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Eddy-current displacement sensor (ECS) has been applied widely to the production of modern industry by reason of its
characteristics of high sensitivity, good reliability, powerful anti-interference capacity, and noncontact measurement. However,
it cannot be used when severe temperature drift occurs at high temperature. Some traditional compensation methods are
difficult to achieve good performance with neglecting the nonlinearity. Hence, it is essential to propose a better method for
temperature compensation. A novel temperature compensation approach for ECS problem using an improved sparrow search
algorithm (ISSA) and radial basis function neural network (RBFNN) is proposed in this article. In the ISSA, a chaos strategy is
introduced in the algorithm for avoiding local optimal point, and an elite opposition-based learning strategy is integrated to
promote global search ability of ISSA with high efficiency. RBFNN is elected to model the temperature drift, and its parameters
are determined by the proposed ISSA. The proposed method compensates the significant deterministic errors caused by
temperature variation within a wide temperature range. The experimental schemes were designed to the effectiveness of the
proposed method according to data fusion technology. The various test results obtained confirm the potential and effectiveness
of the proposed approach compared to some other traditional temperature compensation methods presented in the literatures.

1. Introduction

Displacement sensor has been widely utilized in modern
industry for detecting the movement, position of objects,
and other physical quantities. An eddy-current displacement
sensor (ECS) is one of the most commonly used types of
noncontact displacement sensor in the modern industry
[1]. Eddy-current testing plays an irreplaceable role in
numerous fields such as nuclear power testing and aviation
manufacturing due to its unique advantages. Since the mag-
netic field is insensitive to the physical presence of noncon-
ductive substances such as dust, dirt, and oil, the ECS
operates well even in the polluted and bad environments
[2]. The ECS is preferred when the absolute position mea-
sured is needed within the scope of confined conditions.
Moreover, the ECS possesses stable, accurate, and low-cost
characteristics [3].

As is well known, the performance of the ECS depends
entirely on detection accuracy. Although the key compo-
nents have been optimized from multidimensional aspects

in the process of sensor design, there are inevitably detection
errors due to the coupling of the sensor preparation process,
detection methods, environmental factors, and other com-
prehensive factors. Hence, it is of importance to establish
an effective error compensation mechanism and develop
high-precision error compensation methods to increase the
detection accuracy of sensors. Moreover, it has been the
focus and difficult topic in the field of eddy-current testing
for a long time.

However, it is calibrated by using a linear model neglect-
ing the nonlinearity to lead to the low sensitivity and serious
linearity in the engineering practice. To gain better perfor-
mance of the eddy-current displacement sensor, various
compensation methods have been proposed in numerous
literatures to improve the sensitivity and perform high-
accuracy calibration. Compensation methods can be divided
mainly into two methods: hardware method and software
method. The former is a type of temperature-controlling
method on the basis of machining and experimental tech-
niques [4]. This method can bring out better stability and
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high accuracy, but it requires complex design and mainte-
nance cost at a high price. A signal conditioning circuit to
ECS to ensure the ECS output linear for the full range was
proposed by Kumar et al. [5]. A self-temperature compensa-
tion approach by use of an analog multiplier was proposed
by Zhao et al. [6], which decreases the circuit thermal drift
to surpass an order of magnitude. Zheng et al. [7] proposed
a novel differential circuit to eliminate the exponential
hysteresis temperature drift problem for the high-
temperature used eddy-current displacement sensors. The
latter is the phenomenological method called temperature
compensation using the mathematical model. Moreover,
the complexity and usage cost of the temperature compensa-
tion are significantly less than those of the hardware method.
Temperature compensation of ECS based on a temperature-
voltage model using a curve fitting method was proposed by
Zheng et al. [8]. A temperature compensation method using
a binary regression method was proposed by Lei et al. [9]. Li
et al. [10] presented an adaptive mutation particle swarm
optimization optimized support vector regression
(AMPSO-SVR) integrated with AdaBoost.RT algorithm to
solve the silicon piezo-resistive pressure sensor. Tempera-
ture compensation of ECS based on a genetic optimized
wavelet neural network was presented by Wu et al. [11].
Apparently, the temperature-induced errors can be elimi-
nated by mathematical models using software technology.
Therefore, the improved temperature compensation mathe-
matical modeling and its solver are employed in this paper.

In the proposed algorithm, the temperature compensa-
tion model of ECS is considered a mathematical approxima-
tion problem, and the ECS is established as a function
expression of the temperature and output measurement.
Considering the shortcomings of the traditional method of
the temperature compensation model for ECS, the paper
adopts the technique of data fusion to analyze the datum
of multisensor. In the meantime, an improved sparrow
search algorithm is applied to determine the model parame-
ters, and a high-accuracy temperature compensation model
for the ECS is obtained. Moreover, various tests using differ-
ent methods under different temperature scenes have been
carried out in order to evaluate the performance of the pro-
posed method.

