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Faulty identification plays a vital role in the area of prognostic and the health management (PHM) of the industrial
equipment which offers great support to the maintenance strategy decision. Owing to the complexity of the machine internal
component-system structure, the precise prediction of the heavy machine is hard to be obtained, thus full of uncertainty.
Moreover, even for a single component, the feature representation of the acquired conditional monitoring signal can be different
due to the different deployment of the sensor location and environmental inference, causing difficulty in feature selection and
uncertainty in faulty identification. In order to improve the model identification reliability, a novel hybrid machine faulty
identification approach based on sparse autoencoder- (SAE-) and deep belief network- (DBN-) based ensemble learning is
proposed in this paper. First, six kinds of statistical features are extracted and normalized from multiple sensors monitoring the
same target component. Second, the six extracted features are fused by the two-stage SAE proposed in this paper from the
sensor dimension and feature dimension, respectively. The composite feature fused in the feature dimension is regarded as the
comprehensive representation of the corresponding component. Finally, the fused features containing comprehensive
representation of different components are utilized to predict the machine health condition by the ensemble of multiple deep
belief classifiers. The effectiveness of the proposed method is validated by the two case studies of wind turbine gearbox and
industrial port crane. The experimental result shows that the proposed ensemble learning approach outperforms other
traditional deep learning approaches in terms of the prediction accuracy and the prediction stability when dealing with
multisensor feature fusion and the precise faulty identification of the industrial heavy machine.

1. Introduction

With the development of the modern industrial manufactur-
ing scale, the accurate faulty identification of the heavy
industrial machine has been becoming increasingly impor-
tant. The contemporary heavy machine has the characteris-
tic of having highly complex internal component-system
structure. Moreover, even for a certain component, multiple
sensors are mounted on different locations to acquire
complementary information. How to effectively utilize
these multisensor information and raise the reliability of
the machine faulty identification result remains a great
challenge.

The conventional faulty identification approach is usually
based on the historical conditional monitoring data which
can be very useful for making the appropriate maintenance
strategy to avoid catastrophic failure and save excessive
maintenance costs. The traditional intelligent faulty identifi-
cation procedure usually consists of three steps: feature
extraction; feature fusion; and faulty identification.

1.1. Feature Extraction. During the feature extraction period,
suitable statistical features are extracted and processed from
the obtained sensor monitoring signal on the data space
based on the expertise knowledge of signal processing to
construct a suitable health indicator (HI) which can well
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represent the machine health status and provide useful infor-
mation for faulty identification. The construction approach
of the HI can be categorized into two categories: single
sensor-based approach and multisensor-based approach.
The single sensor-based approach is totally based on the
understanding of the extracted single source monitoring sig-
nal by selecting the appropriate statistical and signal process-
ing analysis method. Gebraeel et al. [1] extracted the average
amplitude and harmonic wave of the vibration signal as the
health indicator to represent the bearing condition status.
Malhi et al. [2] extract the root mean squared error and the
peak value of the vibration signal to construct the health indi-
cator of bearing status by using continuous wavelet trans-
form. Kilundu et al. [3] construct the bearing HI indicator
by using the singular spectrum analysis of the vibration sig-
nal. The single signal-based faulty identification approach
can capture the faulty symptom of the target component with
specific physical meaning; however, it can only capture the
faulty symptom from a single data dimension with lower
confidence level.

In order to raise the reliability of the faulty identification
result, the multisignal-based approach is proposed which
reflects the potential faulty symptom of the target component
from multiple data dimensions [4–6]. In the multisignal-
based approach, signals including forces, vibrations, temper-
atures, and acoustics are fused for the faulty identification
task [7]. Compared to the single signal-based approach, the
multisignal-based faulty identification approach can make
the identification result more reliable [8–9]. Hao et al. [10]
proposed a multisensor-based approach for the degradation
identification of the mechanical component by evaluating
the composite index which is combined with multiple sensor
signals collected under multiple operational conditions. A
motor faulty identification model based on sensor data fusion
by using support vector machine and the short-term Fourier
transform is proposed by Banerjee and Das [11].

1.2. Feature Fusion. The feature fusion is usually performed
on the feature space where different kinds of statistical
features extracted during the feature extraction phase are
integrated into a composite feature by using technologies
such as principal component analysis (PCA), kernel-based
methods, and manifold learning. The feature fusion proce-
dure is aimed at achieving considerable information com-
pression and facilitating more effective feature. Xu et al.
[12] fuse the time-domain and frequency-domain features
extracted from the flame oscillation signal by using PCA.
Wang et al. [13] propose the feature fusion and feature selec-
tion method from forces and vibration signals by using ker-
nel PCA. Sun et al. [14] proposes a feature fusion method for
handwritten recognition by using locally linear embedding.

1.3. Faulty Identification. During the faulty identification
phase, the composite feature obtained from the feature
fusion step is sent to a classifier for faulty identification
[15–16]. Currently, various kinds of machine learning classi-
fiers have been widely explored in the faulty classification
stage; however, it is extremely hard for shallow-structured
classifier to achieve precise faulty prediction for industrial

heavy machine with complex internal component-system
structure [17–19].

Recently, with the development of the deep learning
technology, it has been widely used in feature extraction: fea-
ture fusion and faulty identification phase due to its power-
ful automatic feature learning and input-output mapping
ability with its multi-layer structure. The deep learning-
based faulty identification approach can release the depen-
dence on the expertise knowledge of faulty identification,
and it has been proved to be effective in improving the
identification result [20–23]. However, there are three issues
needed to be further considered.

