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Forward-looking sonar is widely used in underwater obstacles and objects detection for navigational safety. Automatic sonar
images recognition plays an important role to reduce the workload of staff and subjective errors caused by visual fatigue.
However, the application of automatic object classification in forward-looking sonar is still lacking, which is due to small
effective samples and low signal-to-noise ratios (SNR). This paper proposed an improved PP-YOLOv2 algorithm for real-time
detection, called as PPYOLO-T. Specifically, the proposed method first resegments the sonar image according to different
aspect ratio and filters the acoustic noise in various ways. Then, attention mechanism is introduced to improve the ability of
network feature extraction. Finally, the decoupled head is used to optimize the multiobjective classification. Experimental
results show that the proposed method can effectively improve the accuracy of multitarget detection task, which can meet the
requirement of robust real-time detection for both raw and noised sonar targets.

1. Introduction

In recent years, with the rapid development of the
“Autonomous underwater vehicle (AUV)”, underwater
seaway safety has become one of the important research
hotspots. The obstacles, large rocks, and piers in the water
will greatly affect the path planning and task execution of
AUV, and more seriously, safety accidents may occur. As
a kind of high resolution, multipurpose marine detection
equipment, forward-looking sonar, installed in front of
AUV, is an easily accessible and economical device to
obtain images of the underwater obstacles and objects. It
is widely applied in various fields such as automatic obsta-
cle avoidance, seabed mapping, ecological monitoring, and
pipeline inspection.

The forward-looking sonar can record the back-scattered
echo intensity of the object and generate sonar images with
different gray levels according to the echo intensity, which
is called the reflection intensity imaging of the object. Com-
pared with other acoustic detection systems, the advantages

of object detection using forward-looking sonar are as
follows:

(i) High data density and high resolution

(ii) Large coverage and strong recognition ability for
underwater objects with special shapes

(iii) Easy installation and low cost

However, the traditional sonar system cannot automati-
cally obtain the accurate positioning information of under-
water object. It requires manual identification or off-line
ashore postprocessing, which seriously affects the real-time
and initiative of underwater task execution of AUV. And
the recognition and classification accuracy is affected by
unclear image edge and multi-image-noise because of the
complexity of sound propagation in water medium and the
characteristics of sound wave.

Many researchers have studied the automatic object
detection from sonar images, such as traditional artificial
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design feature method [1], machine learning (ML) method
[2], and deep learning (DL) method [3]. Relying on artificially
designed features, traditional sonar image object detection
methods cannot make full use of the deep features of sonar
image and lack of robustness and generalization ability. The
method [3–5] based on deep learning has gradually become
the mainstream method of sonar image object recognition,
because of its powerful automatic feature extraction capability.

According to whether a region proposal is generated and
used, DL-based object detection methods can be divided into
two-stage model and one-stage model. Following the idea of
traditional object detection, two-stage models first generate a
large number of regional suggestions in the detection pro-
cess and then generate fixed-size feature maps to perform
localization and classification tasks, respectively. Region-
based convolutional neural network (R-CNN) [3] is the first
two-stage model. It innovatively utilized convolutional neu-
ral network (CNN) to extract image features. Other typical
two-stage models include Faster R-CNN [6] and cascade
R-CNN [7], which are proposed successively to improve
the detection efficiency.

The single-stage model does not generate regional sug-
gestions; therefore, the calculation is relatively small, the
detection rate is fast, and the real-time performance is high,
but the accuracy of the model detection is sacrificed. YOLO
(you only look once) model [5] is a typical one-stage model,
which is commonly known as YOLOv1. YOLOv3 [8] and
YOLOv5 are famous variants of YOLOv1. PP-YOLOv2 [9]
adopts a set of optimization strategies to improve the accuracy
of the detector and achieve a very high cost-performance ratio.
Its mean average precision (mAP) is 45.9, and the frame per
second (FPS) achieves 72.9.

At present, sonar object detection is still a very challenging
task due to the problems of multiple scales, dual priorities,
speed, limited data, and class imbalance. These problems have
a big effect on the real-time detection accuracy. To implement
the real-time object recognition in sonar images efficiently, the
following works have been done in this paper.

(i) PP-YOLOv2 is first introduced to the underwater
obstacles and objects detection for real-time sonar
image object detection

(ii) Some useful preprocessing methods are presented
for sonar image, including noise reduction, image
resizing, and CutMix [10].

(iii) Some updates to PP-YOLOv2 are proposed includ-
ing a backbone network with an attention mecha-
nism and decoupled head, which finally forms a
high-performance sonar image multiobject detector
called PPYOLO-T

The paper is structured as follows: section Related Work
is an overview of the related work; section Methodology
describes our method for constructing sonar multiobject
detection network based on PP-YOLOv2, followed by exten-
sive experiments for evaluating the proposed method in
section Experiments. We conclude this paper in section
Conclusions.

2. Related Work

Sonar image-oriented object detection is of great significance
to underwater detection. It has been studied for many years.
Traditional sonar image object detection methods are
mainly based on artificial design features. Myers and Fawcett
[1] proposed a sonar image object detection algorithm based
on template matching (TM), where objects were located and
classified by using the features of the template designed
manually. Much work was devoted to artificial design fea-
tures. Some useful features include physical characteristics
of foreground and background [11], context information
[12], and statistics about the environment [2].

However, traditional sonar image object detection
methods cannot make full use of the deep features of sonar
image for decision making. At the same time, they are usu-
ally lack of robustness and generalization ability. All these
limit the application of traditional methods. In recent years,
researchers [13–15] have introduced deep learning-based
object detection method into sonar image object detection
and achieved some good achievements. At present, the
mainstream deep learning detection algorithms can be
divided into two series of R-CNN [3] based and YOLO [5]
based.