This paper is organized as follows. Section 2 introduces
four types of the framework of temperature compensation.
In Section 3, the original sparrow search algorithm and an
improved sparrow search algorithm are described. Section
4 provides a brief introduction to data acquisition experi-
ment and preliminary analysis and processing of collected
data. The comparative study of the improved method
compared with the original sparrow search algorithm, parti-
cle swarm optimization, and multiple polynomial regression
against temperature compensation experiment towards col-
lected data is presented in Section 5. Finally, Section 6 gives
conclusions and suggestions for the relevant future work.

2. Temperature Calibration Methods

A temperature compensation problem for ECS can be con-
sidered a type of mathematical approximation problem.

Four types of modeling methods are given to deal with the
problem in terms of the available literature.

2.1. Multiple Polynomial Regression Method. In general,
polynomial regression approach is widely utilized to fit the
mathematical model of ECS empirically to data. Statistically,
polynomial regression is referred for constructing the
relationship model in both independent and dependent
variables. Linear regression is the most basic multiple poly-
nomial regressions, in which the expression between output
and input variables is written as an nth-order polynomial.
Here, the temperature compensation approach by use of
multiple polynomial regression based on least squares
regression is realized. The polynomial expression of the n
-th degree with two variables is presented as follows:

p xð Þ = 〠
n

i=0
〠
i

j=0
pi,jx

jyi−j, ð1Þ

where pi,j is the coefficients of the polynomial and x, y are
different input variables.

In the employment of temperature calibration for ECS
error, the input variable is denoted as the temperature T .
The output variable for the ECS problem is denoted as U .
The error term is defined as the dependent variable. In par-
ticular, the method is called binary linear regression (BPR).

For the polynomial regression approach, it is crucial to
the optimal degree of the polynomial to match the data.
Generally, the sum of squares of the residuals would
reduce when the order of polynomial increases. However,
since a higher degree of the polynomial expression is not
always to gain a better fitting output at some data sample
point, it may result in overfitting the data and add to the
computation load. Hence, the degree of the polynomial
expression relies on the categorization of sample and can
be confirmed statistically. In this circumstance, the optimal
fitting to the sample is obtained in terms of the minimum
sum of squared residuals.

2.2. Least Square Support Vector Machine. Based on a kernel
function and support vector machine (SVM), the basic prin-
ciple of mapping the inputs from a nonlinear and separable
space to a higher dimensional space to better divide the
inputs is implemented by least square support vector
machine (LSSVM), and the detailed expression can be
described as follows [12]:

F = f ∣ f xð Þ = ωT∙φ xð Þ + b, ω ∈ Rn� �
, ð2Þ

where φðxÞ is the basic kernel function that meets the Mer-
cer constraint, ω is a set of weight vector in the given space,
and b is the bias term.

The regression approach for solving equation (2) can be
equally regarded as a convex constraint optimization
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problem such as expression (3) by using a regularization
item.

min
1
2
ωTω +

1
2
C〠

n

i=1
e2i

s:t:yi = ωT ⋅ φ xð Þ + b + ei, i = 1, 2,⋯, n,

ð3Þ

where ei is the error variable at time t and C is a regulation
constant. yi is the output value corresponding to xi.

Then, according to the KKT constraint conditions, a
Lagrange function is constructed by use of the derivative of
all the variables. The derived result is obtained as follows.

ω = 〠
n

i=1
αiφ xið Þ,−〠

n

i=1
αi = 0,

αi = Cei, ωT ⋅ φ xð Þ + b + ei − yi = 0,

ð4Þ

where α is the vector of Lagrange multipliers.
Consequently, equation (4) can be converted to equation

(5) by using a group of linear equations for a system based
on the vector calculation perspective.

0 IT

I Ω + γ−1I

�����
�����∙

b

α

�����
����� =

0

y

�����
�����, ð5Þ

where I is a column vector. In this vector, each element is
composed of 1, and Ω is an n × nmatrix composed of kernel
mapping and data point.

Ωij = φ xið ÞTφ xj
� �

= K xi, xj
� �

,  i, j = 1, 2,⋯, nð Þ, ð6Þ

where Kðxi, xjÞ is called the positive definite kernel function.
Since A =Ω + γ−1I is a positive definite matrix with

symmetric construction, the solution of equation (5) can
be transformed as that of

b =
ETA−1y

ETA−1E
, α = A−1 y − bEð Þ, ð7Þ

where E denotes the n × n unit matrix.
Finally, the regression model for the LSSVM algorithm is

gained as follows.

f xð Þ = 〠
n

i=1
αiK x, xið Þ + b: ð8Þ

2.3. Backpropagation Neural Network. An experimental
model by use of sample fitting is established to avoid
describing the complex mechanism. It is hard to establish
an accurate model under multivariate and nonlinear condi-
tions. The neural network behaves well while dealing with
nonlinear mapping. It has been widely used in the function
approximation of multidimensional nonlinear modeling.

In theory, arbitrary nonlinear mapping from input to
output can be implemented by using the backpropagation

neural network (BPNN) using an error backpropagation
algorithm [13]. BPNN is a multiple-layer feedforward net-
work. It usually has one or more hidden layers. In the hidden
layer, the sigmoid transfer function is usually used to be
regarded as a basis function, and in the output layer, a pure
linear function is adopted.

In the application of the neural network, function
approximation is solved by a supervised learning method.
The sample pairs of input and corresponding output are
defined as the training set. The first procedure is to train
the network, where the error between the actual and desired
output decreases continually through changing the weights
and bias of network neurons [14]. The training process is
terminated when termination condition is met. In this cir-
cumstance, the parameters obtained for the network would
be held for the next network learning. In the predicting
stage, the trained network saved is estimated to obtain the
corresponding output of given unlabeled inputs.

The BPNN model of ECS has two hidden layers and one
output layer. The one-dimensional output and two-
dimensional input are the displacement value to be mea-
sured and the voltage outputs of both ECS and temperature
sensor, respectively. A hyperbolic tangent sigmoid function
named as equation (9) is regarded as a transfer function in
the hidden layers.

tansig nð Þ = tanh nð Þ = 1 − e−2n

1 + e−2n
=

2
1 + e−2n

− 1: ð9Þ

The BP neural network is constructed by adjusting the
weights and biases to obtain the optimal network parame-
ters. In the training network and the testing network, the
mean squared error (MSE) objective function is calculated,
respectively, to guide the process of optimizing.

2.4. Radial Basis Function Neural Network. The radial basis
function neural network (RBFNN) is another kind of neural
network. The RBFNN and multilayer perceptron model
(MLP) are used under most circumstances when dealing
with the function approximation problem. In particular,
RBF has stronger robustness and faster training speed than
MLP for sample data with noise. In addition, MLP is easily
trapped into local optimal value during searching for global
minima when the search space is complex [15].

The RBFNN is comprised of three feedforward architec-
tures such as the input, hidden, and output layers. The
hidden layer accounts for establishing a nonlinear mapping
between the spaces of input and output. Its activation func-
tion is named as a radial basis function, which has monoto-
nical property in terms of distance from the central point.
Generally, the Gaussian function is selected as

φ xð Þ = e
− x−ck k2

2r2 , ð10Þ

where c and r represent the center and the radius of the acti-
vation function and k·k is referred to as the Euclidian
distance.

3Journal of Sensors



Consequently, the output layer is composed of the linear
combination of the hidden layer output as follows.

h xð Þ = 〠
m

j=1
wjφj xð Þ, ð11Þ

where wj represents the weights between the output layer
and the j-th neuron in the hidden layers and m denotes
the number of neurons in the hidden layer.

Generally, RBFNN using linear superposition of RBFs is
used to approximate the goal function. The training process
of RBFNN is to determine the center and width of the
hidden layer firstly; then, the weights of hidden neurons
via minimizing the cost function shown in equation (12)
are adjusted.

JRBF wð Þ = 〠
p

i=1
yi − h xið Þð Þ2 + 〠

m

j=1
λjw

2
j , ð12Þ

where λ is the regularization factor used for preventing over-
fitting of the network. The introduction of the item contain-
ing λ can simplify the overall complexity of the model.

3. Improved Sparrow Search Algorithm Method

The sparrow search algorithm (SSA) is a novel swarm intel-
ligence algorithm presented by Xue and Shen in 2020 [16]. It
is derived from the research of sparrows’ foraging. SSA is
known to be few in the parameter setting, with simple prin-
ciples, and easy to implement. Moreover, SSA achieves satis-
factory optimization results when dealing with much
optimization problems. However, there are still several
disadvantages that existed, such as plunging into the local
optimum easily. In the swarm intelligence algorithm, the
integration of the chaos strategy can bring the algorithm
the ability to escape from the local optimum and better
global search ability. The application of elite opposition-
based learning [17] can help the search ability of the dis-
coverer to spend less computation than the general
opposition-based learning. Hence, the chaos strategy and
elite opposite-based learning strategy are introduced to
improve the algorithm for better performance.

3.1. Original Sparrow Search Algorithm. The mathematic
description of the SSA is as follows. The position of sparrows
is expressed by the following equation.

X = x1, x2,⋯,xi,⋯xM½ �T , xi = xi,1, xi,2,⋯,xi,d½ �, ð13Þ

where M refers to the total of sparrows and d is the total
dimension of the variables.

The fitness matrixes are as follows:

Fx = f x1ð Þ, f x2ð Þ,⋯,f xnð Þ½ �T ,
f xið Þ = f xi,1ð Þ, f xi,2ð Þ,⋯,f xi,dð Þ½ �:

ð14Þ

There are two different sparrow roles in the population:
discoverer and follower. In the algorithm running, both of
them are responsible for different behaviors and strategies.
Discoverers play the guide role in the population. They steer
other individuals for searching food, so the discoverer is the
core component of the population. Position update for the
discoverer is described below.

Xt+1
i,j =

Xt
i,je

−i
α·itermaxð Þ, R2 < ST,

Xt
i,j +Q · L, R2 ≥ ST,

8<
: ð15Þ

where α is a positive random number which is not greater
than 1. Q is a random value obeying Nð0, 1Þ normal distri-
bution. L represents 1 ×D matrix filled with 1. t represents
the current iterations, and itermax refers to the maximum
iterations. The value at the j-th dimension of the i-th spar-
row is described as Xi,j. R2 and ST denote, respectively, the
threshold of alert and safety. Their possible ranges are
defined as R2 ∈ ½0, 1� and ST ∈ ½0:5, 1�. For R2 < ST, it is
determined that there are no predators existing; hence, the
discoverers can search in the large search scope. On the
other hand, when R2 reaches ST or even greater, it is to say
that some individuals have sent out a warning of predators;
consequently, all the individuals adjust their positions to
defend against other predators.

During the searching process, the follower would track
closely the discoverer in order to gain better quality food.
Moreover, some followers monitor the discoverers with
excellent predation to increase their own proportion. Then,
the follower position is updated by

Xt+1
i,j =

Q · ex
t
worst−x

t
i, j/x

2
i >

n
2
,

Xt+1
p + Xt

i,j,−X
t
p

��� ��� · A+ · Li <
n
2
,

8><
>: ð16Þ

where Xt
p is the current optimal position found by the dis-

cover in the i-th iteration and xtworst denotes the current worst
position in the t-th iteration. A is a 1 ×Dmatrix consisting of

elements with values of only 1 or -1, and A+ = ATðAATÞ−1.
For i > n/2, it means that the i-th sparrow with worse fitness
tends to change its position for avoiding starvation.

The sparrow with low fitness quickly yearn for a better
position when it detects danger, while the sparrow with best
fitness moves randomly for the consideration of being away
from danger to increase the diversity of the group. The
detailed mathematical formation is given as follows.

Xt+1
i,j =

Xt
best + β · Xt

i,j − Xt
best

��� ��� f j > f g,

Xt
i,j + K ·

xti,j − xtworst
��� ���
f i − f wð Þ + ε

0
@

1
Af i = f g,

8>>>><
>>>>:

ð17Þ

where xtbest is the current global optimum in the t-th itera-
tion. β is the parameter controlling step size obeying a
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normal distribution. K ∈ ½−1, 1� denotes a random number
and controls the movement direction and step size of the
current sparrow. f i indicates the current fitness value of
the sparrow. f g and f w are the optimal fitness value and
worst fitness value so far in the population, respectively. ε
is a small enough positive value in order to prevent the
occurrence of 0 in the denominator. For f i ≠ f g, it indicates
that the current sparrow is not the best one and has per-
ceived danger, and its position needs to be adjusted for
safety. In the meantime, for f i = f g, it shows that the spar-
row of the current optimal population is in danger and needs
to move to another sparrow position to avoid danger.

3.2. Improved Sparrow Search Algorithm Method. In the SSA,
the discoverer plays a guiding role in the development of
solutions. Once the discoverer enters into the local optimal
position, the performance will become worse and it is diffi-
cult to escape from local optima. Therefore, it is of great
importance to improve the searching method for discoverers
of sparrow. Since the search scope of the discoverer in SSA is
fixed and the method is single, the exploration and produc-
tion capacity cannot be adjusted along with the algorithm.
Hence, multiple strategies are added in the SSA approach,
which makes the discoverer find better solutions instead of
getting into the local optimum. The first strategy is the chaos
strategy. An improved tent chaotic sequence [18] is applied to
initialize the population in order to improve the randomness
and robustness of the SSA. When the algorithm enters the
stagnation state, an iterative chaotic map with infinite col-
lapses [19] (ICMIC) is used to disturb the population. Then,
new solutions are generated to drive the algorithm to escape
from the local optimum. Also, the elite opposition-based
learning strategy [17] is introduced in the discoverer stage of
the proposed SSA to increase the diversity of the group.

In sum, the improved sparrow search algorithm is com-
bined with the chaos strategy and elite opposite-based learn-
ing strategy to balance the local and global optimization
ability, and shrink operation is added to accelerate conver-
gence. Consequently, ISSA gets rid of the disadvantages of
SSA without affecting the performance.

3.2.1. Chaos Strategy. Chaos is a common nonlinear
phenomenon in nature. Since chaotic variables have some
properties of randomness, ergodicity, and regularity. The appli-
cation of chaos in swarm intelligence can not only keep the
population with enough diversity and improve the quality of
the population effectively but also drive the algorithm out of
the local optimum and deliver better global search ability.
Chaotic sequences with high randomness improve the diver-
sity and convergence of solutions. These characteristics have
been verified after many studies in relevant literature [20].

Chaos initialization can generate the initial population
with better quality effectively. Therefore, an improved tent
chaos [18], which is with uniform ergodicity and fast con-
vergence, is selected for population initialization. The
improved tent chaos overcomes the problems of small
period and unstable period points in the original tent chaos
and has stronger randomness. The one-dimensional self-

mapping expression of the improved tent chaos after
Bernoulli shift transformation is shown in

xn+1 =
2xnð Þ mod 1, xn ≠

k
4
, k = 0, 1, 2, 3, 4,

xn ≠ xn−l , l = 1, 2, 3, 4

2 xn + 0:1 ∗ rand 0, 1ð Þð Þð Þ mod 1, otherwise:

8>>><
>>>:

,

ð18Þ

New solutions are generated by applying chaotic distur-
bance to the algorithm for avoiding being trapped into the
local optimization and improving the optimization accuracy.
Therefore, chaotic perturbation is introduced in this paper,
and the chaotic map used is ICMIC [19]. The map shows
stronger chaotic characteristics due to its high Lyapunov
exponent, and the generated sequences are distributed in
the symmetric region ½−1, 0� ∪ ½0, 1�. The one-dimensional
self-mapping expression of the mapping is given as follows.

xn+1 = sin
a
xn

� �
,−1 ≤ xn ≤ 1, x0 ≠ 0, a ∈ 0,+∞ð Þ, n = 0, 1, 2,⋯,

ð19Þ

where a is an adjustable parameter. A series of chaotic maps
with good performance can be obtained by adjusting it.

The resulting chaotic sequence is used as a parameter to
adjust the amplitude and direction of the chaotic distur-
bance. The mathematical description of chaotic disturbance
is adjusted as follows.

x∗i = s · xi, ð20Þ

where xi is the vector consisting of the coordinates of the i-th
individual and s represents the one-dimensional ICMIC
sequence generated by equation (19).

The adaptive weight is introduced to obtain a better
balance between the global and local search ability. The
expression of the involved adaptive weight is shown in

w = et/2e M−tð Þ: ð21Þ

The discoverer position update equation with adaptive
weight is given as follow.

Xt+1
i,j =

Xt
i,j · e

−i/r1∗ itermax/2ð Þð Þ, R2 > ST andR3 ·w > 0:5,

Xt
i,j + R1 · Xbest − Xt

i,j

	 

, R2 > ST andR3 ·w ≤ 0:5,

Xt
i,j +Q · L, R2 < ST,

8>>>><
>>>>:

ð22Þ

where R1, R2, R3 are random numbers obeying the Uð0, 1Þ
distribution.
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3.2.2. Elite Opposition-Based Learning Strategy. The
opposition-based learning strategy [21] performs well in
the improvements of some optimization algorithms. The
given strategy can be promoted to increase the diversity of
the group by generating reverse solutions in the search
space. The elite opposition-based learning [17] has less com-
putation than the general opposition-based learning, but the
improvement effect on the algorithm performance is also
excellent. Due to the consideration of improving the search
ability of the discoverer, the elite opposition-based learning
strategy is applied to the position updating of the discoverer.
The principle is described as follows.

x∗i,j =
k lb + ubð Þ − xi,j, i ∈ C,

xi,j, i ∉ C,

(
ð23Þ

where k is a positive random number which is not greater
than 1 and lb, ub are the maximum and minimum of the
coordinate values of all individuals in the j-th dimension,
respectively.

The elite opposition-based learning strategy is added in
the discoverer stage of SSA to improve the diversity of the
population, which makes the follower search more flexible.

3.3. Implementation of ISSA. There are always many under-
mined parameters in the methods mentioned before. These
parameters are significant for the performance of the
method; empirical parameters are not always the best
parameter. But it is complicated and time-consuming to
search for the best parameter from all the value space
exhaustively. SSA is efficient to solve the problem without
searching the whole value space. Through introducing
several schemas, ISSA is better than SSA on the global search
ability without affecting the merits of high efficiency. There-
fore, ISSA is implemented to find the best parameter of the
RBF model. The algorithm is described as follows.

(1) Initialize parameters (number of sparrows M, the
max iteration itermax, the proportion of discoverer
PD, the proportion of follower SD, the proportion
of elite individual ED, and alert threshold R2), and
initialize the population position composed of the
model parameters with equation (18)

(2) Generate the corresponding model from model
parameters, and calculate the error between the
model compensation result and the actual value as
its fitness value. Rank the population by fitness,
and find the individuals with the current maximum
or minimum fitness

(3) Select the sparrows with high fitness value as the dis-
coverer, and update their position fellow using equa-
tion (22)

(4) Rank the population by fitness value, and select elite
individuals according to proportion ED to form set

C. Carry out elite opposite-based learning according
to equation (23)

(5) The remaining individuals act as followers. Update
the position of followers according to equation (16)

(6) Choose randomly some sparrows to form the
watchers, and update their position according to
equation (17)

(7) Calculate the average fitness and the variance, and
determine whether to disturb the population accord-
ing to the variance. If yes, a chaotic sequence is gen-
erated according to equation (19), and the better
solution in the group is chaotically disturbed accord-
ing to equation (20). The new solution is updated
obeying the greedy rule

(8) Perform shrink operation

(9) Check whether the termination condition is satisfied.
If not, return to step (2); otherwise, output the best
position and minimum cost

The flow chart of ISSA is described in Figure 1.

4. Response of ECS under Different
Temperature and Displacement Conditions

4.1. Thermal Tests. There are two thermal testing methods
for collecting data: the soak and the ramp methods. In the
soak method, every time the target temperature is reached
or stabilization time is arrived, the measurements were
recorded. On the contrary, the temperature changes line-
arly in the ramp method, and the whole test is quite faster
than the soak method. Both the ramp and the soak
methods were employed by Araghi and Landry [22]. Since
the sensor needs considerably long time to be stable, the
soak method can gain more accurate results than the ramp
method. Hence, the soak method for the thermal test is
adopted in this paper.

According to data fusion technology, an ECS and a tem-
perature sensor are mounted inside the same thermal cham-
ber, and their outputs are recorded under stable condition
when the temperature point is reached. Moreover, a series
of voltages including the output of ECS and temperature
sensor are obtained through the thermal test. Then, the cor-
relations between the result and temperature variations can
be analyzed mathematically. The ECS was tested with the
temperature range from 20°C to 55°C at 5°C intervals, and
the displacement ranges from 0mm to 2.4mm at 0.2mm
intervals. Additionally, the average of the three test results
is calculated as the credible result to eliminate the influence
of chance factors.

4.2. Response and Analysis. Figure 2 shows the response
result of the ECS and temperature sensor under different
temperature and displacement conditions. From Figure 2,
the output voltage of the ECS changes nonlinearly with the
displacement and temperature fluctuation. In addition, the
temperature drift is nonlinear. Figure 3 shows the variation
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of relative error (REmea) at certain displacement with tem-
perature before compensation. At reference temperature T0
= 40°C, the REmea obtained is calculated for each displace-
ment. Here, the REmea used is given by

REmea =
VT −V0

V0
× 100%, ð24Þ

where V0 refers to output voltages at reference temperature
T0 and VT is the output voltages obtained at temperature
T for the ECS. It can be seen that the error with temperature
is nonlinear, and the maximum absolute value of REmea
reaches about 20% before compensation. It is impossible to
ignore the drifts caused by temperature variations.

To describe the influence caused by temperature, three
evaluating indicators are introduced: zero temperature
coefficient (ZTC) α0, temperature sensitivity coefficient

Start

Initialize the population, the model and the parameters of
algorithm (M, itermax, PD, SD, ED, R2).

Calculate the fitness value of each individual, rank the population by
the fitness value, and find the current best and worst individual.

Update position of discoverer according to equation (22)

Update position of follower according to equation (16)

Rank the population by fitness value, select out elite individuals and
carry out elite opposite-based learning to them using equation (23)

Randomly select some sparrows as watchers-
and update their position by equation (17)

Calculate the average fitness and the variance, and carry out
population disturbance with equation (19) and equation (20).

No

Yes

Whether the termination condition is met

Output the model and minimum cost

Figure 1: Flow chart of the proposed ISSA.
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(TSC) αs, and additional temperature error (ATE) δ. They
can be calculated by the following equations:

α0 =
ΔU0mj j

ΔT ×UFS
,

αs =
ΔUmj j

ΔT ×UFS
,

δ =
ΔUmj j
UFS

× 100%,

ð25Þ

where ΔU0 is the maximum difference when the displace-
ment is 0, ΔUm is the maximum difference under a cer-
tain displacement, ΔT is the temperature change of the
ECS, and UFS is the full range output. It is calculated

that ZTC is 1:23 × 10−2/°C, TSC is 1:23 × 10−2/°C, and
ATE is 40.43%.

Traditionally, the least square-based linear calibration is
applied to decrease the error. After the linear calibration,
ZTC becomes 3:39 × 10−3/°C, TSC is reduced to 3:39 ×
10−3/°C, and ATE is 10.17%. It cannot deliver acceptable
results in real-world applications by using a traditional sim-
ple linear calibration model, for the deterministic error is
still nonnegligible. Hence, there is room for improvement
to find a better compensation method.

5. Data Compensation Experiment and
Result Analysis

5.1. Response and Analysis. For the purpose of verifying the
optimization ability of the proposed approach, various
approaches suggested from the literatures such as second-
order BPR, third-order BPR, fourth-order BPR, LSSVM,
BP, RBF, particle swarm optimization-based least square
support vector machine (PSO-LSSVM) [23], particle swarm
optimization-based backpropagation (PSO-BP) [24], particle
swarm optimization-based radial basis function (PSO-RBF)
[25], SSA-optimized LSSVM (SSA-LSSVM), SSA-optimized
BPNN (SSA-BP), SSA-optimized RBFNN (SSA-RBF),
ISSA-optimized LSSVM (ISSA-LSSVM), ISSA-optimized
BPNN (ISSA-BP), and ISSA-optimized RBFNN (ISSA-
RBF) were investigated in the experiment. Since optimiza-
tion algorithms concerned in these experiments are
population-based optimization techniques, the parameter
set is defined as an individual in the group. The mean
squared error (MSE) between the ideal displacement and
the compensated displacement is regarded as the fitness of
each algorithm in the optimization process. For BPNN
[19], the network contains two hidden layers. The first
hidden layer has 7 neurons, and the second hidden layer
has 4 neurons.

The parameters to be determined by algorithms for
LSSVM is penalty coefficient c and kernel function coeffi-
cient γ. And BPNN and RBFNN are for the weights and
biases of neurons. All the parameters to be determined of
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each model comprise the position of individuals. The algo-
rithms run to find the best position. When the algorithm
ends, the best model parameter can be determined from
the position of the best individual obtained by the algorithm.
All the related algorithms were operated with united popula-
tion size and iterations for fairness. Specifically, the popula-
tion size is 100, and the maximum iteration is 100.
Parameter settings such as PSO, SSA, and ISSA are demon-
strated in Table 1. In the ISSA, the ED value is determined
by the performance analysis.

The whole program of LSSVM is realized by the given
LS-SVMlab toolbox and existing libsvm toolbox based on
the program of MATLAB [26]. When training, the ratio of
the training set to test set is 4 : 1. All set is formed randomly,
and the union of the training set and test set is the whole
data set. Each algorithm was implemented by 30 runs in
order to eliminate the influence of occasional results. In
the meantime, the cross-validation experiment was taken
to prevent overfitting [27].

5.2. Analysis of the ISSA Parameters. Some key parameters
directly affect the performance and efficiency of the optimi-
zation approach. Hence, the effect of the proportion of elite
individual ED for the proposed ISSA was tested in this set of
experiments. In order to find out the relation of parameters
on performance, a series of experiments were performed to
describe the impact of the parameters. In all the experi-
ments, the other parameters such as population size and
runs remain in the same settings. All the cases of the param-
eter ED value may be impossible to give to evaluate the
performance. Hence, the ED value is varied from 5 to 95.
The results of the experiments for different parameters are
demonstrated in Table 2 and Figure 4.

As seen from Figure 4 and Table 2, the mean value
of MSE is the smallest when ED = 30%. At the same
time, the variance is relatively low; also, the minimum
of MSE is the smallest. With the increase in ED, the cal-
culation cost increases, but there is no significant
improvement in performance when ED is larger than
45%. Hence, the proportion of elite individual ED takes
30% in the following experiments.

5.3. Response of Experiment and Analysis. In the experiment,
the average values of multiple runs will be taken as the final
compensation result to better evaluate the performance of
the related algorithms. The compensation results of different
algorithms are given in Table 3.

As shown in Table 3, it can be inferred that BPR only
provides slight performance improvement of the sensor by
increasing the order of BPR, and the error is still unaccept-
able. Among all the models, RBFNN is generally better than
the other two models in describing the nonlinearity of tem-
perature drift. However, better parameters of the model can
be found through using the swarm intelligence algorithm
instead of the gradient descent algorithm; the performance
indexes have been improved by one or two orders of magni-
tude. In particular, the ISSA approach presents much better
performance than both SSA and PSO. Moreover, the satis-
factory compensation result can be gained by optimization

algorithms based on the framework of RBFNN. Hence,
outstanding learning ability and generalization performance
were implemented by the proposed ISSA-optimized
RBFNN. The given ISSA-RBF makes the best of the advan-
tages of ISSA and RBFNN to achieve very satisfying com-
pensation results. The results indicate that the proposed
methods can decrease the ATE to 0.07%, while there is a
minimum decrease of 7.25% with the polynomial regression
method, of 0.50% with BP, and of 0.03% with LSSVM. Also,
the proposed method achieved lowest on ZTC and TSC.
On variance of the result, the ISSA-RBF is lowest, reduced
to about half of SSA-RBF, about two-thirds of PSO-RBF,
and much better than others, which means that the
robustness of the proposed method is best among the
mentioned method.

The convergence curves of the MSE value yielded by
eleven algorithms with the exception of BPR and LSSVM
are demonstrated in Figure 5. The ISSA can search for better
solution than PSO and SSA within the same model. When
the other algorithms are in stagnation behavior, the ISSA
can still find new solutions to further reduce the error.

Table 4 shows robustness analysis on different
approaches mentioned before. The minimum, maximum,
mean value, and variance of the MSE obtained before are
regarded as indicators. Among the involved methods, the
best result in all the indicators is obtained by ISSA-RBF.

To better evaluate the generalization performance of the
proposed ISSA, the compensation result coming from the
train set and test set by using ISSA-RBF is shown in

Table 2: Compensation results for different parameters ED.