(1) During the feature extraction period, most existing
methods directly extract statistical features from
multiple sensor signals. However, these sensors are
mounted on different locations to acquire a variety
of condition monitoring signals with different char-
acteristics due to sensors’ arrangement and environ-
ment inference. Therefore, the features extracted
from these sensors are disordered and correlated
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with different sources, increasing the difficulty of
representative feature extraction. How to effectively
merge these multisensor features to learn an over
complete representation of these multisource infor-
mation remains a challenge

(2) During the feature fusion period, conventional fea-
ture fusion methods such as PCA, NPE (neighbor-
hood preserving embedding), and LLE (locally
linear embedding) fail to learn high-level features
due to the nonstationary characteristics of fault
vibration signals. How to jointly utilize different
kinds of extracted features to construct a more robust
feature remains a challenge

(3) During the faulty identification period, most existing
methods only use a single classifier as the final deci-
sion maker to output the final prediction result. Since
the machine faulty reason can be related to multiple
components due to its highly complex internal
component-system structure, the prediction result
of a single classifier can be full of uncertainly. Since
different components can reflect machine faulty con-
ditions from different aspects, how to construct a
hierarchical faulty prediction approach reflecting
the complex component-system relationship net-
work remains a challenge

Dealing with the three issues listed above, this paper
proposes a multisensor-based hierarchical machine faulty
identification approach by using a two-stage sparse
autoencoder-based feature fusion and the deep belief
network-based ensemble learning. The innovation point of
the proposed paper is listed as follows: Considering the first
issue listed above, six kinds of statistical features are
extracted and normalized from sensors monitoring the same
component, and these features are sent to six different three-
layer SAEs for feature extraction. The middle layers of six
SAEs are extracted as the complete representation of the
multisensor input signals. Considering the second issue
listed above, the six extracted middle-layer features are
concatenated and sent to a specially designed three-layer
SAE for feature fusion to obtain a more robust feature. The
six extracted middle-layer features are merged into a six-
node compressed feature which is regarded as the composite
health indicator of the target component. Considering the

third issue listed above, the composite health indicators
obtained during the feature fusion period which reflects
the comprehensive health statuses of different components
are sent to multiple DBN classifiers to independently classify
the machine faulty status, and the outputs of these classifiers
are aggregated by using the Bayesian weighting strategy
which represent the affiliated degree between the target com-
ponent and the certain machine conditions. The rest of this
paper is organized as follows: Section 2 briefly reviews the
related research literature including the sparse autoencoder,
the deep belief network, and the ensemble learning; Section
3 presents the framework of the proposed hybrid faulty
prognostic approach; Section 4 describes the case study
and the competition with other deep learning models; and
finally, Section 5 summarizes the main contribution and
future work of the proposed paper.

2. Methodology

2.1. Autoencoder and Sparse Autoencoder. The autoencoder
is a kind of unsupervised feature learning approach which
can learn the high-level representation of the raw input sig-
nal. The output layer of the autoencoder has the same
dimension as the input layer which minimizes the recon-
struction error between the input and the output so that
the high-level features contained in the hidden layer can be
obtained. The learning process of the autoencoder consists
of two procedures: encoding and decoding. The encoding
process acts as a feature extractor realizing the transforma-
tion from the raw input into the high-level feature, and the
decoding process acts as a feature detector which reconstruct
the input in the output layer based on the obtained high-
level feature. The detailed structure of the autoencoder can
be illustrated in Figure 1.

Assuming the n-dimensional raw input vector is fX1,
X2,⋯XNg, Xi ∈ Rn. During the encoding process, the raw
input vector was transformed into the high-level feature rep-
resented in the following equations:

hj = f 〠
N

i=1
w1

ij × Xi + b1j

 !
, ð1Þ

f zð Þ = 1/ 1 + exp −zð Þð Þ, ð2Þ
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Figure 3: The scheme of homogeneous approach.
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where w1
ij denotes the weight between the ith dimension in

the input layer and the jth dimension in the hidden layer.
The parameter b1j denotes the bias of the jth node in the hid-
den layer. The function f ð∗Þ denotes the activation function
which transforms the raw input vector into the high-level
feature.

During the decoding process, the decoder transforms the
hidden layer hj into the output layer y, and the transform
function can be illustrated in the following equation:

yk,b xð Þ = f 〠
m

j=1
w2

jk × hj + b2k

 !
, ð3Þ

where w2
jk denotes the jth dimension in the hidden layer and

the kth dimension in the output layer. The parameter b2k
denotes the bias of the kth node in the output layer. In order
to obtain the compressed high-level information of the raw

input signal, the “sparse” restriction is applied on the hidden
layer. The “sparse” restriction is aimed at making the sta-
tuses of the majority nodes at an inactive stage whose output
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is close to zero. The “sparse” restriction can be illustrated as
shown in the following:

epj = 1
n
× 〠

n

i=1
αj xið Þ� �

: ð4Þ

Here, the parameter epj denotes the average activation
value of the jth node of the hidden layer, and n denotes
the number of the training samples. αjðxiÞ denotes the acti-
vation value of the jth hidden node of the ith sample.

During the training stage, the activated output of the
hidden layer is restricted within the predefined sparse value
as is illustrated in the following equation:

〠
n

j=1
KL pj epj���� �

= 〠
n

j=1
p × log pepj

 !
+ 1 − pð Þ × log 1 − p

1 − epj :
ð5Þ

Here, the parameter p denotes the “sparse” parameter.
The KL (Kullback-Leibler) divergence is used for the similar-
ity evaluation between the “sparse” parameter p and the
actual average activation ~p. Once the epj = p, the KL diver-
gence equals zero, and the loss function of SAE can be rep-
resented as shown in the following equations:

JSparse w, bð Þ = J w, bð Þ + β × 〠
S2

j=1
KL pj epj���� �

, ð6Þ

J w, bð Þ = 1
n
× 〠

n

i=1
J w, b ; x ið Þ, y ið Þ
� �" #

+ λ

2 × 〠
nl−1

l=1
〠
Sl

i=1
〠
Sl+1

j=i
w lð Þ

ji

� �2
:

ð7Þ

Equation (6) denotes the loss function of the autoenco-
der, and Equation (7) denotes the “sparse” restriction. The
sparse autoencoder is aimed at making the output as
equivalent as possible to the input, obtaining the high-
quality internal representation of the input vector. In this
paper, the sparse autoencoder is used for the construction
of the health indicator of individual component, contain-
ing the information of different sensor locations and fea-
ture characteristics.