2.1. R-CNN Based Methods. In recent years, convolutional
neural networks (CNN) have been widely used in classifica-
tion tasks. The region-based convolutional neural network
(R-CNN) proposed by Girshick et al. [3] firstly introduced
the convolutional neural network into the object detection
task. It greatly makes up for the defects of traditional object
detection algorithms such as deformable part model (DPM)
[16] in high complexity and high computation. Then, spatial
pyramid pooling (SPP) [17] and Fast R-CNN [6] further
improved the accuracy of object detection on natural image
data sets Pascal VOC [18] and MS COCO [19]. Faster R-
CNN [6] saved the calculation cost of regional proposals
by introducing region proposal network (RPN), enabled
end-to-end training of the whole model, and improved
detection efficiency. Cascade R-CNN [7] used cascade regres-
sion as a resampling mechanism to improve intersection-
over-union (IoU) value of the proposal stage by stage, so that
the resampled proposals of the previous stage can adapt to
the next stage with a higher threshold.

The above R-CNN-based methods are two-stage model.
In the detection process, a large number of regional sugges-
tions are generated or referenced, and fixed-size feature
maps are generated based on this, so as to perform localiza-
tion and classification tasks, respectively. As a result, R-
CNN-based models usually have large number of model
parameters and slow detection speed, which makes it difficult
for real application.

2.2. YOLO-Based Methods. YOLO [5] is a brand new net-
work different from the regional convolutional neural net-
work. It transforms the problem of object detection into a
regression problem. The classification probability and loca-
tion information of the object can be given only with one
neural network and one single detection. This gives YOLO
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a huge advantage in terms of infer time and detection accu-
racy, making it possible for real-time application. The
models [8, 20, 21] from YOLOv2 [22] to YOLOX [23] con-
stantly improve the model in terms of performance and
speed. Methods for improvement include new backbones
such as Darknet-19 [22] and Darknet-53 [8], adding SPP
layer, new training strategy of multiscale and exponential
moving average (EMA), and decoupled head.

Unlike YOLOv4 and YOLOv5 that explore various com-
plex backbone and data augmentation methods, PP-YOLO
[4] is based on YOLOv3 and only relies on Mixup and keeps
improving model performance through reasonable combi-
nation of tricks. PP-YOLOv2 [9] adopts a set of optimization
strategies to improve the accuracy of the detector and
achieve a very high cost-performance ratio (mAP 45.9 and
72.9 FPS) on the premise of almost not increasing model
parameters and computation (flops).

This paper focuses on multiple target detection of under-
water sonar images. Different from existing methods, we
explore some preprocessing methods to improve the model
robustness and design a new detection model based on PP-
YOLOv2 to improve the detection accuracy for underwater
sonar images.

3. Methodology

This section first shortly reviews the PP-YOLOv2 and then
elaborates the proposed method for sonar object detection,
which is called PPYOLO-T in this paper.

PP-YOLOv2 is an optimization model based on PP-
YOLO [4] and YOLOv3 [8]. It uses the same backbone
network with PP-YOLO, called ResNet50-vd [24], and
more tricks are added, which can improve the model accu-
racy without introducing extra computation as much as
possible. Specifically, it uses path aggregation network
[25] (PANet) to aggregate the top-down information in
the detection neck, applies the mish activation function
[26] in the detection neck instead of the backbone, and
increases the input size and applies a soft label format
for the IoU aware loss.

The challenges of sonar object detection lie many facts, such
as low SNR, complex background, and small object. It is difficult
to achieve ideal results by directly applying the existingmodel to
the sonar image detection task. In this paper, we first preprocess
sonar image, and then based on PP-YOLOv2, propose
PPYOLO-T for better sonar multiobject detection. Figure 1
shows the overall flow of our method. There are mainly three
parts: sonar image preprocessing, trainning of PPYOLO-T,
and target detection for a new sonar image.

3.1. Preprocessing. Due to the complexity of sonar equip-
ment in the market, the resolution of sonar images is usually
different, and there are many noises. To train a robust model
for sonar image detection, preprocessing is necessary. As
shown in Figure 1, the preprocessing for model training
includes noise reduction, image resizing, anchor resizing,
and data augmentation. For sonar image detection in real
application, only noise reduction is used.

3.1.1. Noise Reduction. There is a lot of acoustic noise in
sonar image. In this paper, we leverage Gaussian filtering,
median filtering, and bilateral filtering to reduce noises in
the original sonar images. Figure 2 shows the noise reduc-
tion process.

Gaussian filter is a kind of signal filter for signal smooth-
ing. We use it to improve the SNR of sonar images. The fol-
lowing equation shows its calculation formula, in which,
ðx, yÞ is the current coordinate point, ðx0, y0Þ is the central
coordinate point, and σ is a Gaussian smooth curve.

G x, yð Þ = 1
2πσ2 × exp −

x − x0ð Þ2 + y − y0ð Þ2
2σ2

 !
: ð1Þ

Median filtering is a kind of nonlinear signal process-
ing technology which can suppress the noise effectively
based on the sorting statistics theory. It has a good filtering
effect on the pulse noise. Especially when filtering the
noise, it can protect the edge of the signal from being
blurred. The following equation shows its calculation for-
mula, in which f ðx, yÞ and gðx, yÞ are the original image
and the processed image, respectively, and W is a two-
dimensional template, which is a 3 × 3 region in this paper.

g x, yð Þ =med f x − k, y − lð Þ, k, l ∈Wð Þf g: ð2Þ

Bilateral filtering is a popular noise filtering method. It
is optimized on the basis of Gaussian, superimposed the
consideration of pixel value. The filtering effect is more
effective to preserve edge. Therefore, it is beneficial to the
edge detection of stereo object in underwater sonar image.
The following equation shows its calculation formula, in
which 1/Wp stands for a normalization factor, Gσs

is space
weight, and Gσr

is range weight.

