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In a multiagent system, the semantic interaction between agents is an important aspect affecting multi-intelligence. The purpose of
interaction is to reasonably arrange task objectives and behaviors through information sharing and communication interaction, so
as to maximize the overall performance of multiagent system. This paper analyzes the communication and interaction process
between agents from the perspective of semantic layer and introduces the BDI (belief, desire, intention) model of agent’s
thinking state into the communication and interaction process. Furthermore, we propose a multiagent semantic interaction
strategy model based on a large-scale intelligent sensor network, which supports various types of negotiation and interaction
on the basis of basic interaction behavior to solve the problem of information operational conflicts. In addition, this paper
limits the scale of historical information through the definition of equivalence and the merging theorem of history, and it uses
reinforcement learning algorithm to detect possible conflicts and delay communication and makes rational use of limited
resources to improve system revenue and coordination efficiency. The experimental results show that compared with the
previous methods such as debate and negotiation, the strategy model can realize the flexible interaction based on scene and is
more practical. At the same time, the existence of reinforcement learning improves the efficiency analysis and the convergence
performance of semantic interaction strategy.

1. Introduction

With the development of artificial intelligence (AI), a
multiagent system (MAS) has become a research hotspot.
A multiagent system is composed of a group of independent
and interactive autonomous agents [1, 2]. As an interactive
autonomous learning paradigm, reinforcement learning
provides an effective method to solve the distributed collab-
oration of multiagent systems [3]. Multiagent Reinforcement
Learning (marl) has attracted extensive attention [4]. Draw-
ing on the technologies and concepts of artificial intelligence,
game theory, psychology, and sociology, marl provides a
promising method to learn satisfactory agent behavior in
complex environment, which is widely used in distributed
control, multirobot system, resource allocation manage-
ment, and automatic transaction [5].

In the past, the research on agent interaction in multia-
gent system (MAS) can be divided into two main parts: com-
munication mechanism and negotiation method, but they
lack connection and universality [6]. In the design of MAS
system, in order to enable agents to obtain semantic infor-
mation from exchange data, it is necessary to have a new
understanding of the content and mode of communication
interaction [7]. Firstly, communication should not be a pas-
sive behavior determined by the protocol, but the behavior
that one agent wants another agent to accept some kind of
belief or intention in the scene of communication [8]. The
specific answer to each communication should be deter-
mined by the interactive target [9]. This interaction model
can be applied to flexible interaction scenarios and provide
means for communication based on target requirements
[10]. Secondly, interaction is to share the information of
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both sides, understand the intention of both sides, and adjust
their plans in a certain order [11]. As long as the transmis-
sion and inquiry of information, intention and planning
adjustment are expressed; a considerable number of interac-
tive processes can be expressed [12]. And its scope of appli-
cation is only limited to the planning ability of agent to take
interactive action to achieve its purpose [13].

Due to environmental uncertainty, incomplete informa-
tion, distributed learning, concurrent learning, and other
problems, multirobot system (MRS) is widely used in
UAV, spacecraft, autonomous underwater vehicle, ground
mobile robot, and other practical problems [14]. As an
interaction-oriented autonomous learning paradigm,
Multiagent Reinforcement Learning (RL) allows robots to
learn the mapping from state to action through the reward
obtained by interaction with the environment, so as to coop-
erate with robot behavior and complete specific tasks, which
is widely used in multirobot systems [15–17]. In reinforce-
ment learning, each agent learns the optimal strategy by
interacting with its dynamic environment [18]. When single
agent reinforcement learning is applied to a multiagent
system, reinforcement learning faces some challenges. The
centralized learning method regards the multiagent system
as a whole [19]. Through the observation of the global envi-
ronmental information, the single agent reinforcement
learning method is applied to learn the joint optimal behav-
ior of the multiagent system [20]. Because it depends on the
scale of real problems, centralized learning methods usually
face scalability problems. Therefore, the centralized learning
method can not be applied to multirobot systems. In a mul-
tirobot system, each robot needs to have complete control
over the individual robot, that is, the distributed control of
multirobot system. As a model-free reinforcement learning
method, Q-learning has been widely used in multirobot
systems such as soccer robot, chasing robot [21], chasing
robot prey, and moving target observation robot [22]. The
literature [23] applied the independent Q-learning algorithm
to the soccer robot to realize the cooperation of robot behav-
ior. The documenters [24] improved the learning efficiency
through robot cooperative learning. This research work
accelerated the learning process by sharing perceptual infor-
mation and learning experience [24]. The distributed inde-
pendent learning method models each agent, and each
agent only observes its local environment. The distributed
independent learning method does not rely on the observa-
tion of global environment information. It has the character-
istics of high robustness and good scalability. At the same
time, it can solve the dimensional disaster problem faced
by centralized learning [25]. The contributions of this paper
are summarized as follows: (1) this paper analyzes the com-
munication and interaction process between agents from the
perspective of semantic layer and introduces the BDI model
of agent thinking state into the communication and interac-
tion process; on the basis of basic interaction behavior, it
supports various types of negotiation and interaction to
solve the problem of information operation conflict. (2) This
paper limits the scale of historical information through the
definition of equivalence and historical merging theorem,
uses reinforcement learning algorithm to detect possible