2.2. Deep Belief Network. The deep belief network is a kind of
unsupervised greedy layer-by-layer training algorithm which
was proposed by Hinton in 2006 for solving the problem of
structural optimization existed in the deep learning algo-
rithm. The DBN is constructed by stacking multiple layers
of restricted Boltzmann machines which is illustrated in
Figure 2.

Each RBM consists of two layers with visible units and
hidden units, respectively, and there is no connection
between the same layers which only exists between the
visible layer and the hidden layer. The training process of
the DBN consists of two stages: pretraining the stacked
RBM one by one in a greedy way and fine-tuning the whole
network for obtaining an ideal performance. Since the DBN
is composed of multiple stacked RBMs, it can be trained
through contrastive divergence [24] in an unsupervised
manner.

In recent years, the DBNs have been successfully
used in faulty identification areas [25–27]. In this paper,
multiple DBN classifiers are used independently for
machine faulty classification from the aspect of different
components.

2.3. Ensemble Learning. The ensemble learning is based on
the notion that “two heads are better than one head.” The
performance of aggregating multiple classifiers has been
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Figure 7: The detailed structure of the proposed DBNs.
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proved to be better than a single classifier in many fields
[28–31]. By using the appropriate combination strategy,
the ensemble learning can fully take advantage of each indi-
vidual classifier so as to improve generalization [32]. The
ensemble learning can be usually categorized into two types:
sequential ensemble learning and parallel ensemble learning.
In sequential ensemble learning, different algorithms are
sequentially combined in the way that the first algorithm is
used to generate a model, and then the second algorithm is
used to correct the first model and so on which is also called
boosting. In parallel ensemble learning, different algorithms
are used for model training independently which is also

called bagging. There are two kinds of parallel ensemble
learning namely homogeneous ensemble learning and het-
erogeneous ensemble learning [33].

2.3.1. Homogeneous Ensemble Learning. In the homoge-
neous ensemble learning scheme, the same types of classifier
are used but with different training datasets. These datasets
are collected from multiple data sources, and the data feder-
ation of multisources is achieved which is illustrated in
Figure 3. This type of ensemble is also named as data varia-
tion ensemble, and it is mainly used for the management of
industrial big data under large-scale scenarios.
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Figure 8: The overall framework of the proposed approach.

Input: Given the condition monitoring data collected from multiple sensors
Output: The machine faulty identification result
Step 1: Categorizing the multisensor data according to component

The conditional monitoring data collected from the sensors monitoring the same
component with different sensing locations are categorized into the same group
Step 2: Feature extraction and feature fusion

2.1 The categorized sensor data in step 1 is segmented into two categories, one for training and the other for testing
2.2 The six time-domain features (f1~f6) illustrated in Equations (8)–(13) are extracted and normalized by using Equation (14)
2.3 The six normalized features are sent to six SAEs, respectively, with the structure of Figure 5 for unsupervised training by using

Equations (1)–(7) and obtain the complete expression of the six normalized features, respectively
2.4 The complete representation of the six normalized feature in Section 2.3 are concatenated and sent to the SAE with the struc-

ture of Figure 6 for unsupervised training by using Equations (1)–(7) and obtain the six-node compressed feature
2.5 The six-node compressed features are extracted and regarded as the comprehensive representation of a certain target

component
Step 3: Machine faulty identification based on the proposed multi-DBN-based ensemble learning

3.1 The constructed compressed comprehensive features with respect to multiple components are sent to multiple individual DBN
classifiers for predicting the machine health status by adding the Softmax prediction layer from the component perspective and the
individual classifiers are trained by using Equations (15)–(19)

3.2 The Softmax outputs of the multiple DBN classifiers are aggregated based on the dynamically updated correlation weight
obtained by using the Bayesian weighting strategy as shown in Equations (20)–(22)

3.3 Output the heavy machine condition result based on the maximum weighted output class
3.4 Calculate the mean value of the correlation weight of each individual classifier during the training process

Step 4: Evaluate the proposed methodology
Validate the proposed ensemble learning methodology in the testing datasets by using the mean value of the correlation weight

obtained during the training process

Algorithm 1: General procedure of the proposed methodology.
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2.3.2. Heterogeneous Ensemble Learning. In the heteroge-
neous ensemble learning scheme, a number of different
types of classifiers but over the same training datasets
are applied as can be seen in Figure 4, and the model
diversity is achieved in this scheme. This type of ensem-
ble is also called function variation ensemble which is
mainly used for the generalization enhancement of model
outputs.

In this paper, the homogeneous ensemble learning of
several DBN classifiers are used for the construction of the
hierarchical data processing framework of the component-
system network.

3. Proposed Methodology

3.1. Data Preprocessing and Feature Fusion with SAE

3.1.1. Data Segmentation. The conditional monitoring data
are obtained from multiple sensors monitoring the same
target component but with the different installed locations.
The obtained datasets were segmented into two categories:
one for training and the other for testing.