BF I½ �p =
1
Wp

〠
q∈S

Gσs
p − qk kð ÞGσr

Ip − Iq
�� ��À Á

Iq: ð3Þ

3.1.2. Image Resizing. In many cases, sonar images col-
lected by different devices vary in both resolution and
image size. However, DL-based methods need to use uni-
fied image size for model training. This paper proposes a
simple but effective method to resize sonar images to the
same size without loss of resolution.

Figure 3 shows the image resizing process. We first
obtain a list of various length-width ratios by statistics on
the data, such as 2048 × 768 and 2048 × 512. Then, in each
iteration sample of model training, we randomly segment
the original image according to length-width ratio list and
complete the segmented image with gray bars for the defi-
ciency based on a predefined image size, such as 640 × 640
or 768 × 768. Finally, we use the reconstructed images with
unified size for model training.

Instead of stretching a sonar to a uniform size, we normal-
ize the image size by cutting and filling. This does not deform
the image and preserve the original resolution of the image.
Therefore, the generalization ability and recognition effect of
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the model can be improved. We will illustrate this through
ablation experiment in section Experiments.

3.1.3. Anchor Resizing. Based on PP-YOLOv2 for improve-
ment, the proposed PPYOLO-T is also anchor-based detec-
tion method. Anchor is actually a set of preset bounding
boxes of different scales and sizes. During network training,

the real bounding position is offset from the preset bounding
position. In PP-YOLOv2, anchor box is preseted based on
COCO data set. In this paper, we resize the anchor box
based on real sonar images, in the account of small object
detection. Specifically, we leverage K-means [27] algorithm
to cluster all the labeled boxes. The parameter K is set to 9
following PP-YOLOv2. The mean bounding positions of
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segmentation

Gray 
filling

Figure 3: The process of image resizing.
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each cluster are selected as the preset anchor box. Anchor
resizing for sonar images is proved to be effective. Details
are shown in section Experiments.

3.1.4. Data Augmentation. Data augmentation is an effective
technique for improving the accuracy of image-related tasks
such classification and object detection. In this paper, flip-
ping, random expansion, CutMix, and Mosaic [28] are used
for sonar image preprocessing. Mixup [29] was used for data
augmentation in PP-YOLOv2, and good results were
achieved on COCO data set. However, when we apply
Mixup to sonar image preprocessing, it finally backfired.
This may be because the SNR of sonar image is much lower
than ordinary RGB images. Mixup is to overlap two photos
together. If the objects in sonar image overlap, the difference
between the overlapped object features and the original
object features will be too large. Inspired by this, other pre-
processing that may change the appearance of the original
image, such as adjusting brightness, is also excluded for data
augmentation of sonar image.

3.2. The Proposed PPYOLO-T. After data preprocessing,
sonar images are transmitted to PPYOLO-T for model train-
ing, and then the trained model is generated for sonar image
object detection. As shown in Figure 1, the overall architec-
ture of PPYOLO-T consists three parts, namely, the back-
bone BotNet-dcn, the neck PAN, and the decoupled head.
Among which, BotNet-dcn and decoupled head will be elab-
orated in this subsection. We omit the details about PAN
since it is the same as used in PP-YOLOv2.

3.2.1. BotNet-dcn. In original PP-YOLO and PP-YOLOv2
[9], ResNet50-vd-dcn is applied to extract feature maps at
different scales. ResNet [30] has been widely used in a vari-
ety of feature extraction applications. But most recently,
attention mechanism [31] has been gradually applied in
the field of machine vision. There already exist some back-
bones used in image feature extraction such as BotNet [32]
and Swin transformer [33].

In this work, BotNet is chosen for the backbone in
considering of efficiency. Swin transformer, which is

stacked by the attention mechanism, will lead to a signifi-
cant decline in the efficiency of object detection. While
BotNet only replaces some 3 × 3 convolution layers with
multihead self-attention (MHSA). Its reasoning efficiency
is much higher than that of Swin transformer, and the
number of parameters is even lower than that of the orig-
inal ResNet. Figure 4 shows the backbone network
designed for sonar object detection.

Following the way of PP-YOLO [4], we replace some
convolution layers in BotNet with deformable convolution
networks (DCNs) in the consideration that directly replac-
ing BotNet with ResNet will hurt the performance of PP-
YOLO detector. Also, in order to balance the efficiency and
effectiveness, we only replace MHSA in the last stage with
DCNs, as shown in Figure 4. We denote this modified back-
bone as BotNet-dcn.

As shown in Figure 5, there are several positions for the
replacement of MHSA with DCNs. We will demonstrate
their effectiveness through ablation experiments in section
Experiments. Our experimental result shows that replacing
MHSA in the last stage with DCNs performs the best.

To sum up, the proposed BotNet-dcn first leverages three
CNN layers to extract the local features of the image and then
uses two multihead attention module layers to integrate the
global features and further utilize deformable convolutional
network for further adjustment and finally output the feature
map. We will prove its effectiveness in experiments.
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Figure 4: The structure of our backbone network.
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3.2.2. Decoupled Head. Head is a part of model structure to
predict object category and position (bounding box).
Decoupled head has been widely used in most of one-stage
and two-stage detectors [34, 35]. However, as YOLO series’
backbones and feature pyramids (e.g., feature pyramid net-
work [36] and pixel aggregation network [25]) continuously
evolving, their detection heads remain coupled as shown in
Figure 6. YOLOX, proposed by Ge et al. [23], shows that
replacing coupled head with decoupled head can greatly
improve the model performance. Based on PP-YOLOv2, this
paper proposes a decoupled head for sonar object detection.

As shown in Figure 6, the coupled head used in PP-
YOLOv2 generates 3 × ð1 + 4 + 1 + ClassesÞ channels
through 3 × 3 convolution, and the extra channel is used to
calculate IoU aware loss for smoothly processing of predic-
tion information. Differently, we use decoupled head follow-
ing YOLOX. But unlike the decoupled head used in YOLOX,
we put category prediction and object prediction in the same
branch and extend another branch to calculate IoU aware
loss for smoothly processing of prediction information.

