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With the rapid development of information technology in today’s era, the application of the Internet, big data, and smart bracelet
information technology in the field of sports has enhanced the intelligence of sports and plays an important role in promoting
sports performance. This paper focuses on the application of wireless sensors in the field of tennis, using research methods
such as literature research, video analysis, comparative research, and mathematical statistics, to explore and analyze the
application of wireless sensors in the field of tennis big data, tennis robotics, and the implementation of tennis teaching and
training, to provide a theoretical basis for promoting the application of wireless sensors in the field of tennis and also for the
broader application of wireless sensors in sports to provide a theoretical reference. For the problem of multiple scales of
motion targets in action videos, two video action recognition methods based on high- and low-level feature fusion are
proposed, which are the video action recognition methods based on top-down feature fusion and the video action recognition
methods based on bottom-up feature fusion. The multipowered mobile anchor nodes are allowed to move along a prescribed
route and broadcast multiple power signals, and then, the location of the unknown node is estimated using a four-ball
intersection weight center-of-mass algorithm. Simulations show experimentally that the algorithm reduces the average
localization error and requires fewer anchor nodes.

1. Introduction

The wireless sensor network is one of the hot spots of rapid
development in recent years; it combines the sensor field,
wireless communication field, computer field, and a large
number of other different fields of advanced technology
and constantly developed into a new field of integrated tech-
nology. Many tiny low-power nodes constitute the wireless
sensor network; tiny nodes can monitor complex external
information in real time and transmit the monitoring results
to the embedded system and after the system processing, by
sending to the user terminal, so that these nodes can intelli-
gently sense the outside world. However, these nodes can
locate themselves in addition to sensing information such
as temperature, humidity, and light intensity. Using this
property, wireless sensor network technology quickly
entered the wireless communication industry, giving rise to

many new technologies and applications that have attracted
widespread attention worldwide [1]. The heavy use of sen-
sors requires lower cost, better scalability, and more power
savings than traditional technologies. Motion analysis allows
one to learn the motion patterns of target objects and use
them for analytical modeling. For example, in the field of
medical rehabilitation, remote monitoring networks can be
established for patients to enhance the monitoring of their
behavior and thus provide timely feedback on medical data,
while in the field of ergonomics it can also provide suffi-
ciently accurate human posture data for research; in the field
of sports, motion analytics can be used to simulate training,
record athletes’ movement data, and compare it with quasi-
templates to generate corrective information for reference; in
the entertainment industry, motion analysis technology is
used in 3D graphics production to restore the movement
of the target object, which can lead to lifelike character
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modeling. In addition, distributed sensor architectures for
motion capture can be installed on different mechanical
devices, thus offering the possibility of achieving intelligent
interaction [2].

Wireless sensor networks, as one of the important tech-
nologies for the new Internet of Things (IoT), have become
the communication hub of society with their efficient, fast,
and comprehensive features. The popularity of IoT has led
to the rapid development of the wireless communication
industry and the ubiquity of sensor networks. Compared to
traditional technologies, the massive use of sensors demands
low cost, good scalability, and more energy-efficient power
consumption. WSN is usually a unified joint system consist-
ing of communication, microelectronics, semiconductor,
and embedded computer technologies. The ability of WSNs
to reconfigure intelligently and dynamically allows them to
collect and process the information sent by the nodes in
large quantities and transmit it to the control center, which
is the user terminal [3]. In this paper, around the theme of
wireless sensors in the field of tennis, we use literature
research, video analysis, comparative research, and mathe-
matical statistics to explore and analyze the implementation
of wireless sensors in tennis big data, tennis robotics, and
tennis teaching and training approaches, to provide a theo-
retical basis for promoting the application of wireless sensors
in the field of tennis and also to provide broader applications
to provide theoretical references [4].

