
Retraction
Retracted: A Monitoring System for Air Quality and Soil
Environment in Mining Areas Based on the Internet of Things

Journal of Sensors

Received 13 September 2023; Accepted 13 September 2023; Published 14 September 2023

Copyright © 2023 Journal of Sensors. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article has been retracted by Hindawi following an investi-
gation undertaken by the publisher [1]. This investigation has
uncovered evidence of one ormore of the following indicators of
systematic manipulation of the publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research reported
(3) Discrepancies between the availability of data and the

research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Peer-review manipulation

The presence of these indicators undermines our confidence
in the integrity of the article’s content and we cannot, therefore,
vouch for its reliability. Please note that this notice is intended
solely to alert readers that the content of this article is unreliable.
We have not investigated whether authors were aware of or
involved in the systematic manipulation of the publication
process.

Wiley and Hindawi regrets that the usual quality checks did
not identify these issues before publication and have since put
additional measures in place to safeguard research integrity.

We wish to credit our own Research Integrity and Research
Publishing teams and anonymous and named external research-
ers and research integrity experts for contributing to this
investigation.

The corresponding author, as the representative of all
authors, has been given the opportunity to register their agree-
ment or disagreement to this retraction.Wehave kept a recordof
any response received.

References

[1] H. Dai, D. Huang, and H. Mao, “A Monitoring System for Air
Quality and Soil Environment in Mining Areas Based on the
Internet of Things,” Journal of Sensors, vol. 2022, Article ID
5419167, 7 pages, 2022.

Hindawi
Journal of Sensors
Volume 2023, Article ID 9792129, 1 page
https://doi.org/10.1155/2023/9792129

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9792129


RE
TR
AC
TE
DResearch Article

A Monitoring System for Air Quality and Soil Environment in
Mining Areas Based on the Internet of Things

Hongjing Dai , Dena Huang , and Haili Mao

School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun, Guizhou 558000, China

Correspondence should be addressed to Haili Mao; 20160612@ayit.edu.cn

Received 24 July 2022; Revised 7 August 2022; Accepted 13 August 2022; Published 26 August 2022

Academic Editor: C. Venkatesan

Copyright © 2022 Hongjing Dai et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to solve the intensifying problem of heavy metal pollution of soil in mining areas, a method for monitoring air quality and
soil environment in mining areas based on the Internet of Things is proposed. Using meta-analysis method and health risk
assessment method, the impact of mining on soil heavy metal content in Southwest China was quantitatively analyzed, and the
relationship between soil heavy metal value and its potential influencing factors was discussed, as well as the heavy metal
pollution, ecological risk, and health caused by soil mining activities. Risks were assessed. The results showed that artificial and
oral intake were the main modes of soil heavy metal exposure, with the highest daily intakes for noncarcinogenic risk children
and the highest daily intakes for carcinogenic risk adult females. The noncarcinogenic risk (HQ>1) of soil As and Pb exposure
to children was 3.74 and 1.44, respectively. The carcinogenic risk values of As, Cd, Cr, and Ni in soil were all higher than 10-6,
indicating that the carcinogenic risk was within the tolerance range of human body. Children were exposed to the combined
noncarcinogenic risk (HI = 3:83), and the risk values of the three types of recipients were 1:19 × 10−4, 1:21 × 10−4, and 1:06 ×
10−4, respectively. The correlation between heavy metal content and environmental factors was obtained. It is verified that the
system in this paper can effectively monitor the meteorological environment and soil environment, and at the same time, it
reveals the pollution law of heavy metals in the soil of the mining area, which provides supporting conditions for future
mining and heavy metal pollution management.

1. Introduction

In recent years, the rapid exploitation of mineral resources
in China has not only promoted the development of social
economy, but also caused serious soil pollution. Soil pollu-
tion is a pollution caused by a kind of toxic substances pro-
duced as a result of unreasonable human activity through
the way such as atmosphere, the earth surface, or under-
ground runoff into the soil. When the soil accumulation
exceeds the self-purification capacity of the soil itself, the
composition, structure, and function of the soil will change,
and microbial activities will be crimped, which can harm
human health eventually through the food chain. Data col-
lection is shown in Figure 1 [1]. Heavy metals refer to ele-
ments with a density greater than 5 g cm-3, which gradually
accumulate after entering the soil. When exceeding a certain
standard, they are absorbed by soil colloid. After physical or

chemical reactions, they will form a pollutant. These pollut-
ants cannot be degraded by microorganisms. They have
great toxicity, and they are easy to enrich in the soil, result-
ing in serious soil heavy metal pollution. This kind of pollu-
tion has the characteristics of long-term, hidden, and
irreversible, which will affect the normal agricultural pro-
duction and life. It is a kind of soil pollution that is difficult
to treat. Researches show that the area of soil heavy metal
pollution in China has reached 50 million mu and the con-
tent of heavy metals in soil shows a rising trend, mainly
Cd (cadmium), Pb (lead), Hg (mercury), and other heavy
metals [2]. Heavy metal pollution not only destroys land,
but also causes certain harm to human health. For example,
excessive intake of Cd will lead to hypertension and cardio-
vascular and cerebrovascular diseases. Arsenic (As) is recog-
nized as a carcinogenic heavy metal, which has obvious
accumulation in the human body. It can cause red blood cell
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cause cancer and teratogenesis in serious cases. Excessive Pb
in children will cause mental decline and growth retardation.

The era of big data has arrived, and big data has been
involved in all walks of life. The data resources mastered
by all walks of life are important wealth in the future. The
government use big data thinking to solve specific problems.
The big data thinking and technology are applied in envi-
ronmental governance to provide data support for environ-
mental public governance. Through data collection, real-
time monitoring, the citizen participation in the form of
management, and environmental governance, it can provide
scientific and accurate thinking for the government
decision-making in public environment monitoring and
early warning [3].

2. Literature Review

At present, local provinces and cities in China are constantly
developing the level of environmental protection informa-
tion, and they are trying to establish information centers to
coordinate environmental data resources. Ahmad et al. sum-
marized the technologies involved in the application of envi-
ronmental big data [4]. In the platform category, the local
platform architecture mainly included Hadoop and Map R.
The cloud architecture mainly included AWS and Azure.
In the database category, the SQL category included Green-
plum, No SQL category included HBase, and New SQL
included Spanner. Data warehouse technology included
Hive. In data processing, batch processing technologies
included Map Reduce, and data flow processing technologies
included Storm. Query languages included Hive QL.
Machine learning included Mahout. And log processing
included Splunk. Yang et al. summarized the key technolo-
gies of industrial energy and environment big data [5]. They
put forward that big data was a long industrial chain. Data
collection stage mainly based on industrial Internet of
Things technology. Data preprocessing stage included data
extraction and cleaning. Big data storage and management
phase included development of distributed file system opti-
mization storage, innovation of database technology, and
maintenance of big data security. Data analysis and mining
stage mainly developed various machine learning algorithms
and database methods. In the parallel stage of data computa-
tion, Hadoop architecture should be adopted. FLASH and
other ways were adopted to achieve data visualization.
Hamidović et al. emphasized the importance of heteroge-
neous data sources in environmental big data. They pro-

posed that the real environmental big data should break
the traditional data sources, namely the data of environmen-
tal departments themselves, and related departments
included more emerging Internet data and smart facility
data [6].

In the research, the process of big data technology was
attempted to apply in environmental monitoring and early
warning. Combining theoretical knowledge and empirical
practice, the environmental big data was established in the
field of public governance environment. Through specific
case analysis, in view of the environmental problems, envi-
ronmental public service solution and effective governance
based on large data was put forward. By using big data in
high efficiency value in the process of management decision,
environmental big data was established, and environmental
big data system and governance mechanism were formed,
providing a constructive reference for the government in
the construction of basic environmental public services. It
helped government departments to carry out accurate regu-
lation and optimize the government’s environmental public
service level [7, 8].

By using meta-analysis method and health risk assess-
ment method, the quantitative analysis of the mining impact
on soil heavy metal content in Southwest China was made,
the effect of the relationship between soil heavy metals value
and its potential impact factors was discussed, and the soil
heavy metal pollution, the ecological risk, and the health risk
caused by mining activities were evaluated. In the research,
the carcinogenic risk caused by heavy metal pollution in
mining area was analyzed to solve the problem of analyzing
the harm caused by soil heavy metal pollution to human
body.

3. Research Methods

3.1. Meta-analysis. In meta-analysis, the collected data were
divided into two groups according to the treatment group
and the control group, and pairwise pairing was performed.
By using model calculation method, the relationship
between the treatment group and the control group was
expressed by a numerical value, which was the effect size
(ES). In the research, the background values, sampling num-
bers, and standard deviations of heavy metals in soils of
Southwest China recorded by China Environmental Moni-
toring Station (1990) were selected as the control group.
The mean value, sampling quantity, and standard deviation
of soil heavy metal content extracted in the literature survey
were the treatment group [9, 10]. In the research,

Data analysis

Decision making
 and forecasting

Data processing

Data collection

Data mining
(processing and processing)

DaDa

Figure 1: The process of big data processing environmental information.
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logarithmic reaction ratio ðln RÞ was used to measure the
effect value. And its calculation formula was as follows.

ES = ln R = ln
Xt

Xc

� �
= ln Xtð Þ − ln Xcð Þ: ð1Þ

In Formula (1), Xt represented the average value of soil
heavy metals extracted from the literature. Xc represented
the background value of heavy metals in soils of provinces
in Southwest China. If the effect value was higher than 0, it
indicated that mining increased the content of heavy metals
in soil. The intrastudy variance (vi) corresponding to each
effect value could be calculated using the following formula.

vi =
S2t

NtX
2
t

+
S2c

NtX
2
t

: ð2Þ

In Formula (2), St and Sc were the standard deviations
(SD) of the mean value and background value of soil heavy
metals. Nt and Nc were the number of heavy metal groups
in soil survey of the control group and the treatment group,
respectively. In meta-analysis, there were two types of
models: fixed effect and random effect. The former only took
into account intrastudy differences, while the latter took into
account both intrastudy and interstudy differences. The soil
heavy metals in mining areas investigated in the research
were located in different geographical locations and natural
environments, and there were certain differences between
studies. Therefore, the random effect model was selected to
calculate its effect value [11, 12]. This model took into
account not only intrastudy variance but also interstudy var-
iance (τ2), which was estimated by maximum likelihood
function (REML). The weight wi of each study was calcu-
lated as follows:

wi =
1

vi + τ2
: ð3Þ

The weighted wi of each study could be used to calculate
the comprehensive effect value (ES+) after weighted average.
And the calculation formula was as follows:

ES+ =
∑k

i=1 wi + ESIð Þ
∑k

i=1wi

: ð4Þ

In Formula (4), wi and ESi were the weighted and
unweighted effect value of the ith pair of data, respectively.
k was the number of pairs between the control group and
the treatment group. At the same time, the 95% confidence
interval (CI) of the comprehensive effect value was calcu-
lated. If the 95% confidence interval (CI) of the comprehen-
sive effect value was greater than 0, it was believed that the
mining in Southwest China had a significant increase in
the content of heavy metals in soil (p < 0:05). If 95% confi-
dence intervals were all less than 0, mining in Southwest
China did not significantly increase the content of heavy

metals in soil (p < 0:05). If the 95% confidence interval con-
tained 0, it was believed that mining in Southwest China had
no significant impact on the content of heavy metals in soil
(p < 0:05) [13, 14]. In order to more conveniently explained
the influence of mining on the content of heavy metals in
soil in Southwest China, the percentage change of the con-
tent was calculated by the following formula:

PI = eES+ − 1
À Á

× 100%: ð5Þ

3.2. Health Risk Assessment Method. The health risks were
assessed by using a National Environmental Protection
Agency health risk assessment model, which linked soil
heavy metal pollution with human health and quantitatively
assessed the health risks of the exposed recipients. Carcino-
genic and noncarcinogenic risks were quantified based on
daily heavy metal intake in children, adult women, and adult
men. The calculation methods of daily intake under skin
contact (ADIder), hand-oral intake (ADIing), and oral-nasal
respiration (ADIinh) were as follows, and the specific mean-
ings of parameters are shown in Table 1.

ADIder =
C × SA × ABS × AF × EF × ED × CF

BW× AT
, ð6Þ

ADIing =
C × IR × EF × ED × CF

BW ×AT
, ð7Þ

ADIinh =
C × InhR × EF
PEF × BW× AT

: ð8Þ

The noncarcinogenic risk was expressed by the hazard
quotient (HQ) of heavy metals, and the comprehensive non-
carcinogenic risk was expressed by the total hazard index
(HI) of individual heavy metals. Rfdder, Rfding, and Rfdinh
were the reference doses [mg (kg day)-1] of heavy metal
intake in skin contact, hand-oral intake, and oral-nasal
respiratory exposure, respectively. The reference values are
shown in Table 2. If HQ or HI < 1 indicated that there
was no noncarcinogenic risk, otherwise, heavy metal expo-
sure presented a noncarcinogenic risk. The comprehensive
noncarcinogenic risk calculation formula was as follows.

HI =〠
i=1

HQi =〠 ADIder
Rfdder

+
ADIing
Rfding

+
ADIinh
Rfdinh

 !
: ð9Þ

The carcinogenic risk (CR) was the possibility of devel-
oping cancer after exposure to soil heavy metals in the whole
life cycle. SFder, SFing, and SFinh were soil heavy metal carci-
nogenic tilt factors [mg (kg day)-1] under skin contact, hand-
oral ingestion, and oral-nasal respiratory exposure, respec-
tively. See Table 2 [15, 16]. If CR < 10−6, there was no carci-
nogenic health risk. Between 10-6 and 10-4 was the range of
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human tolerable cancer risk; higher than 10-4 indicated the
existence of serious carcinogenic health risks, which should
be paid attention to. The comprehensive carcinogenic risk
calculation formula was as follows.

TCR =〠
i=1

CRi = ADIder × SFder + ADIing × SFing + ADIinh × SFinh:

ð10Þ

4. Results Analysis

4.1. Descriptive Statistics and Spatial Distribution of Heavy
Metal Content in Soil. The descriptive statistics of soil heavy
metals in Southwest China are shown in Table 3. The aver-
age contents of heavy metals except Cr and Ni exceeded
the national risk screening values of soil Environmental
Quality Standards for corresponding agricultural lands
(GB15618-2018). The average of soil As and Cd contents
exceeded the national risk control value (Table 3). The over-
standard rates of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn (the
percentage of the number of investigation groups exceeding

the national risk screening value in the total investigation
group) were 75.58%, 82.93%, 2.78%, 46.24%, 32.61%,
4.35%, 63.49%, and 50.43%, respectively. Among them, soil
Cd had the highest overstandard rate, and its average over-
standard multiple was 16.22. Soil As and Pb had higher
overstandard rate, with overstandard multiple of 8.20 and
4.31, respectively. The exceedance rate of Cr and Ni in soil
was less [17, 18]. The median of each heavy metal content
was lower than the average value, and the 95th percentile
value differed greatly from the maximum value, which
exceeded the corresponding control value (Table 3). This
indicated that the mining of mineral resources in Southwest
China led to a certain accumulation of heavy metals in soil,
among which Cd accumulation was the most and Cr accu-
mulation was the least. The results showed that the distribu-
tion area of high content in soil was not only related to soil
high background value, but also related to mining. Mineral
resources were widely distributed in these areas, and a large
number of heavy metal elements were released in the mining
process, so the distribution of heavy metals showed obvious
similar regional spatial distribution characteristics. As a
whole, the content of heavy metals in soil around mining
area in Southwest China was relatively high.

4.2. Influence of Mining on Soil Heavy Metals under Different
Land Use Types in Southwest China. Table 4 shows the
parameter significance of the influence factors of soil heavy
metals investigated in the mining area in Southwest China.
The land use types investigated in the research mainly
included abandoned land soil, arable land soil, and wood-
land soil. On the whole, the average effect of mining on
heavy metals under different land use types from high to
low was as follows: wasteland soil > cultivated soil > wood-
land soil (Table 4). The average effect value of heavy metals
in soil of abandoned mining areas was 2.59 (Table 4). Com-
pared with soil background value, its content increased by
1232.98%. The average effect of mining on cultivated land
and forest land was 1.43 (95% CI: 1.30–1.56) and 0.87

Table 1: Parameter significance and selected values of daily intake of heavy metals in soil.

Parameter Meaning Unit Child
Adult

Female Male

C Heavy metal content mg kg-1

SA Skin surface area exposed to soil cm2 9310 15310 16970

ABS Skin absorption factor Dimensionless 0.001 0.001 0.001

AF Adhesion coefficient of soil to skin mg (cm2 day)-1 0.2 0.07 0.07

EF Exposure frequency Day year-1 345 345 345

ED Exposed fixed number of year Year 6 24 24

CF Conversion factor kg mg-1 10-6 10-6 10-6

InhR Daily respiration rate m3 day-1 11.78 14.17 19.02

IR Soil digestibility mg day-1 200 100 100

BW Weight kg 27.7 54.4 62.7

PEF Particulate emission factor m3 kg-1 1:36 × 109 1:36 × 109 1:36 × 109

AT
Average non-carcinogenic time Day ED × 365 ED × 365 ED × 365
Average time to carcinogenesis Day 25550 25550 25550

Table 2: Reference doses and carcinogenic tilt factors of soil heavy
metals exposed by different pathways [mg(kg day)-1].

Rfdder Rfding Rfdinh SFder SFing SFinh

As 1:23 × 10−4 3 × 10−4 3 × 10−4 3.66 1.5 15.1

Cd 1 × 10−5 1 × 10−3 1 × 10−3 6.3 6.1 6.3

Cr 6 × 10−5 3 × 10−3 2:86 × 10−5 20 0.5 42

Cu 1:2 × 10−2 4 × 10−2 4:02 × 10−2 — — —

Hg 2:1 × 10−5 3 × 10−4 8:57 × 10−5 — — —

Ni 5:4 × 10−3 2 × 10−2 9 × 10−5 42.5 1.7 0.84

Pb 5:25 × 10−4 3:5 × 10−3 3:52 × 10−3 — 8.5×10-3 —

Zn 6 × 10−2 0.3 0.3 — — —

Note: —: no parameter.
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(95% CI: 0.34–1.40), respectively (Table 4). This showed that
arable land was more affected by mining activities than for-
est land. Figure 2 shows the effects of mining on soil heavy
metals under different land use types in Southwest China,
which showed that the influence of mining on abandoned
land was higher than that of arable land and woodland soil.
In arable soil, Cd (2.60), Hg (2.19), and Pb (1.86) were
mainly affected by mining, and the effect values of Cd
(2.60), Hg (2.19), and Pb (1.86) were higher (Figure 2).
Compared with the background value, the content increased
by 1246.37%, 793.52%, and 542.37%, respectively.

4.3. Influence of Mining on Soil Heavy Metals in Different
Provinces in Southwest China. Table 5 shows the overall het-
erogeneity of heavy metals in soils of mining areas in South-
west China. The p value of overall heterogeneity
ðQt = 129330:05, p < 0:0001Þ of soil heavy metals caused by
mining in Southwest China was lower than 0.05. As can be
seen from Table 5, the significance level (p value) of the
overall heterogeneity of individual heavy metals was all less
than 0.05, so it was necessary to introduce explanatory vari-
ables for analysis [19, 20]. The number of heavy metal
groups in A, B, C, D, and E and Xizang were 323, 72, 280,
22 and 10, respectively. According to the survey statistics,
except Cr, mining in A mine significantly increased the con-

tents of other heavy metals. The average effect values of Cd,
Pb, Zn, and As in soil were 3.21, 2.33, 1.75, and 1.45, respec-
tively. Compared with the background value, the heavy

Table 3: Descriptive statistics of soil heavy metals in mining areas in Southwest China extracted from the literature (mg kg-1).

Minimum 25 percentile Median Mean 75 percentile 95 percentile Maximum Screening value a Regulated value a

As 4.8 20.59 38.03 164.01 155.64 477.58 2423.57 20 100

Cd 0.19 1.03 3.46 9.73 11.15 46.53 66.17 0.6 4

Cr 18.06 50.92 82.45 101.13 125.95 186.13 683.57 250 1300

Cu 9.69 41.45 88.43 214.62 148 457.33 4480.87 100 —

Hg 0.06 0.22 0.59 3.12 1.27 18.84 35.1 1 6

Ni 12.87 36.41 57.8 74.72 74.25 164.55 656.11 190 —

Pb 9.44 72.65 250 732.14 748.39 2650.86 8816.34 170 1000

Zn 24.26 129.52 311.9 1483.57 1485.06 4924.12 36995.2 300 —

Note: Soil Environmental Quality Standard (GB15618-2018); descriptive statistics were obtained from the average of soil heavy metal content extracted from
literature.

Table 4: Parameter significance of influencing factors of soil heavy metals in the survey location of the mining area in Southwest China.

Influencing factors Number of observation group Effect value Upper limit Lower limit Heterogeneity

Land use type

Soil 33 0.87 0.34 1.40 Qm = 567:38,
df = 3,

(p < 0:0001)
The soil 531 1.43 1.30 1.56

Abandoned soil 38 2.59 2.10 3.09

Minerals

Non-ferrous ore 538 1.70 1.57 1.82 Qm = 691:83,
df = 3,

(p < 0:0001)
Coal mine 123 0.65 0.38 0.92

Ferrous ore 46 0.54 0.10 0.98

Geographical partition

A 323 1.83 1.66 1.99

Qm = 678:03,
df = 5,

(p < 0:0001)

B 72 1.81 1.46 2.16

C 280 0.93 0.75 1.11

D 10 1.43 0.48 2.37

E 22 0.94 0.31 1.58

Note: Qm is the heterogeneity caused by this influencing factor. Df is the degree of freedom. p < 0:05 shows that the influence of this factor is significant. The
upper limit and lower limit are the maximum and minimum value of 95% confidence interval, respectively. The number of observation group refers to the
number of heavy metal groups investigated.
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The dashed lines in different colors represent the weighted average 
effect values of various metals under different land use types

Figure 2: Influence of mining on heavy metals under different land
use types in Southwest China.
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927.79%, 326.31%, and 475.46%, respectively. The mining
of a mine significantly increased Cd (3.78), Pb (2.96), Zn
(2.27), and Hg (1.75) in soil than the other four heavy
metals. Compared with soil background value, its content
increased by 4281.6%, 1829.8%, 867.94%, and 475.46%,
respectively. The mining of B and C both resulted in a high
increase of Hg in soil. In Guizhou mining, soil Hg (2.49) had
the highest effect value, while soil Cu (0.25) had the lowest.
Compared with the background value, the content of Hg
in soil increased by 1106.13%. Mining in Chongqing also
significantly increased the content of Hg in soil, with an
effect value of 2.14.

4.4. Evaluation of Ground Accumulation Index of Heavy
Metal Content in Soil by Mining. The evaluation results
showed that the average ground accumulation index of the
eight heavy metals from high to low was Cd >Hg > Pb >
Zn > As > Cu > Ni > C. The pollution degree of heavy metals
in soil caused by mining was different. Cd was strongly pol-
luted. Hg and Pb were moderately to strongly polluted. Zn
and As were moderately polluted. Cu was slightly polluted.
Ni and Cr were pollution-free. The evaluation results of
potential ecological risk index showed that the average eco-
logical risk index of 8 heavy metals from high to low was
Cd/Hg > Pb/As > Cu/Zn/Ni/Cr. Soil heavy metals Cd and
Hg were in extremely strong ecological risk, and the risk
degree was higher than other heavy metals. The comprehen-
sive ecological risk of soil heavy metals was extremely high,
accounting for 39.72%, and Cd and Hg were the main con-
tributing factors to the ecological risk. The results of health
risk assessment showed that manual and oral intake was
the main way of soil heavy metal exposure, with the highest
daily intake for children under noncarcinogenic risk and the
highest daily intake for adult women under carcinogenic
risk. The exposure of soil As and Pb had a noncarcinogenic
risk to children, with a risk value of 3.74 and 1.44, respec-
tively. The carcinogenic risk values of As, Cd, Cr, and Ni
in soil were all higher than 10-6, indicating that the carcino-
genic risk was within the tolerance range of human body.
Children were affected by the combined non-carcinogenic
risk, and the risk values of all three types of recipients were
1:19 × 10−4, 1:21 × 10−4, and 1:06 × 10−4, respectively.

Based on the results, As, Cd, Hg, and Pb should be pri-
oritized in the mining area of Southwest China. Children
are a priority group of residents. Compared with the previ-
ous studies on soil heavy metals in single mining areas and
a few mining areas, the above results can provide more effec-
tive decision support for soil pollution prevention and con-
trol and soil environmental quality protection in mining
areas in Southwest China.

5. Conclusion

In the research, by using meta-analysis method and health
risk assessment method, the quantitative analysis of the min-
ing impact on soil heavy metal content in Southwest China
was made, the effect of the relationship between soil heavy
metals value and its potential impact factors was discussed,
and the soil heavy metal pollution, the ecological risk, and
the health risk caused by mining activities were evaluated.
To a certain extent, the research results quantitatively
assessed the impact of mining on soil heavy metals in South-
west China. Although some meaningful conclusions have
been drawn, there are also shortcomings, mainly in the fol-
lowing aspects.

(1) The fact that heavy metal content in the soil accumu-
lates or increases is influenced by many factors,
which is not just mentioned in the research. There
are many other possible factors, such as pH, soil
organic carbon, and mine production. The relevant
data involved in the investigation is less, which is
not easy to extract and need more case researches.
Therefore, it has not yet been discussed in the
research, and these factors should be taken into
account in future research

(2) The impact of soil heavy metal pollution on human
body is not only related to the amount of heavy
metal exposure, but also related to the biological
availability of heavy metals ingested by human body,
which should be paid attention to in future research

Mining has promoted the development of local econ-
omy, but the pollution of heavy metals in mining soil has
also affected the normal production and life of human
beings. And the accumulation of heavy metals in soil is also
a relatively complex process. In the future further analysis, in
addition to analyzing the increase of soil heavy metals
caused by mining, comprehensive consideration should be
given to the migration mechanism and form existence of
heavy metals themselves in the soil, so as to provide more
and more effective information for improving soil environ-
mental quality and building green mines.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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Table 5: Overall heterogeneity of all heavy metals caused by mining in Southwest China.

Heavy metals As Cd Cr Cu Hg Ni Pb Zn

Qt 8128.49 8290.86 4169.17 7437.63 4101.64 1339.61 30428.23 27456.61

p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Note: Qt represents the overall heterogeneity of the data and p represents the level of significance.
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