The calculation of loss is given by Equation (4), which
includes three parts: confidence loss, classification loss, and
location loss.

L o, c,O, C, l, gð Þ = λ1Lconf o, cð Þ + λ2Lcla O, Cð Þ + λ3Lloc l, gð Þ:
ð4Þ

To be specific, confidence loss is calculated by using
binary cross-entropy, as shown in Equation (5). The confi-
dence means whether there is a center point at this grid, that
is, whether there is an object. oi ∈ ½0, 1� represents the IoU of
the predicted object bounding box and the real object
bounding box. c is the predicted value and ĉi stands for the
confidence score computed by the Sigmoid function. N is
the number of positive and negative samples.

Lconf o, cð Þ = −
∑i oi ln ĉið Þð

N
−
∑i 1 − oið Þ ln 1 − ĉið ÞÞ

N
ĉi = Sigmoid cið Þ:

ð5Þ

Classification loss is also calculated by using binary
cross-entropy. In Equation (6), Oij ∈ f0, 1g represents
whether there is an Oij object in the bounding box of the
predicted object. Cij stands for the predicted value, and
Npos is the number of positive samples.

Lcla O, Cð Þ = −
∑i∈pos∑j∈cla Oij ln Ĉij

À ÁÀÀ
Npos

−
∑i∈pos∑j∈cla 1 −Oij

À Á
ln 1 − Ĉij

À ÁÁ
Npos

Ĉij = Sigmoid Cij

À Á
:

ð6Þ

During training, the squared error loss is used for location
loss calculation. Equation (7) shows the computing method.

Lloc t, gð Þ =
∑i∈pos σ tix

À Á
− ĝi

x

À Á2 + σ tiy
� �

− ĝiy
� �2

Npos

+
∑i∈pos tiw − ĝi

w

À Á2 + tih − ĝih
À Á2

Npos
,

ð7Þ

where ĝix = gix − cix, ĝ
i
y = giy − ciy, ĝ

i
w = ln ðgiw/piwÞ and ĝi

h = ln
ðgi

h/pihÞ, representing the coordinates x, y, width, and height
of the center point of the labeled box in the training data. tx,
ty, tw, and th are the regression parameters of network
prediction.

The effectiveness of the proposed decoupled head will be
illustrated in the following experiments.

3.3. Detection for Underwater Sonar Image. In real applica-
tion, the detector is required to have good real-time perfor-
mance. Our PPYOLO-T keeps only one processing step
that is noise reduction, since the underwater sonar images
have a high signal-to-noise ratio. After noise reduction, the
trained model will detect objects in the image and give the
results of different categories. It is able to detect multiple
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Figure 6: Illustration of the difference between PP-YOLOv2 head and the proposed PPYOLO-T head.
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objects in a time and is also friendly to small ones. We will
show its effectiveness in the following section.

4. Experiments

In this section, we conduct extensive experiments to assess
the effectiveness of our proposed PPYOLO-T on multiobject
recognition for sonar images. We first introduce the data set
and then elaborate the experimental settings, followed by
results and discussions.

4.1. Data Set. In this experiment, we use the forward sonar
data from Ocean Space Environment Awareness (Orca)
open-source project (https://code.ihub.org.cn/companies/
vgz4xa2q, 2022-08-12). One can access the data from github
(https://github.com/violetweir/PPYOLO-T/tree/main/dataset,
2022-08-12). There are 5,000 images in total, of which 4,000
for training and 1,000 for test. Table 1 shows details about
object categories and the number of sonar images for each cat-
egory. It can be seen that the number of objects is nearly the
same with number of images, indicating that most of sonar
images have only one object.

Figure 7 shows some examples from each object cate-
gory. We can see that the underwater sonar images vary in
size, and the resolution is so low that it is hard for us to rec-
ognize an object at a glance.

4.2. Experiment Setup. The proposed PPYOLO-T in this
paper was developed based on the PaddleDetection frame-
work (https://github.com/PaddlePaddle/PaddleDetection,
2022-08-12), and its source code is opened at github
(https://github.com/violetweir/PPYOLO-T, 2022-08-12). All
the experiments were conducted on a server equipped with
two NVIDIA GeForce 1080Ti GPUs (12GB) and Ubuntu
20.04 operating system.

4.2.1. Baselines. We compare the proposed PPYOLO-T with
the following state-of-the-arts on multiobject detection in
image area:

(i) Faster R-CNN [6] is one of the representative algo-
rithms of the classic R-CNN series. It is mainly
derived from the improvement of the previous ver-
sion of Fast R-CNN, including the integration of
feature extraction, proposal extraction, bounding
box regression, and classification into one network.
All of these make the overall performance greater
with improvement in speed

(ii) Cascade R-CNN [7] is improved based on the
Faster R-CNN. Faster R-CNN has only one R-
CNN network, while Cascade R-CNN cascades
multiple R-CNN networks based on different
IoU thresholds to continuously optimize detection
results

(iii) PP-YOLOv2 [9] is more industrialized object detec-
tion network, compared with Faster R-CNN and
Cascade R-CNN. Starting from PP-YOLO, it is
improved by gradually adding modules that con-
tribute to performance improvement without

increasing reasoning time through incremental
ablation. Its high precision and high speed makes
it competitive

4.2.2. Parameter Settings. In this paper, the used open-
source models of Faster R-CNN, Cascade R-CNN, and
PP-YOLOv2 are provided by PaddleDetection, which is
the same as used for the proposed PPYOLO-T. In our
experiments, regular random initialization is used for each
method. The proposed BotNet-dcn used the same pre-
trained model as ResNet50-vd-dcn used in PP-YOLOv2.
Ideally, it is better to retrain a model for BotNet-dcn,
but we did not in considering the needs of huge comput-
ing power and time consumption. Our experimental
results show that even using the not ideal pretrained
model, the proposed method performs best on sonar
object detection task. For Faster R-CNN and Cascade R-
CNN, we used the pretrained model provided by Paddle-
Detection for each backbone networks. A small batch of
8 images was distributed on 2 GPUs. Other parameters
can be found in the score code.

