero-calibration of transmitter
29 EXPECTED_REFL_AMP4 0.59 0.29% Reflectivity expectation 4
30 EXPECTED_REFL_AMP5 0.49 0.24% Reflectivity expectation 5
31 EXPECTED_RF8_AMP6 0.33 0.16% KD calibration expectation 6
32 EXPECTED_RF8_AMP5 0.3 0.15% KD calibration expectation 5
33 EXPECTED_REFL_AMP7 0.2 0.10% Reflectivity expectation 7
34 POWER—MIE;ER—RATIO— 0.18 0.09% The power ratio of transmitter to antenna
35 EXPECTED_REFL_AMP3 0.1 0.05% Reflectivity expectation 3
36 RNLPLG 0.1 0.05% Long pulse noise level
37 EXPECTED_REFL_AMP2 0.08 0.04% Reflectivity expectation 2
38 MEASURED_REFL_AMP5 0.05 0.02% Reflectivity measurement 6

We further calculate the deviation between the actual
measurement and prediction according to Equation (1).
Figure 6 displays the deviation’s temporal evolution and dis-
tribution. In Figure 6(a), the deviation fluctuates in healthy
conditions below the threshold value as illustrated by the

red dotted line and then tends to increase rapidly once an
anomaly happens. As expected, the distribution of the devi-
ation is positively skewed in Figure 6(b). A bimodal distribu-
tion is observed and shows the existence of two different
modes (i.e., healthy and faulty conditions) in the operational
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weather radar. Only a few occurrences beyond the threshold
value of 0.78 and provide the basis to construct the health
indicator.

The health indicator is derived by examining the devia-
tion calculated within a duration of 80 measurements. This
is equivalent to 8 hours since the measurement interval is
6 minutes. In other words, we determine the radar condition
based on its overall performance within an 8-hour duration,
to alleviate the impacts of the turbulence of working condi-
tions. The resulting health indicator is illustrated in
Figure 7, where the yellow line marks the time of actual fault
occurrence and the red line marks the fault prediction given
a threshold of health indicator as 0.05. Specifically, the time
of fault prediction triggered is on 2020/01/04 at 17:15,
which is nearly 10 days ahead of the actual fault occurrence
on 2020/01/14. This would provide an early warning and
hence avoid serious consequences and unscheduled down-
time. Also, an early warning would provide sufficient time
to order the repair or replacement parts as needed. Note that
specifying the threshold of health indicators involves a
trade-off between the operational economics and the risk
of missed detections of actual faults. A higher threshold
value leads to a lower risk of missed detection but raises
operational costs.

5. Conclusions

In this paper, we developed a deep learning-based health
monitoring framework based on the real-time monitoring
parameters in weather radar. Specifically, we proposed a
two-stage approach to address the issues of fault scarcity
and abundant false fault alarm records in the current prac-
tice. Then, formulate the health monitoring framework as
a regression problem based on the monitoring parameter
relevant to actual radar fault. An LSTM model was devel-
oped to represent the temporal evolution of radar under
healthy conditions. In doing so, any anomaly can be cap-
tured by the deviation between the actual measurement

and the prediction provided by the LSTM. Ultimately, a
health indicator of weather radar was constructed based on
the portion of the occurrence of deviation beyond a user-
specified threshold within a time window. The effectiveness
of the proposed framework was validated by the data col-
lected from 2019/01/01 to 2020/10/14. The results showed
that the proposed framework successfully provided an early
warning of the actual fault occurrence on 2020/01/14. Future
work would be the development of maintenance planning
based on the health monitoring framework and case studies
using the monitoring data collected in other radar stations.
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