2. Related Work

The development of video action recognition methods relies
on the progress of fundamental research on video represen-
tation learning. Video representation can be divided into
two aspects, manual feature representation and deep feature
representation. The dense trajectory method (DT) was pro-
posed in the literature [5] and applied to the video action
recognition task. The basic idea of the dense trajectory
method is to first use the optical flow field to obtain the tra-
jectory in the video sequence, then extract motion descrip-
tors HOF, HOG, MBH, and trajectory features along the
trajectory, then encode the features using the Fisher Vector
method, and finally train the SVM classifier based on the
encoding results to give recognition results. An improved
version of the dense trajectory method (IDT) is proposed
in the literature [6]. IDT uses the SURF matching algorithm
to match the key points of the optical flow between two
frames before and after the video to attenuate the effect of
camera motion on the video content and becomes the most
effective method among traditional video motion recogni-
tion methods. Manual features mainly characterize low-
level visual information, underrepresent high-level semantic
information, and have the disadvantage of difficulty in han-
dling large amounts of data and unsatisfactory recognition
accuracy. To solve this problem, the literature [7] proposes
the concept of intermediate-level features, which represent
behavioral features through a set of action attributes learned
from the training dataset, which is referred to as an interme-
diate concept in the paper. The literature [8] uses motion
phrases and motion atoms to represent the features of

actions in videos. For high-level feature representation, the
literature [9] uses an ordering function to model the evolu-
tion of motion over time. To better capture spatiotemporal
information, literature [10] uses hidden Markov models to
capture temporal information in videos and uses fixed
dimensional vectors as descriptors of motion videos. The lit-
erature [11] uses a structural trajectory learning approach to
extract relevant motion features.

The four methods based on ranging localization are
angular arrival, timely arrival, time difference arrival, and
received signal strength indication; AOA uses the angular
relationship between two anchor nodes concerning the
unknown node for localization, TOA and TDOA use the
product of signal propagation time and propagation speed
to calculate the distance, and trilateral localization or great
likelihood estimation becomes the method to estimate the
coordinates in the latter step. RSSI uses the received signal
strength to measure the distance and then the base position-
ing method to achieve positioning. The main ones that are
not based on ranging are the DV-HOP localization algo-
rithm, APIT, center-of-mass localization, MDS-MAP, and
amorphous localization: amorphous uses network connec-
tivity as a basis for calculation. In indoor localization by
WSN, the literature [12] can detect a single intruder through
Wi-Fi devices with a high detection rate and small false-
positive results; mobile anchor nodes can plan the path to
achieve high coverage and are more flexible than static
anchor nodes and do not depend on the topology of the net-
work. The literature [13] proposes adaptive framework
structures thus detecting variable speed objects in indoor
environments. The authors conducted a series of experi-
ments to learn empirically the effect of different speeds on
localization accuracy and thus improve the accuracy of local-
ization at different speeds. A novel indoor passive localization
system in a wireless environment is proposed in the literature
[14]. It provides low overhead and accurate and robust motion
detection and gives tracking capability, using coordinates of
different unknown nodes with the same anchor node to con-
struct a new coordinate system to calculate the distance and
then using trilateral localization for localization of nodes,
which cleverly simplifies a large number of calculations using
the coordinate method. In the literature [15], large-scale
indoor passive localization and tracking are proposed.
Although it has relatively high localization accuracy under
multipath effect, the literature [2] better describes the localiza-
tion classification model for passive localization, improves the
quality of the dataset, and reduces the error caused by the mul-
tipath effect; mostly, the distance between the anchor node
and unknown node is estimated by network connectivity,
information passed between nodes, etc.; the accuracy is not
very high, but it does not need to carry extra equipment so
the cost is low and the power consumption is relatively low.
The literature [16] proposes three passive indoor localization
methods and discusses the effect of multiple targets on the
results. Once the packet enters that grid, it is forwarded to
the grid head node which also becomes the phantom source.
If no node exists in the grid where the random location is
located, the head node of the grid where the node that last
cached the packet is located will become the phantom source.
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3. Optimization of a Wireless Sensor-Based
Tennis Motion Pattern Recognition System

3.1. Node Localization Algorithm for Wireless Sensor
Networks. Wireless sensor network node localization algo-
rithms can usually be divided into two categories: range-
based localization algorithms and range-free localization
algorithms. Range-based algorithms use geometric relation-
ships to derive node unknowns by measuring the wireless
signal angle or propagation time between the unknown node
and the signal transmitting node. The measured information
includes received signal strength, signal arrival time, signal
arrival time difference, and signal arrival angle. These algo-
rithms usually require the deployment of special compo-
nents to obtain these variables and improve the
localization accuracy by taking multiple measurements,
resulting in incurring higher deployment costs. In contrast,
range-free localization algorithms require only information
about the anchor node and network connectivity and thus
are cheaper to deploy and require no additional hardware
support but have limited localization accuracy. The finger-
print localization algorithm belongs to the range-free local-
ization algorithm, which requires several anchor nodes and
reference nodes with fixed locations to be predeployed in
the localization area. The anchor nodes continuously trans-
mit wireless signals with rated power, and the signal RSS
(Really Simple Syndication) of each anchor node is mea-
sured at each reference node location. The individual refer-
ence node locations and their measured RSS form a
location fingerprint or fingerprint for short. The unknown
node also measures the RSS of each anchor node and pattern
matches it with the existing fingerprint to determine the
node location. Fingerprint location algorithms not only are
cheap to deploy but also have more accurate localization
performance in complex and variable propagation environ-
ments, such as multipath and NLOS environments, and thus
have been widely studied and applied in recent years.

Such algorithms use network-wide connectivity informa-
tion to make location decisions. One of the best-known algo-
rithms is DV-hop. This algorithm has distance vector
routing at its core, where each anchor node broadcasts a bea-
con message containing its location coordinates. The initial
value of the number of hops in the beacon is 1, and 1 is
added for each node passed. When beacons from multiple
anchor nodes are transmitted in the network, each node on
the transmission path records the minimum number of hops
for each anchor node. Due to the diversity of action modes
covered in the set, the energy base of each action varies,
and even the magnitude difference between different per-
formers under the same type of action is huge, so it is unre-
alistic to use a constant value as a threshold to complete the
interception of all actions. Therefore, it is necessary to pro-
pose a threshold determination scheme with self-adaptive
capability. In an isotropic sensing network, the single-hop
physical distance of the signal is approximately the same in
all directions. Unknown nodes estimate the distance to each
anchor node based on the number of hops. However, in
complex networks, the presence of interference and other
factors lead to large differences in the single-hop distances

in each direction, making it difficult to achieve precise posi-
tioning, as in Figure 1 bit wireless sensor network node
localization process.

Fingerprint localization is a localization algorithm that
has gained more attention among the range-free localization
algorithms. A certain number of anchor nodes are deployed
in the localization area with a fixed location and known
coordinates with the signal transmitting function. The sen-
sor nodes measure the wireless signal strength RSS of each
anchor node. The measured HSS value and the position
coordinates of that node are called the signal fingerprint of
that position. The fingerprint localization approach does
not derive the node location based on RSS and distance
equations but rather fuses RSS with the anchor node approx-
imation algorithm to derive the sensor node location. The
fingerprint localization algorithm requires a fingerprint
database in the localization space, i.e., the location coordi-
nates of each point in the space are linked to the RSS infor-
mation of different anchor nodes at that location. The
fingerprint localization process is to convert the RSS infor-
mation received by the unknown node into location infor-
mation based on the fingerprint and location relationship
information in the fingerprint database. The process of con-
verting RSS into a target location is known as fingerprint
matching and fingerprint localization. Fingerprint localiza-
tion can also be described as a multiple hypothesis testing
problem, where the best hypothesis (location of the target)
is deduced based on the preobtained observations (i.e., fin-
gerprints). The fingerprint localization process can also be
considered a decision process, where the decision target is
the unknown node location based on the information avail-
able (fingerprint database) and the RSS measured by the
unknown node. The fingerprint localization algorithm
requires two phases: an offline measurement phase and an
online localization phase:

P θ ∣ kð Þ =
Ð
α ⋅ θ − μð Þ/σdθ

kr
: ð1Þ

Figure 2 shows the basic process of fingerprint localiza-
tion. In the offline measurement phase, firstly, a certain
number of reference nodes are laid out in the current local-
ization environment and the location coordinates of all ref-
erence points are recorded. Usually, the reference nodes
are laid out in a grid-like manner, and the reference nodes
can be either physical or virtual nodes. Then, the RSS values
of each anchor node are measured and collected in some
way at all reference nodes, called raw observation data, or
samples. Due to the inevitable signal interference in the
localization area, the RSS measurements are subject to errors
and certain methods are needed to preprocess the samples.
The preprocessed RSS data and the coordinates of the refer-
ence node establish a correspondence to form a fingerprint
database. In the online localization phase, the target node
measures the RSS value of each anchor node at its location
and sends it to the backend localization service. The localiza-
tion algorithm matches this RSS value with all samples of the
fingerprint database according to the set algorithm and finds
one or more reference nodes with the highest matching
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degree. Finally, these reference point location coordinates
are converted to the location corresponding to the target
node according to the characteristic algorithm, i.e., the loca-
tion estimate of the target node.