4.2.3. Evaluation Metrics. In this paper, the performance of
the proposed model is evaluated mainly by mean average
precision (mAP). It is a quantitative indicator for evaluating
the effectiveness of multicategory object detection. The cal-
culation formula is as follows:

Table 1: Eight object categories and their numbers of images and
objects in forward sonar data.

(a) Object information in training data

Object category Number of objects Number of images

Ball 1943 1941

Circle cage 386 383

Cube 1752 1749

Cylinder 402 401

Human body 684 683

Metal bucket 403 402

Square cage 655 655

Tyre 852 850

Total 7077 4000

(b) Object information in test data

Object category Number of objects Number of images

Ball 595 595

Circle cage 86 86

Cube 424 423

Cylinder 39 39

Human body 379 379

Metal bucket 44 43

Square cage 169 169

Tyre 108 108

Total 1844 1000
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AP = 〠
1

r=0
rn+1 − rnð ÞPinterp rn+1ð Þ, ð8Þ

with

Pinterp rn+1ð Þ = max
~r:~r≥rn+1

P ~rð Þ, ð9Þ

where Pð~rÞ is the measured precision at recall ~r, r taking the
maximum precision whose recall value is greater or equal
than rn+1.

Intersection-over-union (IoU) is an indicator based on
the Jaccard similarity coefficient and evaluates the overlap
between two bounding boxes. It can measure the regression
precision of object detection. The formula of IoU is as fol-
lows:

IoU =
Soverlap
Sunion

: ð10Þ

In which, Soverlap is the overlap area between the pre-
dicted box and the ground truth box, and Sunion is the joint
area of the predicted box and the ground truth box.

For each object detection, if the result matches some
ground truth box with IoU > 0:5, we mark it as positive, oth-
erwise mark it as negative. Calculated on this basis, the
resulting mean average precision is marked as AP0:5. And
so on, we can get AP0:75 and AP0:95. What is more, the aver-
age of AP0:5 to AP0:95, in which IoU increases by 0.5 each
time, is denoted as APð0:5:0:95Þ in this paper.

Apart from the mAP, we also test inference time and FPS
for each model, to analyze the real-time performance of dif-
ferent models. The inference time is the time required by the
algorithm to process each image, and FPS means the num-
ber of frames per second processed by some algorithm.

4.3. Ablation Experiments for PPYOLO-T. In order to test the
effect of the proposed model, we conducted ablation experi-
ments on forward sonar object detection, as shown in

Table 2. We present the effectiveness of each module in an
incremental manner. Inference time and FPS are different
from those in YOLOv4 [20] and PP-YOLO [4], where
decoding and NMS inference are not considered, but all
inference processes are added in our experiments.

(i) A. First of all, we follow the original design of PP-
YOLOv2 to build our baseline. Due to the large dif-
ference between sonar image and image in COCO
data set, Mixup and other preprocessing methods
such as brightness adjustment acting on COCO
data set are not useful for improving the accuracy
of sonar object detection and will increase the
CPU preprocessing time. Therefore, Mixup and
brightness-related preprocessing are deleted in this
test. Finally, the performance of PP-YOLOv2 is
shown in the first line of Table 2, where the average
AP from AP0:5 to AP0:95 is 49.6%, the reasoning
speed was 31.1ms, and the FPS is 32.15 f/s

(ii) A⟶ B. For forward sonar images, we used mosaic
for data augmentation. Other preprocessing is the
same with A. In addition, since the object size of
sonar image is too different from that of COCO
data set, we use K-means [37] algorithm to resize

1 0
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6
0

7
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Figure 7: Object examples from each category: 0 ball, 1 circle, 2 cubes, 3 cylinders, 4 human bodies, 5 metal buckets, 6 square cages, and 7 tyres.

Table 2: Ablation experiments for the proposed method on
forward sonar data set.

Method
AP 0:5:0:95ð Þ

(%)
Info time
(ms)

FPS
(f/s)

A PP-YOLOv2 49.36 31.1 32.15

B
A+mosaic+resize

anchor
50.54 31.1 32.15

C B+BotNet-dcn 51.43 35.6 28.14

D C+decoupled head 52.63 38.5 26.18

E D+ image size 768 53.14 41.2 24.27

F E +BotNet-dcn 101 53.51 50.5 19.82
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anchor box based on training data, in which the
cluster number K is set to the number of objects.
As can be seen from Table 2, the precision in terms
of APð0:5:0:95Þ increased by 1.18%. This indicates
that it is necessary to select the preprocessing
method according to the characteristics of sonar
image. Meanwhile, mosaic and anchor resizing are
useful selections

(iii) B⟶ C. The second refinement with a positive
effect on PP-YOLOv2 that we found was BotNet-
dcn. We attempted to add attention mechanisms
to the PP-YOLOv2 backbone network. In consider-
ation of efficiency and accuracy, we chose BotNet as
the backbone and replaced its MHSA in the last
stage with DCNs as shown in Figure 5. The reason
why we replace MSHA in the last stage will be
shown through the following experiment. To this
end, BotNet-dcn boosts APð0:5:0:95Þ performance
from 50.54% to 51.43%

(iv) C⟶D. Decoupled head is the third refinement
with a positive effect. Compared with couple head
used in PP-YOLOv2, the proposed decoupled head
takes into account the differences in the content
concerned with classification and positioning.
Therefore, using different branches for computa-
tions are conducive to effect improvement. By
leveraging decoupled head, the accuracy in terms
of APð0:5:0:95Þ was improved by a further 1.2%

(v) D⟶ E. Underwater sonar detectors usually detect
objects in a large area, so there are many small
objects in the generated sonar images. The image
size of PP-YOLOv2 is 640, since larger image size
can result more anchors. Considering that meticu-
lous anchors will benefit small objects, we increased
image size from 640 to 768. The APð0:5:0:95Þ perfor-
mance further increased to 0.5%.

