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In recent times, the medical image processing solves several clinical issues by inspecting the visual images, which are generated in
the clinical health care units. The main objective of the research is to gain valuable information from the images for better clinical
diagnosis. In the biomedical engineering domain, the medical image analysis is an emerging research topic. In the recent decades,
the use of medical images is highly growing, which are acquired from different image modalities; so, there is a necessity for data
compression for transmission, storage, and management of digital medical image datasets. Hence, the machine learning methods
are effective for medical image analysis, where the deep learning models are used in the machine learning tools for automatically
learning the feature vectors from the huge medical datasets. The automated deep learning models are effective compared to the
conventional handcrafted features. In addition to this, a wireless sensor network (WSN) is used to create a primary health care
scheme, which brings patient data together and expands the medical conveniences, whereas the WSN design must comprise of
sensor nodes, because it consumes less power and resources at a relatively low cost; so, it is essential for implementing the
Raspberry Pi-based WSN nodes. The sensor nodes are important for limited battery capacity and to transmit the vast amount
of medical data. The proposed work is broadly classified into two categories such as (i) the medical image compression
algorithm is developed using the deep learning model based on autoencoders and restricted Boltzmann machines (RBM) and
(ii) implementation of the WSN sensors nodes with Raspberry Pi and Messaging Queue Telemetry Transport (MQTT)
Internet of Things (IoT) protocol for secure transmission of the medical images. The experimental results are evaluated using
the standard performance metrics like peak signal to noise ratio (PSNR) and presented a Real-Time Linux (RTL)
implementation of the design. The proposed model showed 10 dB to 15 dB improvement in the PSNR value, while
transmitting the medical images, which is better compared to the existing model.

1. Introduction

Magnetic resonance imaging (MRI) or computerized tomog-
raphy (CT) scan medical imaging creates digital images of
the human body. While these imaging techniques generate
enormous quantities of data, compression is needed for stor-
age and transmission [1]. Most current compression
schemes achieve a high compression rate at the expense of
significant quality loss. Maintaining image quality only in
the area of interest, i.e., in medically relevant regions, may
be required in some areas of medicine. A standard 12-bit
medical X-ray has a dimension of 2048 pixels by 2560 pixels.

This equates to 10,485,760 bytes in file size. A standard 16-
bit mammogram image could be 4500 pixels by 4500 pixels,
with a file size of 40,500,000 bytes (40MB) [2]. This has
implications for disc storage as well as image transmission
time. Despite the fact that disc capacity has steadily
increased, the amount of digital imagery provided by hospi-
tals and their new filmless radiology departments has
increased even more rapidly. Even if there was limitless stor-
age, the issue of transmitting the images would still exist.

Most hospitals have remote clinics or satellite centers in
small towns and remote areas to make it easier for patients
who have difficulty travelling long distances to the clinic,
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particularly for diagnostic procedures. These facilities use
applications, which enable clinic staff to work without the
presence of a radiologist. A clinic technician or basic radiol-
ogist will take the X-ray and send it to the hospital via a net-
work connection, where a diagnostic radiologist will read it
and send back a diagnosis. Although this may seem to be
reasonable, keep in mind that the patient is often asked to
remain in the imaging machine until the radiologist certifies
that the data is sufficient. Not only does compression affect
storage costs but it also affects transmission times, MRI
apparatus use, and patient safety and security [3].

Compression techniques can help improve overall treat-
ment by reducing file size and transmission time. The redun-
dancy that occurs in images is exploited by image
compression techniques. Different forms of redundancy
exist. Each compression technique can take advantage of
one of these redundancies. Spatial, temporal, and spectral
redundancies are the three forms of redundancies [4]. Deep
learning is a branch of machine learning that is based on a
neural network that processes data and mimics the thought
process by layering algorithms. Deep learning uses a deep
architecture consisting of several layers of transformations
to simulate the functioning of the human brain [5]. This is
close to how the human brain processes knowledge. Tradi-
tional machine learning techniques performed poorly when
faced with high-dimensional data, necessitating a prelimi-
nary feature extraction process to transform the most infor-
mative representation of the raw data into a normalization
matrix. Deep learning got rid of the difficult task of sophis-
ticated automated feature extraction without sacrificing the
data’s sense. Autoencoder is a form of unsupervised artificial
neural network that learns the most efficient data. The goal
of an autoencoder is to learn a representation called encod-
ing, which is then used to reduce dimensionality by training
the network. We have considered both the autoencoder [6]
and RBM [7] as the compression techniques for medical
images on the belief that they can be used to select the most
discriminative features in an image in a most efficient man-
ner leading to smaller footprint of the image without losing
quality.