ED
(%)

Min Max Mean Var

5 2:2595 × 10−4 2:6490 × 10−4 2:4477 × 10−4 8:9499 × 10−9

10 2:2616 × 10−4 2:4544 × 10−4 2:3976 × 10−4 1:4297 × 10−9

15 2:2478 × 10−4 2:7328 × 10−4 2:4937 × 10−4 6:6774 × 10−9

20 2:2018 × 10−4 2:6881 × 10−4 2:3986 × 10−4 4:4497 × 10−9

25 2:2335 × 10−4 2:4570 × 10−4 2:3333 × 10−4 1:9863 × 10−9

30 1:9716 × 10−4 2:6159 × 10−4 2:3158 × 10−4 2:8760 × 10−9

35 2:3405 × 10−4 2:6160 × 10−4 2:4012 × 10−4 1:7434 × 10−9

45 1:9813 × 10−4 2:6249 × 10−4 2:3620 × 10−4 8:9299 × 10−9

60 1:9907 × 10−4 2:4622 × 10−4 2:3509 × 10−4 6:7112 × 10−9

75 2:2636 × 10−4 2:7412 × 10−4 2:4249 × 10−4 3:9767 × 10−9

95 2:2389 × 10−4 2:6243 × 10−4 2:3948 × 10−4 2:4863 × 10−9

Table 1: Parameter settings for PSO, SSA, and ISSA.

Algorithm Parameter settings

PSO c1 = 1:49, c2 = 1:49, ω = 0:729

SSA PD = 0:2, SD = 0:1, ST = 0:8

ISSA PD = 0:2, SD = 0:1, ST = 0:8, ED = 30%
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of MSE.

Table 3: Compensation results of different methods.

Algorithm ZTC TSC ATE (%) MSE

Second-order BPR 1:08 × 10−3 3:03 × 10−3 9.10 0.2868

Third-order BPR 1:46 × 10−3 2:64 × 10−3 7.92 0.1113

Fourth-order BPR 4:58 × 10−4 2:44 × 10−3 7.32 0.0746

LSSVM 2:38 × 10−3 4:30 × 10−3 12.85 1.8525

PSO-LSSVM [18] 7:95 × 10−4 2:65 × 10−4 0.80 0.2893

SSA-LSSVM 1:68 × 10−4 1:88 × 10−4 0.50 0.0345

ISSA-LSSVM 1:68 × 10−4 1:88 × 10−4 0.57 0.0346

BP 9:78 × 10−4 1:18 × 10−4 0.27 0.0450

PSO-BP [19] 1:22 × 10−3 1:64 × 10−4 0.34 0.1999

SSA-BP 5:32 × 10−4 2:63 × 10−4 0.14 0.0496

ISSA-BP 4:74 × 10−4 1:96 × 10−4 0.10 0.0289

RBF 1:35 × 10−4 8:14 × 10−4 0.24 0.0063

PSO-RBF [20] 3:07 × 10−5 3:07 × 10−5 0.09 2:40 × 10−4

SSA-RBF 2:90 × 10−5 2:90 × 10−5 0.09 2:32 × 10−4

ISSA-RBF 2:48 × 10−5 2:48 × 10−5 0.07 2:32 × 10−4
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Table 4: Robustness analysis of the compensation result.

Algorithm Min Max Mean Var

PSO-LSSVM [18] 0.0279 1.0938 0.2893 4.4813

SSA-LSSVM 0.0327 0.0368 0.0345 4:2944 × 10−5

ISSA-LSSVM 0.0325 0.0412 0.0346 1:7013 × 10−4

BP 0.0161 0.3150 0.0450 0.0974

PSO-BP [19] 0.0406 0.2924 0.1999 0.2166

SSA-BP 0.0047 0.2712 0.0496 0.1834

ISSA-BP 0.0051 0.2134 0.0269 0.0561

RBF 3:5753 × 10−4 0.0155 0.0063 7:5652 × 10−4

PSO-RBF [20] 2:2428 × 10−4 2:6216 × 10−4 2:4004 × 10−4 4:2601 × 10−9

SSA-RBF 2:2160 × 10−4 2:6815 × 10−4 2:3158 × 10−4 5:6835 × 10−9

ISSA-RBF 1:9716 × 10−4 2:6159 × 10−4 2:3158 × 10−4 2:8760 × 10−9
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Figure 6. It shows that the ISSA-RBF method is highly fitting
the sample under without overfitting.

6. Conclusions

An improved compensation optimization method ISSA-RBF
based on ISSA and RBFNN is put forward in this article to
compensate for the nonlinear error aroused by temperature
variation for the ECS problem. In the temperature compen-
sation model, RBFNN is implemented to compensate for the
error caused by temperature variation, with ISSA being used
to obtain its best parameters. We firstly introduced the chaos
strategy and elite opposite-based learning strategy in the
ISSA to overcome the shortage of trapping into the local
optimum easily and to increase its global searching ability.
Next, the analysis of key parameters of the ISSA was per-
formed. The suitable parameter settings for the ISSA are
gained. Finally, the comparative experiments with alterna-
tives were implemented on actual sample data to assess the
optimization ability of the proposed method combing ISSA
and RBFNN. The results show that the proposed ISSA
approach acquires better results both accuracy and robust-
ness than other methods given in this paper. Moreover, it
shows that ISSA achieved remarkable improvement over
the original SSA algorithm.

In the future, the stochastic model of the ECS noise will
be established in order to provide better performance and
decrease the remaining error after compensation. The pro-
posed ISSA will be employed to obtain optimal parameters
for the novel compensation model and provide continuous
high-accuracy dynamic compensation for the ECS problem.

Data Availability
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