(vi) E⟶ F. Considering the low SNR of sonar images,
we try to improve feature extraction ability of back-
bone network by deepening network structure. In
this test, we replaced the original BotNet-dcn-50
with BotNet-dcn-101. The performance further
increased by 0.37% APð0:5:0:95Þ

(vii) One can see that from A⟶ F, with the continu-
ous improvement of APð0:5:0:95Þ performance, the
reasoning speed is decreasing. Although each

change is slightly slower than original PP-YOLOv2,
such a significant gain promotes us to adopt them
in our final model. For more details, please refer
to our code. It is also worth noting that from
E⟶ F, deepening backbone network improved
the accuracy slightly but reduced the efficiency
significantly. Therefore, it is not recommended
to stack more networks deeply

4.4. Position Selection for DCN. In this subsection, we used
the original BotNet50 as the baseline and tested the effect
of different DCN replacement positions, respectively. As
shown in Table 3, the performance varies with the different
DCN positions. On the whole, DCN in the last stage boosted
APð0:5:0:95Þ performance by 0.4%, while DCN in other posi-
tions leaded to declines in the performance. Specifically, A
P0:5 performance increased when DCN was in the first two
stages but decreased in the last stage. DCN in all positions
have positive effect on AP0:75 performance, and that of at last
stage performed the best with a 5% improvement. We finally
chose to replace MHSA with DCN in the last stage based on
the whole performance.

4.5. Comparison with Other Popular Detectors. We com-
pared the proposed PPYOLO-T with PP-YOLOv2, Faster
R-CNN, and Cascade R-CNN. To show the effectiveness of
our proposed BotNet-dcn, we compared them with different
backbones such as ResNet, Swin-tiny, and BotNet. Compar-
ison of the results on sonar data set with other state-of-the-
art object detectors is shown in Table 4.

From Table 4, we draw the following observations:

(i) Comparison between YOLO and R-CNN. We can
see that on the task of sonar object detection,
models from the YOLO series are superior to R-
CNN based models, both in terms of accuracy and
efficiency

(ii) Backbone comparison. ResNet got the fastest infer-
ence speed but the lowest accuracy. Through par-
tially adding attention mechanisms, the proposed
BotNet-dcn boosted the performance significantly
at the expense of slight reasoning efficiency reduc-
tion. Swin-tiny, which is purely superimposed with
attention mechanisms, hurts dramatically the rea-
soning efficiency while the accuracy is not superior
to the proposed BotNet-dcn

(iii) Image size comparison. We can see that by expand-
ing the image size of PPYOLO-T from 640 × 640 to
768 × 768, the detection accuracy is further

Table 3: Ablation experiment for MHSA and DCN position.

Backbone c5-DCN AP 0:5:0:95ð Þ (%) AP0:5 (%) AP0:75 (%)

BotNet50 (0, 0, 0) 52.2 91.7 51.3

The first stage (1, 0, 0) 51.7 (-0.5) 92.3 (+0.6) 52.3 (+1.0)

The middle stage (0, 1, 0) 51.9 (-0.3) 92.7 (+1.0) 51.1 (-0.2)

The last stage (0, 0, 1) 52.6 (+0.4) 89.6 (-2.1) 56.4 (+5.3)
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improved. We find that most of the objects in
underwater sonar images are small. The larger
image size, the more prediction boxes. We think
that is why enlarging image size works. It also can
be seen that large image size damages the speed.
But compared with 800 × 1333, which is the best
size used in models of R-CNN series, the proposed
PPYOLO-T used a smaller image size and got better
mAP performance

4.6. Performance on Different Objects. In this subsection, we
further evaluate the performance of the proposed PPYOLO-
T on different objects. Detection precision, recall, and F1
-score are used as the evaluation matrix. In this evaluation,
we set the IoU to 0.5 which is commonly used in real appli-
cation. Table 5 shows the detailed values of each category.
Figure 8 further shows the P-R curve.

We can see that the overall performance of our
PPYOLO-T is very well on the task of sonar image multiob-
ject detection. The average precision is 89.6%, and the aver-
age recall is over 95%, such that the F1 score is up to 92%.

From the P-R curve in Figure 8, we can see the similar
results. Specifically, it performs well categories of cube, ball,
metal bucket, square cage, and circle cage but not very well
on cylinder and human body categories. This may because

Table 5: Detection precision, recall, and F1-score for different
target categories when IoU is equals to 0.5.

Category Precision Recall F1
Ball 96.1 98.5 97.3

Cube 96.0 98.6 97.3

Tyre 89.1 97.2 92.9

Circle cage 89.8 94.2 91.9

Human body 90.5 93.4 91.9

Square cage 88.8 94.1 91.4

Metal bucket 89.6 93.2 91.4

Cylinder 76.5 94.9 84.7

Average 89.6 95.5 92.4
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Figure 8: Precision-recall curve for different objects.

Table 4: Comparison of the speed and accuracy of different object detectors on forward sonar data set.