WSN [8] is a communication network that does not rely
on wires or other electronic links between them. WSNs are
used in industries like manufacturing, forest fire detection,
transportation, construction, and office space surveillance
and monitoring. WSNs are usually deployed closer together
in inaccessible locations where battery replacement is nearly
impossible. The WSN’s key challenges include limited
power, limited processing ability, and an open climate. We
choose to implement the system design for wireless sensor
networks with Raspberry pi (RPi) [9], a small footprint
hardware device with wireless, and Bluetooth capabilities
for communication with other similar Raspberry Pi units
that can act as sensor nodes to which the compressed med-
ical images can be transmitted. The platform comprises of
four WMSN nodes built with the Raspberry Pi (RPi) [9];
we introduce a technique where every source node retains
its data transmission rate uniformly and periodically
apprises its information sending rate based on the other
node’s congestion level. Each node is identified by a unique

IP address so that it can create a routing path to the sink
using multihop communication; we also propose the MQTT
[10] protocol for the transmission mechanisms, where the
packets lost can be stored and retransmitted when the net-
work bottleneck has cleared. The suggested platform can
be adaptable, accessible, and appropriate for wireless moni-
toring of constructions, open spaces, remote locations, etc.,
which is depicted in Figure 1.

Largely, the information handling utilizes far less power
than transmitting it in a wireless channel. Hence, by com-
pressing the images before transmitting them will consider-
ably reduce the net energy consumed across the sensor
nodes. It is also feasible for image compression to be sus-
tained at a high compression ratio without evident degrada-
tion of quality in the reconstructed images [11] The image
compression schemes proposed and developed in this work
could have some parameters such as minimalism in coding,
minimal memory demand, low computational need, and
maximum compression rate. The image compression pro-
cess in WSN is stated in Figure 2.

The major contributions of this research are given below:

(1) Developed a medical image compression algorithm
based on the autoencoders and restricted Boltzmann
machines. An effective image algorithm consumes
less space on the hard-drive and effectively retains
the same physical size

(2) WSN sensor’s nodes with Raspberry Pi and MQTT
IoT protocol is implemented for secure transmission
of the medical images, and then the proposed model
effectiveness is validated by using the performance
measures like PSNR

This research manuscript is structured as follows: the Sec-
tion 2 surveys the related research literature articles and previ-
ous published papers on the topic “medical image
compression and WSN.”. The Section 3 covers the general per-
formance metrics used to analyze the compression standard
and then the relevant research. In addition, the compression
methodologies used in this work are discussed effectively in Sec-
tion 3. The Section 4 provides information about the WSN
design with Raspberry Pi, and the Section 5 provides the results
achieved with the compression algorithms with the original and
the reconstructed images. The RTL schematic diagram is pro-
vided in Section 5. The Section 6 discusses the scope of the work
and its implications for future research in the field.

2. Related Research Works

In today’s healthcare systems, medical imaging is a necessary
tool. With applications in tumor segmentation, cancer iden-
tification, classification, image driven therapy, medical
image description, and restoration, machine learning plays
a critical role in CADx. Since any redundant information
is lost during compression, lossy techniques will not be able
to restore the original image from the reconstructed image.
The lossless procedure will precisely recreate the actual
image from the restored image.
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Information can be compressed using transform-based
coding strategies like DCT [12], DWT [13], SVD [14],
PCA [15], and wavelet-based compression techniques like
EZW [16], SPIHT [17], WDR [18], and JPEG2000 [19].
On satellite images, Walker et al. [20] used PCA and neural
network algorithms to compress the data. Finding the
covariance matrix, eigenvalue, and eigenvectors of an input
image using the PCA method is extremely difficult. PCA is
used to compress images, but the compressed result is not
considered to be appropriate. The ANN algorithm, which
produces better results, will boost the outcome.

Gaidhane et al. [21] found that image compression using
the wavelet transform produces the best results as compared
to DCT for ultrasound and angio images. Blocking objects
plagued the DCT process. Puniene et al. [22] used DCT
and SPIHT-based compression techniques to compress
medical images. DCT is used to decompose the medical
image, and then SPIHT is used to compress the coefficients.
Singular value decomposition (SVD) and wavelet difference
reduction techniques are used by Antonini et al. [14] to pro-
pose a lossy image compression method (WDR). The image
quality is better with SVD compression, but the compression
ratio is poor. As a result, the SVD output was compressed
once more using WDR. At high compression ratios, WDR
achieves excellent image quality.

Angadi and Somkuwar [23] use a combination of SVD
and the embedded zero tree wavelet approach to compress
ECG signals. The SVD method, followed by the EZW
method, has been tested and proven to improve the effi-
ciency of the reconstructed signal. Kumar et al. [24] used
DCT and DWT techniques to compress images in wireless
sensor networks. As compared to the discrete cosine trans-
form, the discrete wavelet transform has a higher PSNR
value and a faster compression process. Each node in a sen-
sor network has extremely limited resources, such as mem-
ory, electricity, and processing power. To address these
limitations, image compression algorithms rely on DCT
and DWT that are used to reduce memory space and storage
usage. They evaluate the results of DCT and DWT proce-

dures using several performance metrics, and the results
showed that the discrete wavelet transform outperforms
the discrete cosine transform in terms of PSNR.

Artificial intelligence approaches, specifically in the con-
text of computer vision, imaging, voice recognition, and nat-
ural language comprehension [25, 26], are just one of those
directions that can help resolve the limitations of traditional
image compression standards. Deep learning got ahold of
the difficult task of sophisticated automated feature extrac-
tion without sacrificing the data’s context. As a result, deep
learning for feature extraction and classification of medical
images from a variety of diseases has gained a reputation
for exceeding expectations and producing more than satis-
factory results.

After training two stacked denoising autoencoders to
obtain a reduced version of the data dimension, Xing et al.
[27] used a theory components neural network to classify
data. They identified the areas of the brain that distinguish
ASD from conventional controls (TC) with approximately
70% accuracy across the entire dataset. Heinsfeld et al. [28]
reduced multivariate data using a variational autoencoder
(VAE) model and discovered the most discriminative fea-
tures. Choi [29] added spatiotemporal information in the
fMRI to the 3D conventional neural network to detect spa-
tially useful features (CNN). The researchers then devised
a voting system based on these characteristics to decide
whether or not each subject has ASD.

In [30], the authors proposed a DNN-based novel fea-
ture election method from fMRI images and then used it
to obtain whole-brain function communication patterns
using multiple trained sparse autoencoders. They developed
a DNN-FS classification model that had an accuracy of 86.36
percent on a sample of 55 ASD and 55 TC.

WSN technology can be used to develop realistic Health
Care WSNs that meet the main system design requirements
of secure connectivity, node mobility, multicast technology,
energy efficiency, and timely data delivery. Long data trans-
mission routes, vast volumes of data, and limited battery
power all reduce WSN lifetime. The optimization of energy
consumption effectively extends the lifespan of the network,
which is important. To get more energy optimization, Guo
et al. [31] proposed an energy efficient clustering hierarchy
protocol for WSN. Mann and Singh [32] presented a routing
protocol for WSNs that was established to preserve a reason-
able level of scalability, energy efficiency, and reliability. A
fuzzy logic and genetic dependent clustering approach to
optimize network energy was defined in the paper presented
by Sim and Lee [33]. Saeedian et al. [34] employs a Digital
Signal Processing-based Wireless Sensor Network Platform
to achieve high compression efficiency of physiological data
for telemedicine applications.

With the advancement in rapid hardware prototyping
technology and the advent of microcontroller-based board
such as Arduino, ESP32, and Raspberry Pi, WSNs with
smaller size footprint, better energy efficiency, and low cost
are a reality enabling researchers experiment with them.
Hsu et al. [35] created a new model for saving, exchanging,
and archiving patient health records using a Raspberry Pi
board and a hard drive. The disc that is accessible in the local
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Figure 1: Raspberry Pi WSN with four nodes for compressed
image transmission using MQTT.
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cloud and can be shared with other public clouds that are
farther out, such as Google Drive, Azure Cloud, and other
similar services, are available. They also safeguarded the
medical details by introducing a new security protocol.

Elhoseny et al. [36] used fast bilateral filter for noise
removal in the medical images, because it has better edge
preservation ability. Further, the image segmentation is car-
ried out by using the canny edge detector. In addition, the
developed fast bilateral filter algorithm is implemented in
Raspberry Pi by utilizing open CV software. Kumar and
Gupta [37] have implemented a fast and secure encryption
technique for the medical images on the basis of one dimen-
sional logistic map, which is associated with pseudo random
numbers. In the resulting phase, the proposed technique is
validated on the standard medical datasets under the condi-
tions of noise and differential attacks. Ahmed and Salah [38]
applied a fast sub pixel registration technique to achieve
high-resolution image registration on the basis discrete
wavelet transform and the convolutional neural network.
In this literature, the classification result of convolutional

neural network and genetic algorithm is used for MRI image
registration.

3. Image Compression and
Performance Metrics

3.1. Image Compression. Image comprises of pixels that are
extremely related to each other. Consequently, it holds a siz-
able quantity of redundancy that utilizes substantial memory
for image storage space, which in turn can reduce the trans-
mission bandwidth. These redundancies can be grouped into
two classes: (1) spatial and (2) temporal redundancy. In the
spatial class, nearby pixels are correlated, whereas in tempo-
ral redundancy, there exists similarities between the two sub-
sequent frames. Hence, to eliminate the redundancies, image
compression has to be done for a reduced amount of storage
area and smaller bandwidth [14, 39, 40].

Image compression can further be categorized into two
types: lossy and lossless. Lossy image compression is com-
monly applied in WMSN owing to its gains over lossless
compression standards, namely, higher compression rates,
that reduces the bytes needed to be transmitted over the
WMSN and less power consumption for transmitting the
images.

Additionally, lossy image compression has the advantage
of taking less time for encoding/decoding the image trans-
mitted in relation to lossless compression. This paper
focuses its approach on the lossy compression algorithm
because of our need to increase the bandwidth availability
in the sensor nodes for transmission without any congestion,
which can subsequently reduce the transmission delay across
the network and provide a more streamlined transfer suit-
able for live image or video feeds [41].
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Figure 2: Image compression in a WSN.
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3.2. Performance Metrics. We have studied the compression
ratio and peak signal to noise ratio (PSNR) readings to ana-
lyze the performance of the compression algorithms consid-
ered here. We have decided not to consider the processing
time as it would not be fair to compare it between the
simulation-based experimental setup versus the Raspberry
Pi-based hardware implementation. The mathematics
behind the performance metrics used to evaluate the com-
pression schemes is presented below for better understand-
ing of the concepts.

3.2.1. Mean Square Error (MSE).MSE is defined in Equation
(1).

MSE σ2 = 1
N

〠
N

n=1
xn − ynð Þ2, ð1Þ

where N is the data sequence length, and xn represents the
input data sequence, while yn corresponds to the recon-
structed data sequence.

3.2.2. Peak Signal to Noise Ratio (PSNR). The quality of sig-
nal representation is influenced by the relationship between
the maximum feasible signal value and the distortion capac-
ity, which can be used as a comparison of compressed and
original image quality. The better the quality of the com-
pressed or reconstructed image, the higher the PSNR. The
decomposed image quality is better when the PSNR value
is higher [42]. PSNR is defined as the size of the error in rela-
tion to the signal’s peak value xpeak (for 8-bit pixel x2peak
equals 255) and is calculated using following equation (2).

PSNR = 10 log10
x2peak
σ2d

, ð2Þ

where σ2d is the MSE of (σ2).

3.2.3. Compression Ratio (CR). Compression ratio (CR) is a
phrase used to refer to the ratio of binary sequence length
of the compressed output image (B1) to binary sequence
length of the original uncompressed input image (B0) and
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Figure 5: MQTT architectural block diagram.
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Figure 6: Autoencoder compression for sample test MR images with tumor. (a) Actual images. (b) Compressed images.
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measured as bits per pixel (bpp) as given in Equation (3).

CR = B0
B1 : ð3Þ

It is generally used to find how good the compression
efficiency is as a higher value means better compression [42].

3.2.4. Power Consumption. For all practical implementation
cases of the WSN, power consumption must be considered
as the most important metric, which is highly influenced
by the above discussed metrics. The transmission power
and the energy dissipation across the nodes can be greatly
reduced by adapting to less complex processing units and
by minimizing the data size.

To summarize, less transmission error is a direct product
of low MSE values and has an inverse relation with PSNR,
which proportionately increases, which in turn points out
the noise in the compressed image is lower and this can help
with the better reconstruction of the image.

4. Image Compression Methodologies

4.1. Autoencoders. An auto encoder is a fine example of the
unsupervised neural network learning algorithm, and it is
graphically depicted in Figure 3. Commonly, it is used dur-
ing the back propagation of the neural network model where
the target values are selected to be equal to the inputs such
that yðiÞ = xðiÞ. It makes use of the convergent and divergent

layers where convolution and deconvolution take place, and
the features are compressed in the middle layers to generate
the desired output.

An autoencoder can be mathematically characterized as
follows to describe the encoder and the decoder sections of
the model [6], as mentioned in the equations (4)–(6).

ϕ : Χ⟶ F, ð4Þ

ψ : F ⟶ X, ð5Þ

ϕ, ψ = argmin
ϕ,ψ

X − ψ o ϕð ÞXk k2: ð6Þ

As can be seen from the equations (4)–6, presented
above, the encoder and decoder parameters are enhanced
in a manner that minimizes the reconstruction error, which
is the error between the original input image and the recon-
structed compressed image.

The parameter settings of the convolutional autoencoder
are given below [12]:

Number of batches: the original image is divided into
training set and further, it is divided into many batches to
perform the stochastic gradient descent optimization of the
model. In this experimentation, the batch size is considered
as 100

Learning rate: at any time, the model weight is changed
at every iteration, a hyperactive parameter that restricts
how to adjust the model in response to the predicted error.

(a) (b)

Figure 7: Autoencoder compression for sample test MR images without tumor. (a) Actual images. (b) Compressed images.
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It should be minimal, but not too small, as this could lead to
a lengthy training phase, where the learning rate is consid-
ered as 0.01, and the number of iteration is assumed as 2000

Max epochs: this cannot be a definite value based on
logic but just a backstop against endless iterations. It can
be easily changed to a suitable value later if the model seems
to overfit or underfit the learning experience. The maximum
epoch of 2000 is considered for training the model

4.2. Restricted Boltzmann Machines (RBM). Boltzmann
machines, as with any other neural network, consist of an
input layer and several hidden layers. The neurons make sto-
chastic decisions [43] like when to turn on depending on the
data fed during the training process and based on the mini-
mization of the cost function. The Boltzmann machine upon
training attains the learning to deduce some interesting fea-
tures from the dataset on which it is trained that can help the
model to learn the complex fundamental relationships and
patterns inherent in the data [22].

From Figure 4, it can be seen that the weight, wij ∋W, is
connected to the visible unit, V , to the hidden unit, h, where
W ∋ Rmxn is the super set of all the weights, considering both
the hidden and visible units. The visible unit, V , biases can
be signified as bi ∋ b, while the hidden unit, h, biases are rep-
resented as cj ∋ c.

We can assume that the joint distribution of a visible
layer vector, V , and a hidden layer vector, h, is proportional
to the exponential of the negative energy of the configura-

tion as shown in Equation (7) based on [24]: the Boltzmann
distribution from statistical physics:

P v, hð Þ∝ e−E v,hð Þ: ð7Þ

Before designing the RBM model using deep learning
approach, we can reset the parameters to the original ones
or leave them as defaults reasonable for most image process-
ing applications. The parameters setting of restricted Boltz-
mann machine [43] is discussed below:

Random initialization iterations: initially, a set of ran-
dom number of trail weights is considered for each layer of
the network in order to use it as a good starting point for
testing the model. Here, a stochastic gradient descent train-
ing is applied, and the number of iterations is selected as
2000

Number of batches: the training set is divided into
batches to reduce the processing time and memory of hard-
ware, where the batch size is considered as 100

Learning rate: in the case of autoencoder, the learning
rate should be small for reducing the training process length
that helps in the faster generation of the learning model, and
the learning rate is considered as 0.1

Max epochs: the maximum number of epochs is selected
by trial and error, and the number is adjusted based on the
learning rate, whether it is overfitting or underfitting. The
maximum epochs is considered as 100, but it is dynamically
changed based on the above scenarios

(a) (b)

Figure 8: RBM Compression for sample test MR images with tumor. (a) Actual images. (b) Compressed images.
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5. Raspberry Pi WSN Implementation

The hardware implementation was done using Raspberry Pi,
and MQTT (Message Queuing Telemetry Transport) proto-
col was selected as the de facto method to transfer the com-
pressed images across the Raspberry Pi WMSN [9]. MQTT
was an opt choice for wireless networks where high latency
is an issue due to its bandwidth constraints and unpredict-
able network downtimes. In case of the connection gets bro-
ken when a subscribing client tries to access the transmitted
image from the broker, the broker has the ability to buffer
the lost messages back to the subscriber again when the net-
work becomes online. Similarly, when the publisher node
loses the connection with the broker, the broker can initiate
the process to close the connection; before it can send all the
subscribed nodes in the network, the cached message
received earlier from the subscriber.

This process is explained clearly in Figure 5 with a block
diagram. Here, we have used four Raspberry Pi nodes which
can behave as publisher, broker, and subscriber. A publisher,
by design, can behave as both a publisher and a subscriber;
so, every other Raspberry Pi node can transmit and receive
images except the broker which can only facilitate the com-
munication between the subscriber and the publisher. Any
Raspberry Pi node can initiate the transmission across the

(a) (b)

Figure 9: RBM Compression for sample test MR images without tumor. (a) Actual images. (b) Compressed images.

Table 1: Autoencoder–PSNR values for test sample of two images
with and without tumor.

Images with tumor (dB) Images without tumor (dB)

11.5639 11.8199

13.5750 6.8321

Table 2: RBM–PSNR values for test sample of two images with and
without Tumor.

Images with tumor (dB) Images without tumor (dB)

11.874 10.785

9.572 9.264

Table 3: Autoencoder Xilinx ISE device utilization factor.

Logic utilization Used Available Device utilization

No. of slices 284 4656 6%

No. of slices in flip flops 60 9312 0%

No. of 4 input LUTs 430 9312 4%

No. of bonded IOBs 65 92 70%

No. of GCLKs 1 24 4%
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WMSN by acting as a publisher by transmitting images to
the broker, while the other nodes can subscribe to receive
the images from the broker, which can then serve the images
to the subscriber.

6. Results and Discussion

We have used different approaches in the evaluation of
results by analyzing the performance metrics of the image
compression and WSN using both simulation and hardware
implementations. The simulation analysis is done on the
system configuration with 128GB random access memory,

4TB hard disk, windows 10 operating system, and Intel core
i9 processor.

The hardware implementation was done using Raspberry
Pi, and MQTT (Message Queuing Telemetry Transport) pro-
tocol was selected as the de facto method to transfer the com-
pressed images across the Raspberry Pi WMSN [9]. MQTT
was the apt choice for wireless networks where high latency
is an issue due to its bandwidth constraints and unpredictable
network downtimes. In case of the connection gets broken
when a subscribing client tries to access the transmitted image
from the broker, the broker has the ability to buffer the lost
messages back to the subscriber again when the network
becomes online. Similarly, when the publisher node loses the
connection with the broker, the broker can initiate the process
to close the connection; before it can send all the subscribed
nodes in the network, the cached message received earlier
from the subscriber.

Our experimental process is concerned with analyzing
the performance of the neural network-based image com-
pression schemes by comparing their PSNR values when
the images are transmitted through the WMSN. We have
used the MRI images from the brain tumor dataset gathered
from [44] for our experiment for its simplicity and availabil-
ity of large number of images.