conflicts and delayed communication, and makes rational
use of limited resources to improve system revenue and
coordination efficiency. (3) This paper constructs a large-
scale intelligent sensor network system to verify the superi-
ority and reliability of the algorithm.

In this paper, for the behavior coordination problem in
multiple environments, an improved reinforcement learning
mechanism based on planning fusion is proposed. The
history and belief information are expressed as a function
of the state. On the premise of ensuring that there is no loss
of effective information, the historical information is com-
bined by the methods of possible conflict detection and
delayed communication, and the limited resources are
reasonably used to obtain more system benefits. The mech-
anism takes the belief pool as the basic way of inter coordi-
nation and uses the strategy merging theorem to losslessly
merge the historical information, so as to improve the effi-
ciency of solving the problem with large-scale historical
information. At the same time, the mechanism of conflict
detection and delayed communication is adopted to
effectively use the limited communication resources to
strengthen the resolution of behavior conflicts and the
exchange of important information.

2. Architecture Design of Multiagent System

2.1. Multiagent System Architecture. A multiagent system is
an important field in the application of multiagent technol-
ogy. The multiagent system is a group organization with
multiple independent abilities. Each has a certain thinking
state, such as belief, knowledge, and intention, and they will
perform some actions according to their thinking state. The
necessity of coordination lies in the existence of other inten-
tions. The purpose of coordination is to change individual
intentions and enable all individuals in the system to work
together in a consistent and harmonious way. The goal of
multiagent system is to make several systems with simple
intelligence but easy to manage and control realize complex
intelligence through mutual cooperation, so as to reduce the
complexity of system modeling and improve the robustness,
reliability, and flexibility of the system. The main character-
istics of multiagent system are as follows:

(1) Autonomy: in the multiagent system, each agent can
manage its own behavior and achieve independent
cooperation or competition.

(2) Fault tolerance: agents can jointly form a cooperative
system to achieve independent or common goals. If
some agents fail, other agents will independently
adapt to the new environment and continue to work,
and the whole system will not fall into a failure state.

(3) Flexibility and scalability: MAS system itself adopts
distributed design, and the agent has the characteris-
tics of high cohesion and low coupling, which makes
the system show strong scalability.

(4) Ability to collaborate: the multiagent system is a
distributed system. Agents can cooperate with each
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other to achieve the global goal through appropriate
strategies.

Deliberative type is also called knowledge type or cogni-
tive type. Its biggest feature is to use symbols to realize the
representation and reasoning of entities in the real world
and make decisions according to the reasoning at a certain
stage. There are only some simple actions in reactivity-
perceptual behavior pattern. The above two are extreme
representations of two ways of thinking. The cautious type
requires strict theoretical background such as knowledge
representation, behavior planning, and decision-making
strategies. The real implementation process is too complex.
Although the reactive type is simple, it only makes reasoning
and decision-making according to local perceived informa-
tion, and empirical knowledge can not be effectively used,
so it is difficult to effectively solve practical problems. There-
fore, there is a hybrid type. It integrates the characteristics of
the above two types and can make up for each other to a
certain extent. It is the most ideal structural model. The
architecture diagram is shown in Figure 1.

As shown in Figure 1, the multiagent architecture mainly
includes environment awareness module, information
processing module, communication module, decision and
control module, and execution module. In addition, when
an agent predicts environmental changes, it should consider
that the activities of other agents are generally not controlled
by themselves and difficult to predict. In order to better
predict environmental changes, enhance their own action
ability, and realize their own needs, agents must communi-
cate. The capability of a single agent is limited, but multiple
agents can be organized through an appropriate architecture
to make up for the shortcomings of each agent and make the
capability of the whole system exceed that of any single
agent. A multiagent system means that a problem needs
multiple solving entities. This system has the advantages of
traditional distributed and concurrent problem solving and
has complex interaction mode. Communication ability is
not a necessary characteristic of rational agents; it is the
embodiment of agent sociality. Communication action is
also a specific planning action, which is scheduled in the
process of completing agent requirements. From the seman-
tic level, communication interaction is the transmission of
thinking state between agents.

2.2. Structure of Multiagent System Based on Large-Scale
Sensors. A distributed cooperative control method based on
multiagent system is shown in Figure 2, which is character-
ized by the following steps: (1) build a multiagent three-level
control architecture, that is, a control architecture of “local
droop control-secondary power optimization control-
centralized optimization and regional autonomy.” Each net-
work using droop control installs agents to realize the
semantic interaction of multiagents. (2) The dispatching
decision-making function module is designed to coordinate
the adjustable resources with different control response
rates, which respond to the internal and external energy
demand of the LAN and quickly stabilize the power fluctua-
tion of the tie line in the process of power failure, parallel,

and off network switching in the energy LAN. (3) A distrib-
uted sparse communication network based on the multia-
gent system is constructed. Furthermore, the generation
and completion of communication must have certain objec-
tive conditions, such as the existence of communication
carrier and other factors. At the same time, there must be
explicit intention for information exchange in communica-
tion. No matter whether the communication medium is
language or action, the sender knows that its intention will
be received by the other agents; the receiver of communica-
tion must also have the need to receive information. Com-
munication is also a group behavior between two agents,
which cannot be fully represented by only one agent sending
information. The occurrence and implementation of com-
munication depend on the existence of agents similar to
themselves in the world information of other agents follow-
ing the same communication processing mode and thinking
mode. In addition, a large-scale intelligent sensor network is
an information collection platform. It is a multihop self-
organizing network system formed by a large number of
cheap sensor nodes. Sensor nodes can collect the informa-
tion of the monitoring area in real time, transmit the
collected information to multiagent through multihop rout-
ing, and realize the semantic interaction between multiagent.
Therefore, the large-scale intelligent sensor network is coop-
eration an important part of multiagent cooperation.

Intention transfer has a direct impact on agent behavior
and can be used for behavior coordination among agents.
Intention is expressed as the expected world state in the
thinking state of agent, which has the same expression as
observation information and knowledge, and can be trans-
mitted as information and knowledge. After the intention
is transferred to an agent a, a should decide whether to take
it as his intention and start planning and action Starting
from the self-interest principle of autonomous agent, agent
adopting the intention of other agents should help to
improve its effectiveness. There are many choices in which
criteria the agent chooses the acceptable intention. There-
fore, the construction of large-scale wireless sensor networks
is the basis of multiagent intention transmission.

3. Research on Semantic Interaction Strategy of
Multiagent System Based on Planning Fusion

When an agent predicts environmental changes, it should
consider that the activities of other agents are generally not
controlled by themselves and difficult to predict. In order
to better predict environmental changes, enhance their
own action ability, and realize their own needs, agents must
communicate. Communication ability is not a necessary
characteristic of rational agents. It is the embodiment of
agent sociality. Communication action is also a specific plan-
ning action, which is scheduled in the process of completing
agent requirements. From the semantic level, communica-
tion interaction is the transmission of thinking state between
agents. Reinforcement learning is based on the premise that
the interaction between agent and environment is regarded
as a Markov decision-making process; that is, the next sys-
tem state is determined only by each current state and
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selected action, and a fixed state transition probability distri-
bution is determined, which is independent of the previous
historical state. The goal of learning is to find a strategy to
maximize future reward by sampling the environment.
Experience is an important basis for future behavior selec-
tion. Learning accumulated experience is an effective way
to solve the problem of semantic interaction. The overall
framework of the algorithm is shown in Figure 3.

As shown in Figure 3, the algorithm framework mainly
includes reinforcement learning units, BP agent decision,
and candidate model. The whole multisystem has gone
through a stage of reinforcement learning process. The sys-
tem stores the corresponding knowledge system and has
the ability to adapt to the changes of the external environ-
ment. When it is determined that the system enters the
emergency state, the management compares the historical
data stored in the database with the real-time data sent by

the guidance office, finds out the similarities, and assists in
the decision-making according to the optimal decision made
when the historical data occurs. If there is no similar histor-
ical data, the management will combine other reinforce-
ment learning processes, make tentative action attempts,
obtain the feedback of the environment, and then modify
the decision judgment and cycle to obtain the optimal solu-
tion. Since it is set in this section that the system has been
running for a long time and has corresponding knowledge
base for data and decision support, it is assumed that the
management can directly make the optimal decision for
this accident.

3.1. Improved Reinforcement Learning Mechanism Based on
Planning Fusion. The perceptron can sense the changes of
the external environment and other actions and states.
When encountering a learned situation, take action directly
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through reflection. When encountering a new, learned, and
more complex situation, combined with other behaviors
and states, make behavioral decisions and take optimal
actions through cooperative reinforcement learning strategy.

In some cases, the behavior selection of multiagent
depends partly on the past behavior history, and h is defined
as the action sequence executed and its observation
sequence. At the time when the time step is t, the history
of agent i can be expressed as

hti = a0i , o1i , a0i ,⋯,ot−1i , at−1i , oti
� �

, ð1Þ

where h′ = ½h1, h2,⋯,hn� is the joint matrix of multiagent
semantic interaction.

The joint belief b of multiagent is a function of joint
history h′, that is, bðhÞ ∈ ΔðSÞ. Its essence is a probability
distribution of environmental state, which is composed of
initial belief state and sufficient statistics of joint history. If
the joint history ht−1 before time t is known, the method of
calculating the joint belief bt at the current time can be
obtained by using Bayesian rules:

∀s′ ∈ S, bt s′ ∣ h′
� �

=
O ot , s′, at−1
� �

∑s∈SP s′ ∣ s, at−1
� �

b−1 s ∣ h−1
� �

∑s∈SO ot , s″, at−1
� �

∑s∈SP s″ ∣ s, at−1
� �

b−1 s ∣ h−1
� � :

ð2Þ

3.1.1. Local Joint Strategy δ. It is set that δi is a mapping

from the history set h to the action set A. This mapping is
determined and becomes the local determination strategy
of agent i. It is easy to understand that δðhÞ = hδ1ðh1Þ, δ2
ðh2Þ,⋯,δnðhnÞi means multiple joint determination strate-
gies at a certain time and δðhÞ = a!. The local random
strategy πiðaijhiÞ represents the mapping from the historical
set to the action probability distribution. It is different from
the local determination strategy, because the uniqueness of
the selected action cannot be determined according to the
historical information but can only make the action selection
process obey a certain probability distribution πðhÞ = hπ1
ðh1Þ, π2ðh2Þ,⋯,πnðhnÞi representing the local joint
random strategy of multiagent.

3.1.2. Belief Pool. The belief pool at time t is represented as a
binary array hfHt

iði ∈ IÞg, Bti, whereHt
i is represented as the

history of agentIat timet, andBtis represented as the joint
belief of multiagent at timet. The purpose of setting belief
pool is to provide a medium for information sharing and
coordination among multiagents.

In a MAS environment, due to the multifunction and
heterogeneous structure, it is impossible to determine the
behavior rules of other agents in many cases, so agents must
interact and coordinate to jointly complete the overall goal.
Therefore, agents need to be able to understand the strate-
gies and knowledge of other agents through online learning,
so as to determine the optimal behavior strategy and adapt
to the changes of system environment. In this case, the state
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Figure 3: Improved reinforcement learning structure based on planning fusion.
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change of a single agent is affected by the joint action of
agents, so the traditional Q-learning formula needs to be
extended. The q-reinforcement learning model under MAS
is shown in Figure 4.

The immediate reward function under the defined envi-
ronment is Rðs, a!Þ, wherea!is the joint action of system. The
state transition function is Pðsi, a!, sjÞ. The corresponding
modification of the value function by the action of state i is
as follows:

Qπ s, að Þ = R s, a!
� �

+ γ〠
s∈S

P s′ ∣ s, a!
� �

max s′, a!′
� �

: ð3Þ

Equation (3) represents the discount income obtained by
executing the joint action in the state and iteratively execut-
ing it according to the principle of optimal reward value.
Therefore, Q function update formula is

Qt+1 s, a!
� �

= 1 − αið ÞQt s, a!
� �

+ αi ri + γ max Qt s′, a!′
� �h i

,

ð4Þ

where αi is the dynamic learning rate or discount factor and
t represents the number of iterations.

3.2. Research on Communication of Semantic Interaction. In
the planning fusion framework, agents learn each other’s
knowledge by sharing belief pool, so as to maintain the coor-
dination between agents. However, there is such a problem
that we need to focus on considering that the belief pool

contains all the historical information, but in some cases,
there may be conflicts between these historical information
and the local observation of the agent. At this time, commu-
nication can be used to deal with these conflicts more effec-
tively and improve the efficiency of coordination.

If the agent understands the current system state, the
detection will become easy, but in the planning fusion envi-
ronment discussed above, these states cannot be known.
Each agent can understand in the execution stage which is
its local observation of the environment, and the local obser-
vation can only provide part of the information about the
current system state. However, we can determine whether
there is conflict by detecting the relationship between these
local observations and belief pool. Equation (5) formally
defines the conflict between the two agents.

When the belief pool Bt satisfies the following
formula, we call the conflict degree ε between Bt and
local observation oti .

max 〠
s′∈S

O o! ∣ s′, a!
� �

〠
s∈S

P s′ ∣ s, a!
� �

b sð Þ
( )

≤ ε: ð5Þ

In essence, it is to test the conflict between the local
history of agent i and its observation. The value of ε is deter-
mined by the observation function. If the observation uncer-
tainty is very small, the value of ε is correspondingly small.
Nevertheless, the above method cannot detect all conflicts
in the belief pool, but only conflicts based on current obser-
vations. The number of communication times is determined
by two factors: the observed structure and the heuristic
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Figure 4: Improved Q-reinforcement learning model of multiagent.
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function. The advantage of adopting this communication
coordination method is that when the communication con-
ditions are not available, it is allowed to delay until it meets
the communication conditions. In many previous communi-
cation coordination methods, when the number of failures
exceeds a certain limit, they tend to adopt extreme methods
for coordination processing or ignore local observation infor-
mation and completely rely on history, alternatively relying
entirely on the current local observation to derive adverse
results. To sum up, the implementation flow chart of the
algorithm is shown in Figure 5.

As is shown in Figure 5, the main work is carried out in
the first two stages. In the behavior planning stage, the local
history of each agent in the belief pool is used to calculate the
joint strategy δ′. In the execution stage, each agent updates
the local historical information and first updates the histor-
ical information of the previous step according to its latest
observation o. Then, according to the joint strategy δ′ calcu-
lated in the planning stage and the current local history h
pair, the corresponding actions are performed through hti
= hti ∪ ati calculation, and ati = δtiðhtiÞ is used at the same
time. Update the current local history for the last update

stage, and update the old local history of each in the belief
pool with the foot of the execution stage.

4. Experiment and Result Analysis

4.1. Experimental Setup and Experimental Environment

4.1.1. Environment State. Each agent may be in any grid
other than the obstacle grid. The state of the machining
center can be either idle or working, so the environment
state space of a single agent is 13 ∗ 2 and the joint state space
of two agents is 13 ∗ 13 ∗ 2.

4.1.2. Action Space. Each action has a kind of move up, move
down, turn left, turn right, and maintain the original posi-
tion. Therefore, the size of action space is 5 ∗ 5.

4.1.3. Observation Set. Bit binary characters are used to rep-
resent each observation. The first bit indicates whether there
are obstacles in the upper, left, lower, and right directions.
The obstacles here include obstacles and surrounding walls.
The second bit indicates whether it is currently in the top
grid. For two agent systems, the observed set size is 25×2.
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Figure 5: Implementation flow chart of algorithm.
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4.1.4. Historical Information. In MAS, the joint observation
of agents in some observable environments can not accu-
rately reflect the current state information of the group,
and it is also necessary to express the trust of each obser-
vation through belief. The popular understanding of belief
is a subjective view of what actions should be performed
in a certain state according to the laws of experience or
historical statistics.

4.1.5. Revenue Function. The immediate return value of each
step is r = −1 when hitting an obstacle. Cooperation to
achieve the goal isr = 10. Other return values are r = 0.

Assuming that the processing time of the product is
small enough, it can be ignored that each agent does not
know the return value of its other agents at the beginning
of learning, obtains the return through learning, and guides
the next step. At the end of a round of experiment, agent 1
sends the goods from the processing center to the processing
center, and agent 2 takes the goods back from the processing
center to u.

4.1.6. Simulation Environment and Parameters. The simula-
tion process is realized by MATLAB. With the help of
POMDP solver open source software package, the time step
of the problem is set to t = 200, and the discount return is
calculated every 10 steps. The simulation parameters are as
follows: α = 0:8; ε = 0:74; and l = 8. The simulation parameter
n is a parameter that can only be determined by experiment.

4.2. Efficiency Analysis of Semantic Interaction Strategy. In
this section, Java language is still used to design multiagent
sensor system simulation platform in Eclipse: within the
rectangular range of 800 ∗ 600, 50-38, the fourth plane is
randomly distributed to activate 300 sensor agents in the
cluster fault-tolerant method. The number of agents in dif-
ferent experiments is different and increases with the step
value of 50. Agents have unique identification IDS, but their
performance is the same. The sensing and communication
range is set to a circle with a radius of 100. At the beginning
of the experiment, the system is initialized, and each agent

generates NT table information and saves it separately. The
abscissa in Figure 6 shows that the number of agents gradu-
ally increases from 50 to 300, and the density of node distri-
bution in the experiment is briefly explained. Figure 6(a)
describes the difference in fault tolerance success rate
between the three methods. Figure 6(b) describes the differ-
ent communication losses of the three methods and takes all
the communication times during the experiment as the
reference standard of communication loss.

It is obvious from Figure 6(a) that there is no obvious
difference in the fault tolerance of the three methods at the
beginning. However, as the error model is closer and closer
to large-scale centralized errors, this paper proposes that
the error tolerance success rate of the semantic interaction
strategy of multiagent system in the environment of large-
scale intelligent sensor network is getting lower and lower,
and there is no obvious advantage in communication loss.
Because the conventional reinforcement learning and the
activation cluster under the semantic interaction mechanism
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do not care about the size of errors and the number of failed
nodes. In addition, the range of errors in the experiment is
fixed, the range of activation cluster is relatively fixed and
the change of communication loss is not obvious. Under
the semantic interaction strategy mechanism of multiagent
system in a large-scale intelligent sensor network environ-
ment, the activated clusters are divided into each other by
the ID of failed nodes. Although it can prevent the overflow
of information between different clusters, such activated
clusters cannot fully reflect the scale of errors. Therefore,
the communication loss is greatly increased, but the success
rate of fault tolerance is greatly reduced. According to
Figures 6(a) and 6(b), it can also be found that although
the conventional algorithm is designed for large-scale cen-
tralized errors, it can also deal with a single centralized error
well and better take into account the fault-tolerant success
rate and communication loss.

The word reinforcement learning comes from behavioral
science. It imitates the natural learning process of human
and animals and establishes the mapping from environmen-
tal state to behavior through repeated exploration of the
environment Therefore, simulation step size is one of the
most important parameters of reinforcement learning algo-
rithm. In order to verify the effect of the strategy in this
paper, this paper verifies the variation law between the
reward values harvested. The relationship between the dis-
count reward and the simulation step n is shown in Figure 7.

It can be seen from Figure 7 that when the number of
experiments is divided into 1, 5, and 10, the change trend
of the reward value was obtained through reinforcement
learning. Since the last belief state is calculated as the next
initial belief state value, the learning effect will gradually
become ideal after multiple rounds of experiments. In this
paper, the simultaneous interpreting strategy is adopted in
the improved learning mechanism of planning and integra-
tion. Compared with the traditional distributed communica-
tion strategy, the most important feature of the scheme is to
make timely and appropriate use of communication
resources with limited resources and large unit communica-
tion costs. The coordination between them is mostly carried
out by means of information sharing. In addition, in reality,
we often encounter a series of optimization problems under
different parameters In the case of a specific structure, the
optimization problem under all parameters is solved by
training a model for different parameters. Different from
the traditional method, we do not train our model by multi-
ple independent sampling of different parameters but use
reinforcement learning to accelerate the training process.

In a reinforcement learning algorithm, the strategy network
is used to obtain the optimization results and the value net-
work is used to evaluate the strategy. The two networks are
trained iteratively to optimize the strategy.

4.3. Comparison of Convergence Performance of Strategies. In
order to verify the performance indexes of the improved
algorithm, reinforcement learning algorithm and improved
Q-reinforcement learning algorithm are selected as reference
in the experiment. If the algorithm reaches the set accuracy
within the specified number of iterations, the convergence
of the algorithm is recognized. If the number of iterations
exceeds and the set accuracy is not reached, the algorithm
terminates, and it is considered that the algorithm does not
converge. The test results of 20 times are shown in Table 1.

As can be seen from Table 1, the improved Q-
reinforcement learning algorithm achieves better experimen-
tal results than the basic reinforcement learning algorithm.
Under the same precision, for the three test functions,
although the two algorithms can successfully complete the
optimization task, the difference in optimization speed is obvi-
ous. The proposed algorithm has more advantages in the
number of iterations required for algorithm convergence.

5. Conclusion

In the multiagent system, the coordination degree between
agents has an important impact on the overall intelligence
of multiagent system. The purpose of coordination is to
reasonably arrange task objectives and behaviors through
information sharing and communication interaction, so as
to maximize the overall performance of multiagent system.
The communication of agent is to change the information
carrier and send the carrier to the observable environment
receiving Ag NT. This communication view can expand
the form of communication, not limited to language
communication. The transmission of intention has a direct
impact on the behavior of agents and can be used for behav-
ior coordination among agents. Intention is expressed as the
expected world state in the thinking state of agents. After the
intention is transmitted to agent a, a should decide whether
to take it as his intention and start planning and action. An
improved learning mechanism based on planning fusion is
proposed to express the history and information as a func-
tion of the state. On the premise of ensuring no loss of effec-
tive information, the method of possible conflict detection
and delayed communication is adopted for historical infor-
mation merging, and the limited resources are reasonably

Table 1: Convergence performance.

Case number Strategy Minimum iterations Maximum iterations Average iterations Success rate

Case 1
Our 11 46 22.6 20/20

Traditional 26 103 62.8 20/20

Case 2
Our 22 51 29.5 20/20

Traditional 51 286 104.4 17/20

Case 3
Our 8 28 18.7 20/20

Traditional 12 200 56.8 19/20
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used to obtain more system benefits. Through experiments,
the effectiveness of above strategies is analyzed and com-
pared. In addition, how to use reinforcement learning and
the reinforcement learning process before cooperation to
deal with a virtual event to illustrate how the agent system
determines the accident, makes decisions, and solves the
accident after the accident and how the agents cooperate
with each other is the focus of the next research.
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