Method Size Backbone Infer time (ms) FPS (f/s) AP 0:50:0:95ð Þ (%) AP0:5 (%) AP0:75 (%)

Cascade R-CNN 800 × 1333
ResNet50 80.97 12.35 46.83 86.57 47.53

Swin-tiny 101.13 9.87 48.75 89.13 46.37

BotNet50-dcn 91.82 10.88 47.63 87.36 45.18

Faster R-CNN 800 × 1333
ResNet50 75.64 13.22 45.78 84.57 43.58

Swin-tiny 97.38 10.27 49.80 89.3 47.92

BotNet50-dcn 85.91 11.64 46.51 87.63 47.63

PP-YOLOv2 640 × 640
ResNet50-dcn 31.10 32.15 50.54 89.26 49.26

Swin-tiny 38.17 25.53 51.14 90.47 51.64

BotNet50-dcn 35.53 28.14 51.43 91.26 49.31

PPYOLO-T 640 × 640
ResNet50-dcn 33.48 29.87 51.37 92.31 50.19

Swin-tiny 43.16 23.17 52.34 91.63 51.62

BotNet50-dcn 38.19 26.18 52.63 89.38 56.43

PPYOLO-T 768 × 768
ResNet50-dcn 45.18 22.13 52.36 91.38 51.67

Swin-tiny 75.47 13.25 52.96 92.64 52.47

BotNet50-dcn 54.73 18.27 53.14 90.88 55.37
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the shape of human body and cylinder in underwater sonar
images is relatively irregular. There are also many areas
without objects in GT boxes. This may lead to the IoU of
the prediction box and the real box less than the threshold.
In this case, it will be regarded as a negative sample, and thus
has a negative effect on model learning.

5. Conclusions

This paper presents some useful preprocessing methods for
sonar image and some updates to PP-YOLOv2, which forms
a high-performance sonar image multiobject detector called
PPYOLO-T. By introducing attention mechanism and
decoupled head, PPYOLO-T achieves significant improve-
ment of detection accuracy with slightly speed reduction.
Compared with state-of the- art models of R-CNN series, it
achieves the best speed and accuracy. However, there still are
some interesting future work. For example, we can further
optimize some structures of attention mechanism to improve
detection speed following the most recent work [38].

Data Availability

All the data are available in these following links: (1) https://
code.ihub.org.cn/companies/vgz4xa2q; (2) https://github
.com/violetweir/PPYOLO-T/tree/main/dataset; (3) https://
github.com/PaddlePaddle/PaddleDetectionhttps://github
.com/violetweir/PPYOLO-T.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was funded by the General Project of Science
and Technology Plan of Beijing Municipal Education Com-
mission (No. KM202210017006), the 2021-2023 Young Tal-
ents Promotion Project of Beijing Association for Science
and Technology, the research project of Digital Education
in Beijing (BDEC2022619048), the Natural Science Founda-
tion of Ningxia (2022AAC03757), the Cross-Disciplinary
Science Foundation from Beijing Institute of Petrochemical
Technology (No. BIPTCSF-006), and the Teaching Reform
project of Beijing Institute of Petrochemical Technology
(Nos. ZDFSGG202103001, ZDKCSZ202103002, and
ZDKCSZ202203004).

References

[1] V. Myers and J. Fawcett, “A template matching procedure for
automatic target recognition in synthetic aperture sonar imag-
ery,” IEEE Signal Processing Letters, vol. 17, no. 7, pp. 683–686,
2010.

[2] J. Groen, E. Coiras, and D. Williams, “Detection rate statistics
in synthetic aperture sonar images,” in Proceedings of the 3rd
International Conference and Exhibition on Underwater
Acoustic Measurements: Technologies and Results, Nafplion,
Greece, 2009.

[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmen-
tation,” in In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 580–587, 2014.

[4] X. Long, K. Deng, G. Wang et al., “Ppyolo: an effective and effi-
cient implementation of object detector,” 2020, https://arxiv
.org/abs/2007.12099.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: unified, realtime object detection,” in In Proceedings
of The Ieee Conference on Computer Vision and Pattern Recog-
nition, pp. 779–788, 2016.

[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards
real-time object detection with region proposal networks,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 39, no. 6, pp. 1137–1149, 2017.

[7] Z. Cai and N. Vasconcelos, “Cascade RCNN: delving into high
quality object detection,” in Proceedings of the Ieee Conference
on Computer Vision and Pattern Recognition, pp. 6154–6162,
Salt Lake City, USA, 2018.

[8] J. Redmon and A. Farhadi, “YOLOV3: An incremental
improvement,” 2018, https://arxiv.org/abs/1804.02767.

[9] X. Huang, X. Wang, W. Lv et al., “PPYOLOV2: a practical
object detector,” 2021, https://arxiv.org/abs/2104.10419.

[10] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Y. Cutmix,
“Regularization strategy to train strong classifiers with localiz-
able features,” in In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 6023–6032, 2019.

[11] E. Dura, Y. Zhang, X. Liao, G. J. Dobeck, and L. Carin, “Active
learning for detection of mine-like objects in side-scan sonar
imagery,” IEEE Journal of Oceanic Engineering, vol. 30, no. 2,
pp. 360–371, 2005.

[12] D. P. Williams and E. Fakiris, “Exploiting environmental
information for improved underwater target classification in
sonar imagery,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 52, no. 10, pp. 6284–6297, 2014.

[13] D. Neupane and J. Seok, “A review on deep learning-based
approaches for automatic sonar target recognition,” Electron-
ics, vol. 9, no. 11, p. 1972, 2020.

[14] H. T. Nguyen, E.-H. Lee, C. H. Bae, and S. Lee, “Multiple object
detection based on clustering and deep learning methods,”
Sensors, vol. 20, no. 16, p. 4424, 2020.

[15] M. Valdenegro-Toro, “End-to-end object detection and recog-
nition in forward-looking sonar images with convolutional
neural networks,” in In 2016 IEEE/OES Autonomous Under-
water Vehicles (AUV), pp. 144–150, 2016.

[16] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and
D. Ramanan, “Object detection with discriminatively trained
part-based models,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 32, no. 9, pp. 1627–1645, 2010.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling
in deep convolutional networks for visual recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 37, no. 9, pp. 1904–1916, 2015.