3.1.2. Feature Extraction and Normalization. During the
feature extraction and normalization period, the six time-
domain features including the impulse XImpulse, kurtosis
XKurtosis, skewness XSkewness, shape factor XShape f actor , clear-
ance factor XClearance Factor , and crest factor XCrest are used

in this paper. Formulas for the six used features are pre-
sented as follows:

XImpulse =
max x ið Þð Þ

1/N∑N
i=1 x ið Þj j

, ð8Þ

XKurtosis =
∑N

i=1 x ið Þ − �xð Þ4

N ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 x ið Þð Þ2� 	
/n

q� �4 , ð9Þ

XSkewness =
1
N

× ∑N
i=1 x ið Þ − �xð Þ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1/N ×∑N
i=1 x ið Þ − �xð Þ2

q
 �3 , ð10Þ

XShape f actor =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/N ×∑N

i=1 x ið Þð Þ2
q

1/N∑N
i=1 x ið Þj j

, ð11Þ

XClearance Factor =
max x ið Þj j

1/N ×∑N
i=1 x ið Þj j1/2

� �2 , ð12Þ

XCrest =
max x ið Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i=1 x ið Þð Þ2
� �

/N
r : ð13Þ

where xðiÞ denotes a series of sensor signal and the
parameter “N”refers to window length. The six extracted

Large wheel

Drive shaft

Pedestal

Small wheel

Figure 9: The component-system structure of the turbine gearbox.

Table 1: Description of datasets of Case Study I.

Datasets Speed range (rpm) Sample number in each condition Condition status

Training/testing 800-1600/800-1600

1080/1080 Healthy

180/180 Rotor unbalance

180/180 Rotor misalignment

180/180 Rotor friction

180/180 Bearing loosing
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features are normalized by using Equation (14) where
xi,jðtÞ denotes the extracted feature of the jth sensor
within the ith signal segmentation. max ðxi,jÞ and min
ðxi,jÞ represent the maximum feature value and the mini-
mum feature value within the ith signal segmentation of
the jth sensor.

x̂i,j tð Þ =
xi,j tð Þ −min xi,j

� 	
max xi,j

� 	
−min xi,j

� 	 : ð14Þ

3.1.3. Feature Fusion and Feature Construction Based on
SAE. To construct the comprehensive health indicator of
the target component, the proposed two-stage SAE-based
feature fusion method is executed in this paper. First, six
kinds of normalized features extracted from a group of
sensors monitoring the same component are sent to six
three-layer SAEs, respectively, with the structure as shown
in Figure 5. Assuming that there are N sensors monitoring
the same target component, the node number of the hid-
den layer is set as 2N + 1 so that the layer can be forced
to learn an over complete representation of each kind of
feature obtained from multisensor signals [34]. Since there
are six kinds of features extracted from the sensor signal

which is mentioned in Section 3.1.2, the six comprehen-
sive features are concatenated and sent to the second
SAE as shown in Figure 6. The node number of the hid-
den layer of the second SAE is set to 6 according to the
parameter expertise adjustment in literature [34] so that
the network is forced to learn a highly compressed repre-
sentation of the six extracted features. The six-node com-
pressed feature is extracted and regarded as the
composite health indicator of the target component.

3.2. Ensemble Learning Based on DBNs

3.2.1. Individual Faulty Classification Based on Single DBN.
The extracted six-node compressed features are fed to
multiple DBN models which are used as the subclassifier
of the ensemble learning network. In this paper, the
DBN is constructed by stacking two RBM layers and one
softmax layer for faulty classification with the structure
as shown in Figure 7, where “V” denotes visible vector
and “h” denotes the hidden vector. The parameter “W”
denotes the connection weight between the visible layer
and the hidden layer.

The input dimension of the proposed DBN is set to
six, and the output dimension of the Softmax layer is
equivalent to the faulty type of the corresponding faulty
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Figure 10: Six extracted normalized feature of turbine system of (a) raw signal, (b) impulse factor, (c) kurtosis, (d) skewness, (e) shape
factor, (f) clearance factor, and (g) crest factor.
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classification task. The contrastive divergence proposed by
Hinton et al. [24] is used for the fast training of the DBN
model. Firstly, the conditional probability of the hidden units
contained in RBM1 is obtained by using Equation (15). The
Gibbs sampling is then employed to determine the state of
the hidden units. Finally, the state of the visible units can
be obtained through Equation (16), which can be regarded
as the reconstruction of the former hidden layer. The param-

eterwi,j denotes the connection weight between the ith visible
node and the jth hidden node. The parameters α and β
denote the biases of the visible and hidden layer, respectively.

p hi = 1jv ; θð Þ = 1/ 1 + exp −αi − 〠
m

j=1
V j ×wi,j

" #" #
, ð15Þ
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Figure 11: Feature visualization by t-SNE. (a) Raw sensor data. (b) Impulse+SAE extraction. (c) Kurtosis+SAE extraction. (d)Skewness+
SAE extraction. (e) Shape factor+SAE extraction. (f) Clearance factor+SAE extraction. (g) Crest factor+SAE extraction. (h) Six-node
compressed feature.
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p vj = 1 h ; θj� 	
= 1/ 1 + exp −βj − 〠

h dimension

i=1
hi ×wi,j

" #" #
:

ð16Þ
The gradient variation can be obtained through maxi-

mizing the log-likelihood by performing stochastic gradient
descent. The updating regulations of the parameter θ can
be achieved by using the following equations:

ΔWij = σ × vj × hi
� 

p h vjð Þ − vj × hi
� 

rec

� �
, ð17Þ

Δβj = σ × vj
� 

p h vjð Þ − vj
� 

rec

� �
, ð18Þ

Δαi = σ × hih ip h vjð Þ − hih irec
� �

: ð19Þ

Here, σ denotes the learning rate, h∗ipðhjvÞ denotes the
expectation value of the conditional distribution pðhjvÞ, and
h∗irec denotes the distribution expectation of the recon-
structed model. The stacked RBMs are first pretrained in an
unsupervised way. After the DBN pretraining process is
finished, the DBN model is fine-tuned starting from the last
layer by using the labeled data. The softmax layer of repre-
senting the probability of the different faulty types are added
for a classification problem, and the entire model parameters
are optimized by using the backpropagation algorithm.

3.2.2. Ensemble Learning Based on Bayesian Weighting.
Since the individual DBN classifier only represents the
machine health status from the component perspective, in
order to construct the correlation network between individ-
ual components and different machine faulty conditions, the
ensemble learning approach based on Bayesian weighting
strategy is applied for integrating the outputs result of mul-
tiple DBN classifiers. Assuming that there are N individual
DBN classifiers corresponding to the health statuses of N
individual components of the equipment, the machine
health status can be represented as follows.

Pmachine S = Sið Þ = 〠
N

j=1
Corr component j

� �
× Pcomponent j S = Si DBNj

��� 	
:

ð20Þ

Here, the Corrðcomponent jÞ denotes the correlation
weight between the machine and the target component

when identifying the state Si, and it is initialized with the
weight value of 1/N , representing that all the components
have the same correlation relationship with the machine at
the beginning;

Pcomponent j
ðS = SijDBNiÞ denotes the output of the soft-

max probability of the state Si by the jth DBN which corre-
sponds to the jth component. The specific mathematical
expression is illustrated as shown in Equation (21), where
the parameter K denotes the number of the faulty types of
the classification task and the ZSi

denotes the raw output
of the state Si

Pcomponent j
S = Si DBN j

��� 	
= ezSi

∑k
z=1e

z
: ð21Þ

If the true state of the of the machine state is exactly Si,
the postier correlation weight can be updated as shown in
Equation (22); otherwise, the weight will not be updated. It
should be noted that the updated weight assignment used
here is only corresponding to the classification type of the
state Si, and the different machine faulty states have different
component-system weight assignment.

Corr component j
� �

postier
=

Pcomponent j S = Si DBN j

��� 	
∑N

j=1Pcomponent j S = Si DBN j

��� 	 :
ð22Þ

3.3. The Combination of the SAE and the DBN-Based
Ensemble Learning. The overall framework of the proposed
approach is illustrated in Figure 8. First, the sensors moni-
toring the same component are categorized, and six classical
time-domain features are extracted and normalized from
these sensor data. Second, the SAE-based feature fusion
is used for obtaining the compressed representation of
the six normalized features which is also regarded as the

Table 2: The configuration of the SAE used for feature extraction and feature fusion.

SAE for feature extraction SAE for feature fusion

Number of hidden layer 1 Number of hidden layer 1

Node per layer 3-7-3 Node per layer 42-6-42

Sparsity penalty 0.02 Sparsity penalty 0.02

Number of epochs 60 Number of epochs 60

Batch size 100 Batch size 100

Weight decay 0.0001 Weight decay 0.0001

Table 3: The configuration of individual DBN classifier.

Number of RBM 2

Node per layer 6-10-10-10-5

Learning rate 0.1

Number of epochs 60

Batch size 100

Weight decay 0.0002
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Figure 12: The performance of single individual classifier and the proposed DBN-based ensemble learning. (a) Testing accuracy curves.
(b) Testing loss curves.
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comprehensive representation of the target component.
Third, the extracted compressed features representing the
statuses of different components are sent to multiple individ-
ual DBN classifiers for the machine faulty identification from
the component perspective. Finally, the multiple outputs of
DBNs are aggregated through the Bayesian weighting strat-
egy, and the correlation degree between the individual com-
ponent and the whole machine system is constructed. The
correlation weight is constantly updated based on the poste-
rior true label during the training process. During the testing
process, the ensemble weighting strategy applied on different
DBN classifiers is defined based on the mean value of the
correlation weight obtained during the training process.
The general procedure of the proposed methodology can be
illustrated in Algorithm 1.

4. Methodology Evaluation

4.1. Case Study I: Equipment Faulty Identification for Wind
Turbine Gearbox

4.1.1. Data Description and Experimental Set up. The
performance of the proposed approach is evaluated on the

Table 4: The average accuracy of each condition of individual classifier and the proposed ensemble learning.

Classifier Healthy Rotor unbalance Rotor misalignment Rotor friction Bearing loosing Total accuracy Variance

Proposed ensemble learning 97.33% 95.45% 96.42% 96.57% 95.40% 96.78% 0.66

DBN (large wheel) 93.01% 83.29% 84.17% 87.64% 92.87% 90.6% 15.98

DBN (small wheel) 91.23% 86.11% 88.92% 84.09% 92.02% 89.8% 11.29

DBN (drive shaft) 84.24% 82.19% 81.94% 80.35% 87.38% 83.73% 7.32

DBN (pedestal) 87.22% 84.50% 82.99% 85.68% 86.44% 86.29% 2.77

Table 5: The comparison of different prediction model.

Input Classifier Total accuracy Variance

Six-node compressed feature
Proposed DBN-based ensemble learning (Bayesian weighting) 96.78% 0.66

DBN-based ensemble learning (winner takes all) 95.32% 0.87

Six-node compressed feature (concatenated)

Single CNN 91.33% 2.06

Single DBN 90.87% 2.35

Single BPNN 91.64% 2.51

Single SVM 91.03% 1.93

Table 6: The comparison of different model input.

Classifier Input Total accuracy

Proposed DBN-based ensemble learning (Bayesian weighting)

Six-node compressed feature 96.78%

Impulse+SAE extraction 84.31%

Kurtosis+SAE extraction 86.33%

Skewness+SAE extraction 82.46%

Shape factor+SAE extraction 83.92%

Clearance factor+SAE extraction 85.37%

Crest factor+SAE extraction 86.87%

Raw sensor data without SAE extraction 55.24%

Drum shaft

Retarder
input shaft

Retarder output
shaft

Pinion
bearing

Figure 13: The component-system structure of the crane trolley.

Table 7: The sensor deployment of crane trolley.

Subsystem Monitoring sensor number

Pinion bearing PB-01; PB-02; and PB-03

Drum shaft DS-01; DS-02

Retarder input shaft RIS-01; RIS-02

Retarder output shaft ROS-01; ROS-02; and ROS-03
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multisensor datasets of the wind turbine gearbox provided
by the enterprise of Shanghai electric group. As shown in
Figure 9, the wind turbine gearbox mainly consists of four
main components namely large wheel, small wheel, drive
shaft, and pedestal. Each component is monitored by three
vibration sensors from the vertical, horizontal, and lateral
directions. The sampling frequency is set as 36 kHz, and
the sampling time is set as 1 s under the load speed ranging
from 800 rpm to 1600 rpm. The time window is set as 10,
where each sample contains 10 sampling points. Therefore,
there are 3600 samples in total, in which half are for training
and half are for testing. There are five kinds of gearbox
conditions namely healthy, rotor unbalance, rotor misalign-
ment, rotor friction, and bearing loosing. The specific details
of the datasets of Case Study I are illustrated as shown in
Table 1.

4.1.2. Feature Extraction and Normalization. In this paper,
six kinds of features including the impulse factor, kurtosis,
skewness, shape factor, clearance factor, and crest factor
are extracted and normalized from each sample collected
by sensors monitoring the same subsystem. Take the com-
ponent of “driving shaft” as an example; the raw signal and
the six kinds of normalized features are extracted from three
vibration sensors from vertical, horizontal, and lateral direc-
tions, respectively, as shown in Figures 10(a)–10(g). It can be
found that in Figure 10 that the amplitude of the raw signals
and all the six extracted and normalized features of impulse,
kurtosis, skewness, shape factor, clearance factor, and crest
factor varies obviously due to the different monitoring loca-
tions of sensors which may increase not only the difficulty of
feature selection but also the uncertainty in faulty identifica-
tion. Therefore, it is necessary to find an effective method to
merge the information collected from the three vibration
sensors to obtain the comprehensive representative status
of the target component, and in this, paper the proposed
two-stage sparse autoencoder is introduced owning to its
powerful feature compression and feature reconstruction
ability.

4.1.3. The Feature Fusion. In order to demonstrate the
robustness of the fused feature and to visualize the feature
representation ability, the raw sensor data without SAE
extraction, the six statistical features being further extracted
by SAE and the six-node compressed composite feature
fused by the proposed two-stage SAE model are represented
on a 2-D feature map as shown in Figures 11(a)–11(g) by
using the t-SNE (t-distributed stochastic neighbor embed-
ding) technology. As shown in Figure 11(a), the t-SNE fails
to separate the five turbine gearbox conditions with raw sen-

sor data of the multisensor. Most of the samples are mixed
with each other, and it can only be distinguishable between
the healthy and unhealthy state which may greatly influ-
ence the accuracy of the faulty identification model. In
Figures 11(b)–11(g), most of the samples are correctly
classified by the six extracted and normalized features
fused by one stage SAE with less samples being mistakenly
classified, where only a few marginal samples of rotor unbal-
ance, rotor friction, and rotor misalignment are mistakenly
mixed with each other, whereas in Figure 11(h), all the five
conditions are perfectly separated clearly compared with
the raw sensor data illustrated in Figure 11(a) and the six
extracted and normalized features fused by one stage SAE
illustrated from Figures 11(b)–11(g). Therefore, the proposed
six-node compressed feature can greatly improve the data
clustering ability because the compressed feature contains
the compressed information of the six features rather than
a single feature, which can be more effective when dealing
with the nonstationary characteristics of faulty signals.

The configuration of the SAEs used for feature extraction
and feature fusion is illustrated as shown in Table 2.

4.1.4. DBN-Based Ensemble Learning. The six-node com-
pressed feature indicating the comprehensive representation
of the four subsystems are extracted and used as the input of
five individual DBN classifiers. The configuration of a single
individual DBN classifier is illustrated as shown in Table 3.
The DBN used as the individual classifier has five layers in
total, where the node number of the input layer node is set
as 6, which has the same dimension of the six-node com-
pressed feature. The node number of the output layer is set
as 5 according to the type number of the turbine gearbox
health conditions. The overall testing accuracy curves and
overall loss curves of each individual DBN and the proposed
ensemble learning networks are illustrated as shown in
Figures 12(a) and 12(b). It can be found that the proposed
ensemble learning approach outperforms other five individ-
ual DBN classifiers in terms of the overall testing accuracy
and the overall testing loss.

The experiment is repeated 10 times, and the average
accuracy in predicting each kind of conditional status and
the total accuracy is illustrated as shown in Table 4. It can
be found that the proposed DBN-based ensemble learning
approach achieves the highest average prediction accuracy
in terms of predicting each kind of health condition and
the total accuracy. The “variance” is used as the metric to
evaluate stability of the faulty prediction model. From the
variance evaluation of each classifier, it can be found that
the performance of the proposed ensemble learning
approach remains stable in predicting each kind of

Table 8: Description of datasets of Case Study II.

Datasets Speed range (rpm) Sample number in each condition Condition status

Training/testing 75-100/75-100

750/750 Healthy

150/150 Wheel biting

150/150 Wire rope over winding

150/150 Brake failure
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Figure 14: Continued.
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conditional status while the performance of individual
DBN classifier varies heavily in terms of the prediction
of certain faulty type. The reason should be that different
components have different sensitive degree to different
machine faulty conditions, indicating the necessity of con-
structing a component-system affiliation network.

4.1.5. Comparison with Other Methods. In order to evaluate
the effectiveness of the proposed two-stage SAE-based fea-
ture fusion and the DBN-based ensemble learning, the com-
parison experiments are carried out 10 times from the
following two aspects, respectively.

(1) Proving the Effectiveness of the Proposed DBN-Based
Ensemble Learning Classifier. In order to evaluate the pro-
posed DBN-based ensemble learning classifier, we fix the
model input as the six-node composite feature. The classi-
fiers including the proposed DBN-based ensemble learning
classifier based on Bayesian weighting, DBN-based ensemble
learning classifier on winner takes all, single CNN, single
DBN, single BPNN, and single SVM classifiers are used for
comparison. It should be noted that when using single
classifier, the six-node compressed features of different com-
ponents are concatenated as a categorical input. The simula-
tion result is illustrated as shown in Table 5. It can be found
that the proposed DBN-based ensemble learning approach

based on Bayesian weighting strategy achieves the highest
total accuracy of 96.78% while ensemble learning based on
“winner takes all” strategy achieves the total accuracy of
95.32%. The total accuracy obtained by the rest four single
classifiers are beyond 92%. Therefore, it can be concluded
that the ensemble learning classifier can be very effective
when dealing with the faulty prediction task of heavy
machine with complex component-system structure.

From the stability evaluation of the different classifiers, it
can be found that the proposed ensemble learning approach
with the Bayesian weighting strategy achieves the lowest var-
iance value of 0.66, indicating the model accuracy stability in
predicting each kind of machine conditions. Moreover, it
can be found that the ensemble learning approach with the
“winner takes all” being used for comparison outperforms
the other four single classifiers in terms of the prediction sta-
bility with the variance value of 0.87. The reason should be
that although the ensemble learning model based on “win-
ner takes all” is totally based on the principal of majority
voting which cannot reflect the component-system affilia-
tion relationship of the heavy equipment, it can reflect the
component-system structure of the heavy machine which
cannot be achieved by a single classifier.

(2) Proving the Effectiveness of the Proposed Two-Stage SAE-
Based Feature Fusion. In order to evaluate the proposed two-
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Figure 14: Six extracted normalized features of pinion bearing of (a) raw signal, (b) impulse factor, (c) kurtosis, (d) skewness, (e) shape
factor, (f) clearance factor, and (g) crest factor.
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stage SAE-based feature fusion, we fix the classifier as the
proposed DBN-based ensemble learning classifier based on
the Bayesian weighting strategy. The raw sensor data, the
six statistical features with SAE extraction, and the six-
node compressed features are used as the input for compar-
ison. The simulation result is illustrated as shown in Table 6.
It can be found that the proposed ensemble learning
approach can achieve the highest total accuracy of 96.78%
with the model input of the six-node compressed feature.
The six statistical features with SAE extraction can achieve
the accuracy ranging from 82% to 87% which can be inferior
to the six-node compressed feature. The raw sensor data
achieve the lowest total accuracy of 55.24%. The conclusion
is consistent with the visualization effect of t-SNE illustrated
in Figure 11.

4.2. Case Study II: Faulty Prognostic for Industrial Port
Crane Trolley

4.2.1. Data Description and Experimental Set up. In Case
Study II, the performance of the proposed approach is
evaluated on the multisensor datasets of the crane trolley
provided by the enterprise of the CSIC (China Shipping
Industry Company). As shown in Figure 13, the crane trolley
mainly consists of four subsystems namely the pinion bear-
ing, drum shaft, retarder input shaft, and retarder output
shaft. There are 10 vibration sensors with the sensor series
number from PB-01 to ROS-03 installed inside the crane
trolley, and the sensor deployment is illustrated as shown
in Table 7. The sampling frequency in Case Study II is set
to 24KHz, and the sampling time is set as 1 s. The time win-
dow is set to 10, and there are 2400 samples in total contain-
ing 10 sampling points in each.

The specific details of the datasets of Case Study II are
illustrated as shown in Table 8. There are four kinds of crane
trolley conditions namely wheel biting, wire rope over wind-
ing, brake failure, and healthy.

4.2.2. Feature Extraction and Normalization. Same as the
Case Study I, six kinds of features are extracted and nor-
malized from sensors monitoring the same subsystem.

Take the pinion bearing as an example, six kinds of nor-
malized features are extracted from the “sensor PB-01,”
“sensor PB-02,” and “sensor PB-03,” respectively, as shown
in Figures 14(a)–14(g).

4.2.3. The Feature Fusion and Feature Construction. Same as
the Case Study I, the six extracted features from the sensor
signal are fused by SAE to obtain the compressed feature
representing the comprehensive health status of the target
component. The configuration of the SAE of the four sub-
systems used for feature extraction and feature fusion is
illustrated as shown in Tables 9 and 10.

4.2.4. DBN-Based Ensemble Learning. Same as the Case
Study I, the six-node compressed feature indicating the
comprehensive representation of the four subsystems are
extracted and used as the input of four individual DBN
classifiers. The configuration of a single individual DBN
classifier used in Case Study II is illustrated as shown in
Table 11. Since there are four kinds of crane trolley condi-
tion, the unit number of the output layer is set as 4. The
overall accuracy curves and overall loss curves of each indi-
vidual DBN and the proposed ensemble learning networks
are illustrated as shown in Figures 15(a) and 15(b). It can
be also found that in Case Study II, the proposed ensemble
learning approach outperforms other four individual DBN
classifiers in terms of the overall testing accuracy and the
overall testing loss.

Table 9: The configuration of the SAE used for feature fusion.

Subsystem Node per layer Sparsity penalty Batch sizes Number of hidden layer Weight decay

Pinion bearing 3-7-3 0.02 100 1 0.0001

Drum shaft 2-5-2 0.02 100 1 0.0001

Retarder input shaft 2-5-2 0.02 100 1 0.0001

Retarder output shaft 3-7-3 0.02 100 1 0.0001

Table 10: The configuration of the SAE used for feature compression.

Subsystem Node per layer Sparsity penalty Batch sizes Number of hidden layer Weight decay

Pinion bearing 42-6-42 0.02 100 1 0.0001

Drum shaft 30-6-30 0.02 100 1 0.0001

Retarder input shaft 30-6-30 0.02 100 1 0.0001

Retarder output shaft 42-6-42 0.02 100 1 0.0001

Table 11: The configuration of individual DBN classifier used in
Case Study II.

Number of RBM 2

Node per layer 6-10-10-10-4

Learning rate 0.1

Number of epochs 60

Batch size 100

Weight decay 0.0002
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Figure 15: The performance of single individual classifier and the proposed DBN-based ensemble learning. (a) Testing accuracy curves.
(b) Testing loss curves.
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The experiment is repeated 10 times, and the average
accuracy in predicting each kind of conditional status and
the total accuracy is illustrated as shown in Table 12. It can
be found that the proposed ensemble learning approach out-
performs the other four individual DBN classifiers in terms
of the average prediction accuracy in each condition. More-
over, the proposed ensemble learning approach outperforms
the other four DBN classifiers in terms of the stability in pre-
dicting the four different kinds of crane trolley conditions
based on the variance evaluation in Case Study II.

4.2.5. Comparison with Other Methods. Same as the Case
Study I, the comparison experiments are carried out 10
times and evaluated from the input aspect and prediction
aspect, respectively.

(1) Proving the Effectiveness of the Proposed DBN-Based
Ensemble Learning Classifier. In comparison experiment of
prediction aspect of Case Study II, we fix the model input
as the six-node composite feature as shown in Table 13. It
can be also found that the proposed DBN-based ensemble
learning approach based on Bayesian weighting outperforms
all the other four single classifiers and the ensemble learning

approach based on (winner takes all) with the highest total
accuracy of 97.02%.

Moreover, it can be found that both ensemble learning
models outperforms the other four single models in terms
of the stability evaluated with lower variance which is consis-
tent with the conclusion of Case Study I.

(2) Proving the Effectiveness of the Proposed Two-Stage SAE-
Based Feature Fusion. In comparison experiment of the input
aspect of Case Study II, we fix the classifier as the proposed
DBN-based ensemble learning classifier based on the Bayesian
weighting strategy as shown in Table 14. It can be also found
in Case Study II that the proposed ensemble learning
approach can achieve the highest total accuracy of 97.02%
with the model input of the six-node compressed feature.
The six fused features of impulse, kurtosis, skewness, shape
factor, clearance factor, and the crest factor can achieve the
inferior average accuracy ranging from 81% to 86% The raw
sensor data achieve the lowest total accuracy of 62.33%.

The comparison result of Case Study II is consistent with
the result of Case Study I, indicating the effectiveness of the pro-
posed faulty identification approach also being applicable in the
practical use of industrial crane trolley of Case Study II.

Table 12: The average accuracy of each condition of individual classifier and the proposed ensemble learning in Case Study II.

Classifier Healthy Wheel biting Wire rope over winding Brake failure Total accuracy Variance

Proposed ensemble learning 96.88% 96.54% 96.87% 98.35% 97.02% 0.65

DBN (pinion bearing) 85.53% 81.77% 88.59% 74.15% 84,02% 38.84

DBN (drum shaft) 82.87% 88.96% 85.58% 79.17% 83.51% 17.20

DBN(retarder input shaft) 82.11% 73.01% 77.84% 85.23% 80.83% 28.17

DBN (retarder output shaft) 84.85% 91.40% 84.79% 89.20% 86.21% 10.81

Table 13: The comparison of different prediction models.

Input Classifier Total accuracy Variance

Six-node compressed feature
Proposed DBN-based ensemble learning (Bayesian weighting) 97.02% 0.65

DBN-based ensemble learning (winner takes all) 93.06% 1.35

Six-node compressed feature (concatenated)

Single CNN 88.76% 8.74

Single DBN 86.31% 7.81

Single BPNN 86.97% 5.93

Single SVM 87.79% 8.85

Table 14: The comparison of different model input.

Classifier Input Total accuracy

Proposed DBN-based ensemble learning
(Bayesian weighting)

Six-node compressed feature 97.02%

Impulse+SAE extraction 83.51%

Kurtosis+SAE extraction 82.20%

Skewness+SAE extraction 85.67%

Shape factor+SAE extraction 83.91%

Clearance factor+SAE extraction 81.49%

Crest factor+SAE extraction 85.43%

Raw sensor data without SAE extraction 62.33%
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5. Conclusion and Future Work

5.1. Main Contribution of the Proposed Paper. In this paper,
a novel hybrid faulty prognostic approach based on sparse
autoencoder- and deep belief network-based ensemble
learning is proposed. The main contribution is summarized
as follows:

(1) Introducing the SAE-based feature extraction method
so that the features extracted from different sensors
are merged into one stream, releasing the influence
caused by different sensor deployment

(2) Proposing the SAE-based feature fusion method so
that the six kinds of extracted features are com-
pressed to construct a composite feature which is
regarded as the health indicator of a target compo-
nent. The constructed composite feature has better
robust ability when dealing with the nonstationary
faulty vibration signal

(3) Proposing the DBN-based ensemble learning so that
the machine internal component-system relation-
ship can be well represented. The outputs of these
DBN classifiers are aggregated by using the Bayesian
weighting strategy which represent the affiliated
degree between the health statuses of the target com-
ponent and faulty probability of the certain type of
machine faulty status

The proposed hybrid faulty prognostic approach is eval-
uated on two case studies of wind turbine gearbox and the
industrial port crane trolley. Both case studies demonstrate
that the proposed hybrid faulty identification approach out-
performs other traditional faulty identification methods in
terms of the prediction accuracy and prediction stability
when dealing with the industrial heavy machine, indicating
the necessity of applying the two-stage SAE- and the DBN-
based ensemble learning.

5.2. Future Work. Although the proposed hybrid faulty iden-
tification method has been well evaluated in the proposed
two case studies, there are still some issues needed to be con-
sidered. Firstly, the computation complexity of the proposed
Bayesian weighting strategy used in the ensemble learning
process should be taken into account. In the future, some
more suitable weighting strategies should be designed which
can not only release the computation burden but also reflect
the component-system relationship. Moreover, the proposed
hybrid faulty identification approach should be expected to
be evaluated in other heavy machines such as vehicle system
and aircraft engine system which also have a highly complex
internal component-system structure.
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