Test images included T1-weighted MR images with a TR
of 1740 and an echo time (TE) of 20, T2-weighted MR
images with a TR of 5850 and an echo time (TE) of 130,
and FLAIR-weighted MR images with a TR of 8500 and an
echo time (TE) of 130.

A 3 Tesla Siemens Magnetron Spectra MR computer was
used to create these test images. The total number of slices for
all channels was 15, resulting in 135 images at 9 slices or images
per patient with a field of view of 200mm, a 1mm interslice dis-
tance, and voxel sizes of 0:78mm × 0:78mm × 0:5mm. The
proposed technique is tested on a real dataset that includes
512 × 512 pixel brainMR images, which was converted to gray-
scale before processing using autoencoder/RBM. The autoenco-
der/RBM compression for sample test MR images with and
without tumor is given in Figures 6–9. The images consisted
of both the images with tumors detected and tissues without
tumor (healthy tissues). We adopted this approach to analyze
the performance of the image compression algorithms on both
the MR images with and without tumor and identify if the
tumor issues are visible after compression.

The RTL schematic for autoencoder and RBM was imple-
mented with Xilinx ISE development platform version 14.1 of
family Virtex 6-XC6VLX757, and the device utilization sum-
mary is given in Tables 1–4. RTL schematic is shown below
in Figures 10 and 11. Comparing the RTL design of RBM with
autoencoder, we can easily infer that RBM utilizes far lesser
flip flops in its design for the same image compression, which
attests for its superior performance when compared with auto-
encoder. It also performs better other factorization-based
image compression methods by a significant factor.

7. Discussion

The proposed model’s performance is validated by compar-
ing it with the existing model developed by Elhoseny et al.

Table 4: RBM Xilinx ISE device utilization factor.

Logic utilization Used Available Device utilization

No. of slices 447 4656 9%

No. of slices in flip flops 56 9312 0%

No. of 4 input LUTs 861 9312 9%

No. of bonded IOBs 65 92 70%

No. of GCLKs 1 24 4%

loc(19:0)

tx1_dr1(19:0)

clk

clk_enable

reset

addr_stgp(19:0)

res_tx1_r1(19:0)

ce_out

data_occur

AUTOENCODER

AUTOENCODER

Figure 10: RTL schematics of autoencoder design.

loc(19:0)

tx1_dr1(19:0)

clk

clk_enable

reset

addr_stgp(19:0)

res_tx1_r1(19:0)

ce_out

data_occur

RBM

RBM

Figure 11: RTL schematic of restricted Boltzmann machines
(RBM).
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[36]. In the existing work, the author developed fast bilateral
filter for noise removal in the medical images. The fast bilat-
eral filter has better edge preservation ability. Then, the
canny edge detector is developed for segmenting the brain
tissues. Lastly, the fast bilateral filter algorithm is imple-
mented in Raspberry Pi by utilizing open CV software.
Compared to the existing model, the proposed model
achieved showed 10 dB to 15 dB improvement in the PSNR
value, while transmitting the medical images. In addition,
the effectiveness of the security protocol is as follows: MQTT
is validated in terms of accuracy, precision, and recall. In our
test case, the MQTT protocol achieved 95.60% of accuracy,
96.90% of recall, and 95.92% of precision, which is better
compared to the existing technique [38], where the existing
technique achieved only 90.90% of precision and recall and
94% of accuracy.

8. Conclusion

This work was chiefly carried out to analyze the performance
of the deep learning algorithms in compressing medical MRI
images and the efficiency of the Raspberry Pi WSN in trans-
mitting the compressed images across the WSN nodes. Since
there are many requirements in the medical field where the
need to stream the medical images across the WSN with
greater efficiency for immediate presentation and diagnosis
of doctors, it calls for optimized compression of images for
preserving the data transmission bandwidth and lesser
transmission time at the same time not losing any consider-
able loss of image quality as it is impair the prognosis. The
deep learning neural network implementations of autoenco-
der and RBM coded on Raspberry Pi with MQTT as the
transmission protocol for additional security in the WSN
performed as per the expectations with minimal power loss
and latency. The RTL schematic implementation was done
for all the image compression schemes used in the paper as
a means to find out the device utilization in the WSN. This
can be used as the foundation for the further development
of the work on custom FPGA boards that can offer more
control over the power performance of the WSN.
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