[18] S. M. Mark Everingham, L. EslamiVan, C. K. I. Gool, J. W.
Williams, and A. Zisserman, “The pascal visual object classes
challenge: a retrospective,” International Journal of Computer
Vision, vol. 111, no. 1, pp. 98–136, 2015.

[19] T. Y. Lin, M. Maire, S. Belongie et al., “Microsoft COCO:
common objects in context,” in 13th European Conference
on Computer Vision, pp. 740–755, Zurich, Switzerland,
2014.

11Journal of Sensors

https://code.ihub.org.cn/companies/vgz4xa2q
https://code.ihub.org.cn/companies/vgz4xa2q
https://github.com/violetweir/PPYOLO-T/tree/main/dataset
https://github.com/violetweir/PPYOLO-T/tree/main/dataset
https://github.com/PaddlePaddle/PaddleDetection
https://github.com/PaddlePaddle/PaddleDetection
https://github.com/violetweir/PPYOLO-T
https://github.com/violetweir/PPYOLO-T
https://arxiv.org/abs/2007.12099
https://arxiv.org/abs/2007.12099
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/2104.10419


[20] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOV4:
optimal speed and accuracy of object detection,” 2020,
https://arxiv.org/abs/2004.10934.

[21] X. Zhu, S. Lyu, W. Xu, and Q. Zhao, “TPH-YOLOV5:
improved YOLOV5 based on transformer prediction head
for object detection on drone-captured scenarios,” in In Pro-
ceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 2778–2788, 2021.

[22] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stron-
ger,” in In Proceedings of The Ieee Conference on Computer
Vision and Pattern Recognition, pp. 7263–7271, 2017.

[23] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: exceeding
YOLO series in 2021,” 2021, https://arxiv.org/abs/2107.08430.

[24] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of
tricks for image classification with convolutional neural net-
works,” in In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 558–567, 2019.

[25] S. Liu, Q. Lu, H. Qin, J. Shi, and J. Jia, “Path aggregation net-
work for instance segmentation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 8759–8768, Salt Lake City, USA, 2018.

[26] D. Misra, “Mish: A Self Regularized Non-Monotonic Neural
Activation Function,” 2019, https://arxiv.org/abs/1908.08681.

[27] K. Krishna, M. Narasimha, andMurty, “Genetic k-means algo-
rithm,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 29, no. 3, pp. 433–439, 1999.

[28] W. Hao and S. Zhili, “Improved mosaic: algorithms for more
complex images,” Journal of Physics: Conference Series,
vol. 1684, article 012094, 2020.

[29] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“Mixup: beyond empirical risk minimization,” 2017, https://
arxiv.org/abs/1710.09412.

[30] F. He, T. Liu, and D. Tao, “Why ResNet works? Residuals gen-
eralize,” IEEE Transactions On Neural Networks And Learning
Systems, vol. 31, no. 12, pp. 5349–5362, 2020.

[31] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you
need,” Advances in Neural Information Processing Systems,
vol. 30, 2017.

[32] A. Srinivas, T.-Y. Lin, N. Parmar, J. Shlens, P. Abbeel, and
A. Vaswani, “Bottleneck transformers for visual recognition,”
in In Proceedings of The Ieee/Cvf Conference on Computer
Vision and Pattern Recognition, pp. 16519–16529, 2021.

[33] Z. Liu, Y. Lin, Y. Cao et al., “Swin transformer: hierarchical
vision transformer using shifted windows,” in In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 10012–10022, Montreal, Canada, 2021.

[34] Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: fully convolu-
tional one-stage object detection,” in In Proceedings Of The
Ieee/Cvf International Conference On Computer Vision,
pp. 9627–9636, 2019.

[35] Y. Wu, Y. Chen, Y. Lu et al., “Rethinking classification and
localization for object detection,” in In Proceedings of the
Ieee/Cvf Conference on Computer Vision and Pattern Recogni-
tion, pp. 10186–10195, Seattle, WA, USA, 2020.

[36] S.-W. Kim, H.-K. Kook, J.-Y. Sun, M.-C. Kang, and S.-J. Ko,
“Parallel feature pyramid network for object detection,” in In
Proceedings of the European Conference on Computer Vision
(ECCV), pp. 234–250, Munich, Germany, 2018.

[37] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-
Means Clustering Algorithm,” Journal of the Royal Statistical
Society. Series C (Applied Statistics), vol. 28, no. 1, pp. 100–
108, 1979.

[38] M.-H. Guo, C.-Z. Lu, Z.-N. Liu, M.-M. Cheng, and S.-M. Hu,
“Visual attention network,” 2022, https://arxiv.org/abs/2209
.00224.

12 Journal of Sensors

https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2107.08430
https://arxiv.org/abs/1908.08681
https://arxiv.org/abs/1710.09412
https://arxiv.org/abs/1710.09412
https://arxiv.org/abs/2209.00224
https://arxiv.org/abs/2209.00224

	An Improved Object Detection Method for Underwater Sonar Image Based on PP-YOLOv2
	1. Introduction
	2. Related Work
	2.1. R-CNN Based Methods
	2.2. YOLO-Based Methods

	3. Methodology
	3.1. Preprocessing
	3.1.1. Noise Reduction
	3.1.2. Image Resizing
	3.1.3. Anchor Resizing
	3.1.4. Data Augmentation

	3.2. The Proposed PPYOLO-T
	3.2.1. BotNet-dcn
	3.2.2. Decoupled Head

	3.3. Detection for Underwater Sonar Image

	4. Experiments
	4.1. Data Set
	4.2. Experiment Setup
	4.2.1. Baselines
	4.2.2. Parameter Settings
	4.2.3. Evaluation Metrics

	4.3. Ablation Experiments for PPYOLO-T
	4.4. Position Selection for DCN
	4.5. Comparison with Other Popular Detectors
	4.6. Performance on Different Objects

	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments



