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Marine ecosystem is increasingly deteriorating. In order to assess anthropogenic influence and instigate appropriate remedial
actions, it is still of great significance to develop the technology of sensors applied for nutrient detection (e.g., nitrate,
phosphate, and silicate) in seawater. This brief review shows an important direction for the development of nutrient detection
sensors in seawater and also the limitations and challenges based on data from the ISI Web of Science database. Being different
from previous review papers, in this short critical review paper (1) we unified the unit of limit of detection (LOD) for making
the comparison within different researches possible; (2) only the literatures focusing on the technological development of
sensors in seawater were used; and (3) not only the detection methods but also the detected analytes and publication years
were discussed to supply more valuable information for the development of nutrient sensors applied in seawater. In total, 109
literatures were collected with regard to technological development. The quantity of literatures has increased most during
2011-2020. For analytes, literatures related to nitrate, phosphate, ammonium, and phosphate will continue to increase with
more accurate data. For detection methods, spectrophotometry, colorimetry, fluorimetry, and electrochemistry are the most
widely used sensors. LODs show thousands of orders. In general, there are lower LOD to nitrite and ammonium and
fluorimetry method. Now, for analytes, nitrate ð1:0983Þ > silicate ð0:5495Þ > phosphate ð0:4823Þ > ammonium ð0:1324Þ > nitrite ð
0:0568Þ. For detection methods, microfluidics ð1:7617Þ > electrochemistry ð1:2607Þ > colorimetry ð0:4462Þ > spectrophotometry
ð0:2941Þ > fluorimetry ð0:0558Þ. This result indicated that the development level of detection methods is closer for nitrate,
nitrite, phosphate, and silicate. For ammonium, spectrophotometry has significantly lower LOD than electrochemistry (p < 0:05
), and fluorimetry also has significantly lower LOD than electrochemistry (p < 0:05). Our results imply that sensors with
accurate LOD should be developed in the future. In addition, more detection methods should be considered by future sensors.

1. Introduction

Despite the fact that oceans cover more than 70% of our
planet and have a profound impact on global climate,
weather patterns, human health, agriculture, and commerce

[1, 2], human ability to make sustained measurements of
ocean processes is limited and much of the oceans remain
largely unexplored [3, 4]. Meanwhile, marine ecosystem is
increasingly deteriorating due to continuous development
and utilization of oceans by industrial pressures and growing
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population [5, 6]. These ecosystems of coastal zones, estuar-
ies, and gulfs have been gradually destroyed with different
extents, such as dumping of waste, construction of harbours,
dredging, and extraction processes [7, 8]. Furthermore, fre-
quently occurred marine natural disasters (e.g., tsunamis
and red tides) bring substantial social impacts and economic
losses [9, 10]. Therefore, the work of ocean environmental
monitoring is urgent and monitoring the concentration
changes and spatiotemporal distribution of nutrients in
ocean environments is significant. In order to assess the
impacts of these activities and instigate appropriate remedial
actions, it is of great significance to develop the technology
of sensors applied for ocean environmental monitoring,
including the detection of chemical elements (e.g., nitrate,
nitrite, phosphate, ammonium, and silicate), physical ele-
ments (e.g., pH, DO, and heavy metals), and biology (e.g.,
phytoplankton, benthonic animal, and fish).

Determining the distributions and variations of chemical
elements in oceans is key to fully understanding global geo-
chemical cycles, evaluating seawater pollution, and forecast-
ing the occurrence of harmful algal blooms (HABs) [11, 12].
Although a wide variety of elements are essential to life in
oceans, only a relatively small number of essential elements
(e.g., nitrate, phosphate, and silicate) are termed as nutrients
[13]. These nutrients are essential for the survival of marine
organisms, such as promoting the growth of biology and
microorganisms. Besides, accurate quantification of these
nutrients is also necessary for forecasting the occurrence of
harmful red tides and comprehending the dynamics of
marine ecosystems [14]. On the contrary, inadequate nutri-
ents will restrict the growth of phytoplankton and excessive
nutrients are prone to cause eutrophication and even further
lead to harmful algal blooms, extreme depletion of DO, and
even death of aquatic organism [12, 15].

Traditional nutrient monitoring is difficult to determine
the distributions and variations of nutrients to support ocean
environmental monitoring [16]. Because they are measured
by manual processing of sampling: water is collected at
known locations and times, preserved and transported to lab-
oratory for analysis by standard detection methods such as
spectrophotometry, colorimetry, or fluorescence [17]. Never-
theless, these traditional methods (1) cannot satisfy the long-
term in situ monitoring demands of nutrient detection in
seawater and (2) are rather costly and time-consuming with
expensive and bulky high-tech instruments and professional
operators. Moreover, these obtained data may be not accu-
rate enough because these seawater samples may undergo
unexpected reactions during the long-time operation [14].

Currently, sensors and sensing systems are applied for
nutrient monitoring to obtain primary data, to assure
time-series observations on remote permanent platforms
[1]. Consequently, in situ nutrient sensors, the device placed
on a mobile platform such as a submersible vehicle, have a
unique and important role in ocean environmental monitor-
ing [17]. Over the years, the development of low-cost porta-
ble devices that can be employed for onsite and continuous
analysis of nutrients has been attracting scientific attention
[18]. Now, various nutrient sensors, including electronic
sensors, chemical sensors, and biosensors, have been widely

used for continuous observation in estuaries and seawater
[19, 20]. And these nutrient sensors have been greatly
improved during the past decades on accuracy, operability,
sustainability, and other aspects [21–23]. Because of the
unavoidable limitation of in situ seawater environment, the
development of sensor technology has to be long duration
of use, less wastewater output, low energy consumption, less
reagent consumption, small volume, and strong ion selectiv-
ity. Some products with mature technology in market
include Micro-Lab, EcoLAB2, and CYCL Phosphate sensors
(Wetlabs, USA), SUNAV2 (Satlantic, Canada), and WIZ
sensors (SYSTEA, Italy) [24, 25]. However, the main bottle-
necks that restrict the development of nutrient sensors are
short duration, low precision, narrow range of detection
concentration, and poor reproducibility [26, 27]. To be more
specific, since sample pretreatment, such as enrichment and
dilution, cannot be applied in the field detection of nutrients
in seawater, an ideal chemical sensor needs to have a high
precision and a wide measuring range. Taking precision of
sensors (LOD, limit of detection) as another example, stud-
ies have shown that the nutrient concentrations in seawater
before and after algal bloom in some oligotrophic zones are
order of nmol/L, and the nutrient concentrations in the
same sea area vary greatly in different sea areas and at differ-
ent times, and the detected concentration ranges from nmol/
L to μmol/L (a difference of 5 orders of magnitude) [1, 28].
Hence, it is still necessary to utilize more appropriate
methods to increase the precision of nutrient sensors in sea-
water, such as the limit of detection (LOD).

Previous valuable review papers have systemically
reviewed either one analyte (or one group of analytes) or
one category/type of sensors in seawater [1, 8, 9, 17, 29,
30]. With the increase of new literatures on nutrient sensors,
how to utilize these resources to better service scientific
development has been an important work. In this short crit-
ical review, after a brief introduction of necessity and need
for higher precision of nutrient sensors in seawater, we col-
lected related literatures focusing on the technological devel-
opment of nutrient sensors in seawater and excluded those
literatures focusing on application. We summarized the
research status of nutrient sensors in seawater by quantity
of literatures and then discussed the sensitivity of sensors
(LOD) from two aspects of analytes and detection methods.
Finally, a statistic analysis was performed to see if there
existed any significant differences among five different detec-
tion methods (spectrophotometry, chromatography, color-
imetry, electrochemistry, and fluorimetry) within one
nutrient (nitrate, nitrite, phosphate, ammonia, and silicate).
Being different from previous review papers, in this short
critical review paper (1) we unified the unit of LOD to make
the comparison within different researches possible; (2) only
the literatures focusing on the technological development of
sensors in seawater were used; and (3) not only the detection
methods but also the detected analytes and publication years
were discussed to supply more valuable information for the
development of nutrient sensors applied in seawater. This
brief review shows an important direction for the develop-
ment of nutrient detection sensors in seawater and also the
existing limitations and challenges.
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Table 1: Summary of sensors for the nutrient detection in
seawater.

Analytes Detection methods LOD (μM) Ref. Year

Phosphate Fluorimetry 0.4000 [31] 2020

Phosphate Colorimetry 2.4211 [32] 2020

Nitrate Chromatography 0.2200 [33] 2020

Nitrate Microfiber 2.7419 [34] 2020

Nitrite Colorimetry 0.1000 [35] 2019

Nitrate Spectrophotometry 0.0200 [36] 2019

Phosphate
Ammonium

Colorimetry
1.8947
1.5000

[37] 2019

Nitrate Spectrophotometry 0.2000 [38] 2019

Ammonium Spectrophotometry 0.1500 [39] 2019

Ammonium Fluorimetry 0.0021 [40] 2018

Nitrate Spectrophotometry 0.0074 [41] 2018

Nitrate Spectrophotometry 0.1000 [42] 2018

Phosphate Spectrophotometry 0.1000 [43] 2018

Silicate Electrochemistry 0.5000 [23] 2018

Nitrate Electrochemistry 0.0009 [44] 2018

Nitrate Electrochemistry 0.9000 [14] 2018

Ammonium Spectrophotometry 0.2000 [45] 2018

Ammonium Spectrophotometry 0.0800 [46] 2018

Ammonium Fluorimetry 0.0065 [47] 2018

Nitrite Electrochemistry 0.2000 [48] 2018

Silicate Spectrophotometry 1.6000 [49] 2018

Ammonium Fluorimetry 0.1600 [50] 2018

Phosphate Spectrophotometry 0.1000 [43] 2018

Ammonium Fluorimetry 0.0010 [51] 2017

Nitrate
Nitrite
Phosphate
Ammonium
Silicate

Spectrophotometry

0.3000
0.1000
0.1000
0.3000
0.2000

[52] 2017

Phosphate Colorimetry 0.0300 [53] 2017

Nitrate Electrochemistry 0.3900 [54] 2017

Nitrate Electrochemistry 0.8000 [55] 2017

Phosphate Colorimetry 0.0526 [56] 2017

Phosphate Colorimetry 0.0300 [53] 2017

Phosphate Colorimetry 0.1000 [57] 2017

Silicate Optofluidics 0.0451 [58] 2017

Ammonium Electrochemistry 0.6400 [59] 2017

Ammonium Colorimetry 0.0150 [60] 2017

Nitrate Electrochemistry 0.8000 [61] 2016

Nitrite Fluorimetry 0.1000 [62] 2016

Ammonium Fluorimetry 0.0074 [63] 2016

Phosphate Spectrophotometry 0.0014 [64] 2016

Phosphate Electrochemistry 0.1000 [65] 2016

Phosphate Electrochemistry 4.0000 [66] 2016

Silicate Electrochemistry 0.5000 [67] 2015

Nitrate Microfluidics 5.0000 [68] 2015

Nitrate Electrochemistry 3.8000 [69] 2015

Ammonium Spectrophotometry 0.0055 [70] 2015

Table 1: Continued.

Analytes Detection methods LOD (μM) Ref. Year

Ammonium Fluorimetry 0.0058 [71] 2015

Nitrate
Nitrite

Microfluidics
0.0250
0.0200

[72] 2015

Phosphate Fluorimetry 0.0145 [73] 2014

Ammonium Spectrophotometry 0.0036 [74] 2014

Nitrate Spectrophotometry 0.0300 [75] 2014

Ammonium Fluorimetry 0.0100 [76] 2013

Phosphate Colorimetry 0.0520 [77] 2013

Ammonium Fluorimetry 0.0007 [78] 2013

Nitrate
Phosphate
Silicate
Ammonium

Colorimetry
Colorimetry
Colorimetry
Fluorimetry

0.5000
0.3000
1.0000
0.3000

[79] 2013

Phosphate Electrochemistry 0.1900 [80] 2013

Nitrate Spectrophotometry 0.2000 [81] 2013

Nitrate Spectrophotometry 1.9355 [82] 2012

Silicate Electrochemistry 0.1000 [83] 2012

Nitrate
Nitrite

Microfluidics
0.0250
0.0200

[84] 2012

Ammonium Carbon nanotube 0.0100 [85] 2012

Nitrite Colorimetry 0.0150 [86] 2011

Nitrate Spectrophotometry 1.7000 [87] 2011

Ammonium Fluorimetry 0.0130 [88] 2011

Ammonium Fluorimetry 0.0010 [89] 2011

Ammonium Spectrophotometry 0.0035 [90] 2011

Ammonium Fluorimetry 0.0050 [91] 2011

Phosphate Electrochemistry 0.1200 [25] 2011

Ammonium Colorimetry 0.0150 [92] 2011

Nitrate Spectrophotometry 0.2000 [93] 2010

Nitrate Spectrophotometry 0.3000 [94] 2010

Nitrate Electrochemistry 10.0000 [95] 2010

Nitrite Spectrophotometry 0.1000 [96] 2009

Nitrate Electrochemistry 0.014 [97] 2009

Nitrate Electrochemistry 0.0002 [98] 2008

Nitrate Microfluidics 4.5000 [99] 2008

Silicate Electrochemistry 0.3000 [100] 2008

Ammonium Fluorimetry 0.0011 [101] 2008

Silicate Electrochemistry 0.3000 [100] 2008

Nitrate
Nitrite
Phosphate

Colorimetry
0.0020
0.0020
0.0015

[102] 2008

Nitrite Spectrophotometry 0.0001 [103]

Nitrate Electrochemistry 4.5000 [104] 2007

Silicate Electrochemistry 1.0000 [105] 2007

Nitrate Spectrophotometry 2.0000 [106] 2006

Ammonium Spectrophotometry 0.0050 [107] 2005

Nitrate Electrochemistry 1.0000 [108] 2005

Phosphate Fluorimetry 0.0200 [109] 2003

Spectrophotometry [110] 2003
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2. Materials and Methods

2.1. Database Compilation. We build this database using the
following topics searched in core database of Web of Science
(1985-2020): “sensor” and “seawater or sea water or saline
water or marine water or salt water or ocean” and “nutrient
or nitrate or nitrite or phosphate or ammonia or silicate” in
July 2020. Here, for supplying more valuable information for
the development of nutrient sensors applied in seawater, we
just collected literatures focusing on the technological devel-
opment of sensors, excluded those focusing on application.
In total, 42.21% of the screened literatures were published
during the last five years (2016-2020). For each literature,
we extracted the information: tested analytes, detection
method of sensors, LOD, and publication year. All tested
analytes were categorized into phosphate, nitrite, nitrate,
ammonium, and silicate. As for the detection methods, we
included spectrophotometry (ultraviolet spectrophotometry,
visible light spectrophotometry), fluorimetry, colorimetry
(visual colorimetry, photoelectric colorimetry), chromatog-
raphy, microfiber, microfluidics, electrochemistry, optoflui-
dics, and carbon nanotube. We unified all the units of
LODs as μM (μmol/L).

2.2. Data Analysis. We performed one-way ANOVA to test
the differences of LODs among different detection methods
within one analyte. All data were checked for normality
before conducting the ANOVA tests and were log-
transformed to meet normality and homogeneity assump-
tions [19]. If significant effects are present in the ANOVA,
then Tukey’s test was used for post hoc analysis of significant
differences among detection methods. All statistical analyses
were performed by SPSS statistics software (IBM, 20.0).

3. Results and Discussions

3.1. Research Status of Nutrient Sensors in Seawater. To a
certain extent, quantity of literatures could reflect scientific
research status in this area. After screening from 538 litera-
tures searched in the core database of Web of Science, we
finally collected 109 literatures focusing on the technological
development of nutrient sensors applied in seawater. Table 1

shows the summary of sensors for the nutrient detection in
seawater. Here, we classified analytes mainly by phosphate,
nitrate, ammonium, and silicate related to different detection
methods with LOD and publication date.

From Table 2, we can see that the quantity of literatures
has increased with the development of decades. In particular,
during 2011-2020 in both analytes and detection methods,
there are more literatures focusing on the technological
development of sensors. Furthermore, this trend also means
that more literatures may appear during the next ten years
to meet the needs from all walks of life and from many differ-
ent areas. Actually, nitrate determination was firstly taken by
electrochemical methods in 1834 [117]. It has been attracting
more attention in the world today from different perspec-
tives. A review published in 2021 summarizes the advances
in knowledge in terms of the modes of action of devices
and deployment strategies, identifying the current limitations
and future challenges for the electrochemical detection of
nutrients in marine environments [118]. The application of
electrochemical sensors including potentiometric, voltam-
metric, and field-effect transistor sensors for nitrate, nitrite,
ammonium, and phosphate determination in aqueous envi-
ronments was reviewed [16]. The recent advances in ISE
sensing platforms for environmental water analysis from on
board to in situ approaches were also reviewed [119].

In terms of quantity, the above obvious result may
mainly attribute to (1) emerging technologies. In 2003,
Thouron developed a system with three analysers to mea-
sure phosphate, nitrate, and silicate together [110]. And
Zhang et al. fabricated a self-supported electrode to detect
ammonia based on electrodepositing platinum-polypyrrole
on Ni foam [120]. New technologies also promote the
improvement of old ones. For example, scientists improved
the sensitivity measurement of nitrate concentration based
on new dispersion turning point (DTP) theory [34]. Mean-
while, the emergence of new technologies also brings more
detection methods. For example, phosphate was detected
by interfacial barrier effects of p-n junction on electrochem-
istry [121]. (2) Some problems previously hard to study are
solved. It was well known that not extensively researches
had studied voltammetric sensors for nitrate detection in
seawater, because the LOD data from sensors was usually
above 1μM, higher than the nitrate concentrations in seawa-
ter, particularly the concentration of nitrate at the ocean sur-
face (at a nanomolar level) [122]. Nine years later, Legrand
et al. developed an electrode by electrodepositing silver
nanoparticles on a gold disc electrode to test nitrate in syn-
thetic seawater [54]. The sensor showed a limit of quantifica-
tion of 0.39μM and a linear range of 0.39-50μM. The peak
current intensity remained at 95% of the initial value after
regular detection of 25μM nitrate for about 26 days. And
(3) more and more emerging contaminants interference is
still a technical challenge. For example, the challenges of
nitrate biosensors based on reductases include oxygen inter-
ference [123], low electron transfer efficiency [124, 125], and
high cost and low storage temperature, which promote rele-
vant research and generate more literatures.

Although the quantity of relevant literatures has been
increasing steadily, the research status within both analytes

Table 1: Continued.

Analytes Detection methods LOD (μM) Ref. Year

Nitrate
Silicate
Phosphate

0.1000
0.5000
0.1000

Nitrate Spectrophotometry 0.2000 [111] 2002

Nitrate Spectrophotometry 0.0452 [112] 2002

Nitrate Spectrophotometry 0.0452 [112] 2002

Nitrite
Nitrate

Fluorimetry
0.0046
0.0069

[113] 2000

Nitrate Spectrophotometry 0.0226 [114] 1999

Nitrate Spectrophotometry 0.1000 [115] 1998

Nitrate Electrochemistry 0.1000 [116] 1994
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and detection methods is very varied. For analytes, we can see
that more research focused on nitrate, phosphate, and ammo-
nium. This result should attribute to seriously increasing
marine environmental and ecological problems, such as fre-
quent red tide, green tide, and other ecological disasters [9,
10, 126]. Hence, for a period of time, literatures related to
nitrate, phosphate, ammonium, and phosphate will continue
to increase with more accurate data and new detection
methods.

For the detection methods, we found a similar trend as
one previous review paper that spectrophotometry, colorim-
etry, fluorimetry, and electrochemistry are the most com-
monly used sensors for the detection of nutrient detection
in seawater [127]. These traditional and classic detection
methods have been attracting a lot of attention for years,
followed by emerging chromatography, microfiber, micro-
fluidics, optofluidics, and carbon nanotube (Table 2). Then,
other electrochemical sensors have been used for water anal-
ysis. As we know, we widely used electrochemical sensors as
one of the most promising analytical tools for the rapid

detection of nitrate due to its high sensitivity, quick
response, ease of operation and miniaturization, low sample
and power consumption, low reagent consumption, and easy
combination with automation devices [18, 128]. Neverthe-
less, some new methods also appeared with technical advan-
tage. For example, a new method using a microfiber mode
interferometric sensor to improve the sensitivity of nitrate
concentration measurement in seawater based on dispersion
turning point (DTP) theory is demonstrated [34]. Through
interdisciplinary research within electronics, chemistry,
materials science, etc., the application of microfluidic tech-
nology shows more advantages and gradually becomes a bet-
ter way to further reduce energy consumption, reduce the
amounts of reagents, and promote the miniaturization of
sensors [129]. Therefore, more studies should focus on the
development of new detection methods for clearer under-
standing of the nutrient in seawaters.

3.2. Sensitivity of Nutrient Sensors in Seawater. LODs in
Table 1 show thousands of orders for different analytes and

Table 2: Literature number of nutrient sensors.

Category In total Years 2011-2020 2001-2010 1994-2000

Analytes

Nitrate 39 1994-2020 21 14 4

Nitrite 12 2000-2019 8 3 1

Phosphate 21 2003-2020 18 3 0

Ammonium 26 2005-2019 24 2 0

Silicate 11 2003-2018 7 4 0

Detection methods

Spectrophotometry 38 1998-2019 24 12 2

Colorimetry 18 2008-2020 15 3 0

Fluorimetry 19 2000-2020 15 2 2

Electrochemistry 24 1994-2018 15 8 1

Chromatography 1 2020 1 0 0

Microfiber 1 2020 1 0 0

Microfluidics 6 2008-2020 5 1 0

Optofluidics 1 2017 1

Carbon nanotube 1 2012 1

Nitrate Nitrite Phosphate Ammonium Silicate
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S: Spectrophotometry
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E: Electrochemistry
F: Fluorimetry
M: Microfiber

Figure 1: Average of LOD for (a) five nutrients and (b) five detection methods with more than five literatures. Green line: mean value.
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detection methods. Here, the average LOD of nutrient sensors
included was μM. Among all the sensors checked, the most
sensitive sensor was developed by Chen and Chumbimuni-
Torres in which the indirect detection of nitrate through spec-
trophotometry and electrochemistry method was used [98,
103]. Above sensor could achieve an ultrasensitive LOD, as
low as 0.1 nM [103]. By contrast, some other sensors are rel-
atively “insensitive” with the LODs at the level of 2-10μM,
distributed from 2006 to 2016 [66, 68, 95, 104].

Figure 1(a) shows the average LOD of five nutrients at
the level almost below1μM with descending sequence:
nitrate ð1:0983Þ > silicate ð0:5495Þ > phosphate ð0:4823Þ >

ammonium ð0:1324Þ > nitrite ð0:0568Þ. Figure 1(b) only
shows the average LOD of five detection methods with more
than five literatures at the level almost below 1μM (except
for microfluidics at the level of 2μM) with descending
sequence: microfluidics ð1:7617Þ > electrochemistry ð1:2607Þ
> colorimetry ð0:4462Þ > spectrophotometry ð0:2941Þ >
fluorimetry ð0:0558Þ. For the rest four detection methods,
chromatography, microfiber, optofluidics, and carbon nano-
tube have a LOD of 0.2200, 2.7419, 0.0451, and 0.01,
respectively.

In general, both detection of nitrite and ammonium and
fluorimetry method seem to have lower LODs (Figure 1).

NO DATA

(Silicate)

(Phosphate)

F=1.817, p=0.217>0.05

F=0.7929, p=0.515>0.05

(Nitrate) (Nitrate)F=1.603, p=0.195>0.05 F=1.132, p=0.387>0.05

(Ammonium) F=5.493, p=0.005>0.05
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Figure 2: Analysis of one-way ANOVA for different detection methods. Green line: mean value. p < 0:05.
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Nevertheless, we cannot just draw a simple conclusion that
these related research develop best. This result could mainly
attribute to the following: (1) some new literatures based on
special detection technique usually increase the mean value
with their own high LODs. For example, Yang et al. used a
new technique to improve the sensitivity of sodium nitrate
concentration measurement in seawater based on dispersion
turning point [34]. Although the sensor shows advantages of
easy to construct, low cost, high precision, and high sensitiv-
ity, which provides a new optical detection method for in
situ detection of marine environment or low concentration
substances sensing in other liquids, its LOD is 2.7419μM.
The same situation applies to Khongpet et al. who used a
compact hydrodynamic sequential injection system for con-
secutive online determination of phosphate and ammonium,
with a LOD 1.8947μM [37]. On a long view, these technol-
ogies are constantly developing with lower LOD. And more
literatures related to these technologies will finally lower the
average LOD. Before we get too excited about that, we may
have to face the situation that the emergence of other new
technologies (in embryonic stage) may increase the mean
value with their own high LODs, again. (2) Different detec-
tion methods have their own special value. For example, a
variety of approaches have been used for the determination
of phosphate in seawater, including colorimetric detection,
fluorescent detection, and electrochemical detection. For all
are reagent-based methods, phosphate cannot be detected
directly. Therefore, autonomous systems tend to employ
the colorimetric method rather than fluorescent or electro-
chemical methods [130]. Previous study has shown that
when algal blooms erupt, the nutrient concentration in sea-
water is on the order of 10−9mol/L [131]. So it is very neces-
sary to utilize more appropriate methods to increase the
accuracy of the sensor. In addition to accuracy, the nutrient
concentration in the same sea area varies significantly at dif-
ferent times or in different sea areas and the ranges from
10−9 to 10−6mol/L, with a difference of 5 orders of magni-
tude [131]. Hence, an ideal sensor should better have wide
measurement range.

3.3. Comparison of Detection Methods. Figure 2 shows the
result of analysis of one-way ANOVA for different detection
methods (p < 0:05). In general, at the present stage, we
could see that not all methods (NO DATA) can be used
for detection within one nutrient in seawaters such as chro-
matography to nitrite, phosphate, ammonium, and silicate
(Figure 2). Clearly, future studies should focus on the devel-
opment of chromatography sensors applied in seawater.

Furthermore, except ammonium ðp < 0:05), there were
no significant differences among different detection methods
applied in any nutrient sensor. This result indicated that, for
nitrate, nitrite, phosphate, and silicate, their development
level of detection methods is closer to each other. For
ammonium, spectrophotometry has a significantly lower
LOD than electrochemistry (p < 0:05), and fluorimetry also
has a significantly lower LOD than electrochemistry
(p < 0:05). This result is in accordance with the consensus
that electrochemical sensors have been widely used as one
of the most promising analytical tools for the rapid detection

of nitrate in environmental matrices due to low sample and
power consumption, high sensitivity, quick response, and
ease of operation and miniaturization [18, 128].

4. Conclusions

From 109 literatures, the general status of nutrient detection
sensors in seawater including the research status, sensitivity,
detection methods, and future challenges was reviewed, with
most published during 2011-2020. For analytes, literatures
related to nitrate, phosphate, ammonium, and phosphate will
continue to increase with more accurate data. For detection
methods, spectrophotometry, colorimetry, fluorimetry, and
electrochemistry are themost widely used sensors. LODs show
thousands of orders. In general, there are lower LOD to nitrite
and ammonium and fluorimetry method. Now, for analytes,
nitrate ð1:0983Þ > silicate ð0:5495Þ > phosphate ð0:4823Þ >
ammonium ð0:1324Þ > nitrite ð0:0568Þ. For detection
methods, microfluidics ð1:7617Þ > electrochemistry ð1:2607Þ
> colorimetry ð0:4462Þ > spectrophotometry ð0:2941Þ >
fluorimetry ð0:0558Þ. This result indicated that the develop-
ment level of detection methods is closer for nitrate, nitrite,
phosphate, and silicate. For ammonium, spectrophotometry
has significantly lower LOD than electrochemistry (p < 0:05),
and fluorimetry also has significantly lower LOD than electro-
chemistry (p < 0:05). Our results are expected to indicate that
higher sensitivity sensors should be developed in the future.
In addition, more detection methods should be considered
by future sensors. We can see that although the stability, sen-
sitivity, and detection limit of sensors have greatly improved,
there are still some certain technical issues that restrict the
large-scale use of this technology, including low reproduc-
ibility, low accuracy, narrow detection concentration ranges,
and short continuous measurement time. Besides, good sta-
bility is important to an ideal sensor achieved by improving
sensor antifouling ability, which is a hot topic partially in bio-
compatibility and blood compatibility [132]. So, it is a feasi-
ble solution to further explore new antifouling materials
and approaches for maintaining long-term sensor durability
and stability. In short, this brief review shows an important
direction for the development of nutrient detection sensors
in seawater and many limitations and challenges still existed.
Clearly, much work still needs to be done in many areas of
sensor development and for a variety of seawater
environments.
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