In a fixed localization environment, RSS samples usu-
ally obey some probability distribution. This is usually
described using a joint probability distribution and assum-
ing that the RSS of each anchor node measured by the ref-
erence node is independent of each other and does not
interact with each other, using the product of the edge dis-
tributions of the RSS as the joint distribution. A common
data form is the basis for sharing research results. This
paper gives a common inertial device standard, motion
recording scheme, and data storage form and establishes
a simple error calibration scheme for MEMS devices in
motion capture application scenarios and a data cleaning

method for the low automation of the data acquisition
process. The RSS vector measured by the unknown node
is set, the probability of getting this vector at each refer-
ence node is obtained, and the reference node with the
highest probability is selected as the estimated location.
Probabilistic algorithms are mainly based on Bayesian the-
ory, or Bayesian combined with clustering algorithms, to
calculate the location estimate of the unknown node on
the posterior probability of the unknown node. Plain
Bayes, hidden Bayes, Bayesian networks, and maximum
likelihood estimation are also widely used methods. The
process of node localization based on RSS fingerprinting
is usually divided into two phases: an offline measurement
phase and an online localization phase. In offline measure-
ment, the RSS data of the anchor node is measured at
multiple reference nodes to build a fingerprint database.
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Figure 1: Flowchart of wireless sensor network node localization.
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Since environmental noise and obstacles interfere with the
wireless signal propagation, it is also necessary to remove
the noise in the fingerprint database using statistics, filter-
ing, and fitting; in the online measurement phase, the
location of the unknown node is estimated by matching
the RSS data collected from the unknown node with the
fingerprint database. Therefore, the research of fingerprint
localization algorithms mainly includes two aspects:
enhancing fingerprint data accuracy and improving local-
ization accuracy.

3.2. Wireless Sensor-Based Algorithm for Tennis Motion
Pattern Recognition. The fundamental research in the field
of tennis motion analysis can be divided into two directions:
namely, motion analysis based on the pose layer and analysis
based on the action primitive layer, the essential difference
being whether the extraction of data meaning is more
focused on positional or velocity information. We can know
that tennis sports actions from two perspectives. One way of
thinking is to consider it as a continuous-time sequence, i.e.,
the body joints complete a spatial displacement, then the
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Figure 2: Fingerprint location process.
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velocity information of the point movement can be a com-
plete response to the movement. The other idea is to con-
sider the serving action as a segment of motion with wrist
force and posture change, then we can achieve the recog-
nition of a segment of motion by keeping continuous
detection of body posture. The two ideas focus on differ-
ent motion information; the first idea is more concerned
about the absolute motion of space differential informa-
tion; if you use the video capture scheme, you need to
extract the spatiotemporal motion trajectory of the moving
target and then only through the position information
interest inverse calculation of the speed information,
resulting in the calculation accuracy being seriously limited
by the number of frames shot and a large amount of cal-
culation. The inertial motion sensor can be worn to
directly capture the velocity information of the moving
object, and the video capture does not have the advantage
in this scheme. The second idea is more concerned about
the location of the target point information; using the
video program is roughly the data processing process: first
from a single frame image to extract the relative position
of the target feature points and then compared with the
standard template to determine the former human pose,
and for the inertial sensor program, the need to use iner-
tial navigation integration algorithm from the device out-
put to measure the location of the target point and
posture information, so the integration of inertial data.
The accuracy of the operation determines the feasibility
of the scheme, which is also the core focus of almost all
inertial guidance research.

The wireless sensor network is a combination of four
components which are sensor nodes, aggregation nodes,
mobile communication network, and task management
desk. The sensor nodes are mainly placed in the monitor-
ing area and are responsible for the collection of the
required information, such as temperature and humidity.
There are a small number of anchor nodes carrying self-
locating hardware and a large number of unknown nodes
whose locations are not known in advance. The main role
of the aggregation nodes is to gather the information
propagated from the nodes in the monitoring area and
then deliver it to the higher level, similar to the role of a
gateway. The mobile communication network is mainly
responsible for carrying the transmission of information.
Usually, the reference nodes are laid out in a grid-like
pattern, and the reference nodes can be physical nodes
or virtual nodes. Then, the RSS value of each anchor node
is measured and collected in some way at all reference
nodes, which is called raw observation data or called sam-
ple. The task management desk is mainly responsible for
processing the collected information for use in higher-
level applications.

From a mathematical point of view, an important issue
that must be considered in algorithm selection is the trade-
off between bias and variance. Classification models with
high bias have a high error rate in prediction, while models
with high variance will perform erratically across different
datasets. Bias and variance are defined in statistics as follows:
bias describes the difference between the predicted value and

the true value as shown in

Iα f ηð Þ =m zð Þ iωð Þα f ωð Þ = ωj jαei2πα f ωð Þ: ð2Þ

Variance describes the instability of the model predic-
tions themselves as shown in

R f xð Þ =
ð ð

g tð Þdt = 1 + γ

n

� �
⋅〠 x − 1ð Þf tð Þ: ð3Þ

Ideally, with an infinitely large sample size of training
data and a model algorithm that tends to be perfect, we
could obtain models with small bias and variance, but in real
engineering problems, this ideal situation does not often
exist. Learning algorithms with low bias values tend to be
more “flexible” and respond to the higher complexity of
the model, thus being able to fit the data very accurately.
The feature space is divided into two, with positive and neg-
ative classes on each side of the plane, and the specific clas-
sification decision function is as follows:

Rmf xð Þ =
ð ð

g tð Þdt = m + γ

n

� �
⋅〠 xm − tm−1� �

f tð Þ: ð4Þ

For linearly differentiable problems, the sample points in
T that are closest to ðw, bÞ are called support vectors, and
they are mathematically characterized in such a way that
equation (5) holds

LnR−Df xð Þ = 1
η αð Þ

ð ð
x − ηð Þαg ηð Þdη: ð5Þ

Since the coverage of node Mi contains the intersection
A, we have

Mi =
A ⋅ sin u cos x In ⋅ cos γ
Im ⋅ sin γ −sin y

�����
�����: ð6Þ

In the process of covering the void repair, the void is not
split if the NNICI generated by all nodes in the set of the
mobile nodes and the void boundary nodes that make up
the covering void is not more than 2, based on the guarantee
that the void inferior arc of the driving node is completely
covered, with

vi =
δx
δt

n!
r! n − rð Þ! x

γ + μ

� �
: ð7Þ

The input signal is computed in the network in a for-
ward direction: the very front of the network is the input,
where each input sample corresponds to a definite known
ideal output, while at the output at the very end of the net-
work, the error information is formed between the predicted
value and the ideal value, while the gradient information of
the error signal can be passed backward from back to front
according to the chain rule. At the end of a round of itera-
tions, the new prediction results in an error value whose gra-
dient information is fed back to the layers of the network
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through the reverse conduction law, and the parameter
values of each neuron will be corrected based on the error
gradient according to the established update strategy. This
cycle is repeated until the network reaches the accuracy
index.

Since the professional basic action division in the tennis
field has less ambiguity arising, it can be presumed that the
similarity between feature vectors of similar actions is high
and the clustering effect of action features is more obvious,
i.e., the linear differentiability of the dataset is high. Defi-
nitely, the training data sample size is infinitely large, the
model algorithm tends to be perfect, and we can obtain
models with small bias and variance; however, in real engi-
neering problems, this ideal situation often does not exist.
Learning algorithms with low bias values tends to be more
“flexible,” responding to the higher complexity of the model
and thus being able to fit the data very accurately. However,
overly flexible learning algorithms will fit different training
sets in completely different ways, resulting in higher variance
values as well. This phenomenon is often also referred to as
overfitting: that is, models that use too many parameters can
bring the loss function values down to very low during train-
ing but instead have a higher error rate when predicting new
samples.

Figure 3 shows the comparison diagram of action recog-
nition process under traditional machine learning algorithm
and deep learning algorithm, from which it can be found
that compared with the traditional machine learning algo-
rithm which requires a lot of manual feature extraction
work, the deep learning algorithm often takes the original
data as input directly, extracts the abstract features of the
data layer by layer through the hierarchical structure of the
network, and finally realizes the mapping to the target out-
put. From the input of raw data to the acquisition of the task
target, deep learning automatically completes the integrated
work of feature representation, feature selection, and model
learning.

The first step in a sports analysis study is to break down
the underlying movements for the specific sport in the con-
text of the project. This part often requires a combination of
expertise in the field of sport. The most famous application
of this aspect is the Laban dance score, which laid the foun-
dation of human kinetics and was one of the first cases of
using computer notation to record human movement and
analyze it logically. The greater the continuity of movement
and the greater the degree of freedom of the limbs, the more
difficult it is to disassemble. Ideally, with an infinitely large
sample size of training data and a near-perfect modeling
algorithm, we could obtain a model with very small bias
and variance, but in real engineering problems, this ideal sit-
uation does not often exist. Learning algorithms with low
bias values tend to be more “flexible,” responding to the
complexity of the model and thus being able to fit the data
very accurately. The vast majority of sports in the matter
are far less difficult to disassemble than dance, so there is a
well-established system of disassembling basic movements
in the field of their teaching long ago. Under the premise
of focusing only on the geometric nature of the movement,
the human body can be reduced to a skeleton model, while

completely ignoring muscle movement, trunk movements
can mostly be described more accurately with a combined
rigid body model, and only movements that are suitable
for rigid-body modeling expression and more concerned
with the movement process are suitable for the inertial anal-
ysis scheme. Under the rigid body kinematic model, inertial
data is the most natural and suitable data for quantitative
analysis of human movement form.

3.3. Experimental Verification and Conclusion. The applica-
tion of human action data collected by inertial sensors to
action recognition, whether online or offline, is a pattern rec-
ognition process; we can summarize the overall process
specification as follows: first for the modeling of the motion
background, to complete the basic action classification sys-
tem, followed by the design of the acquisition and tagging
scheme, in addition to recording the inertial data of each
action sample, which must also record the matching action
tags, in addition to using inertial motion capture devices to
capture human body information, it is necessary to ensure
that the devices have a certain accuracy and sampling rate
to reflect the real action situation as realistically as possible.
The specific capture device is called an inertial measurement
unit, which captures the linear acceleration signal of the
movement through an accelerometer, the rotation rate of
the movement through a gyroscope, and in some cases a
magnetometer for heading reference. A typical configuration
has a single-axis accelerometer, gyroscope, and magnetome-
ter on each of the three airframe axes (pitch, roll, and yaw).
The three-axis IMU allows for the complete recording of
point motion information at fixed parts of the body. In this
way, the inertial sensor converts the rich and complex
motion information into a finite-dimensional digital signal.
Figure 4 illustrates the inertial data for two types of action
examples in the tennis action dataset collected in this exper-
iment, and observation of the above figure reveals that very
little information can be obtained from the action curves.
From a cognitive point of view, there is no intuitive connec-
tion between the curves and the specific “forehand lunge”
and “forehand serve high”movements, although the raw sig-
nals collected by the inertial sensors are a faithful record of
the real movements, which are complete and comprehensive
enough. Some studies in motion modeling have shown that
motion reduction can be achieved with inertial data. But
the sensor data does not directly reflect the properties of
the tennis action. A clear correspondence between it and
the actual motion cannot be easily established at the human
cognitive level; in other words, the correspondence between
the raw data and the actual problem is difficult to under-
stand, especially for algorithmic models that are less intelli-
gent than humans.

The determination of the threshold parameters is at the
heart of the interception algorithm. Due to the diversity of
action modes covered in the collection, the energy base of
each action varies, and even the magnitude difference
between different performers under the same class of actions
is huge, so it is not practical to use a constant value as the
threshold to complete the interception of all actions. The
equipment mounting solution of fixing the measurement
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device to the sports equipment, while minimizing the
obstruction to the collector’s movement, can also lead to
the resulting tennis action dataset not being sensitive enough

to the distinction between grip styles, and based on this sit-
uation, mounting the motion acquisition equipment set on
different sides of the racket is a viable solution. So, a

Figure 3: Comparison of action recognition process under traditional supervised learning and deep learning.
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threshold determination scheme with adaptive capability
needs to be proposed. First, observe the gyroscope data
energy profile for a sample action as shown in Figure 5. A
series of quantile arrays are calculated for the energy
sequence (before smoothing), and the quantile lines at differ-
ent percentiles are plotted, from which it can be found that
the distribution of energy values for a segment of the action
is mainly concentrated in the smooth segment of the action,
the reason being that the action signal in this segment is
mainly caused by random body jitter of the wearer and the
degree of fluctuation of the data points is high.

The experimental hypothesis for the variation pattern of the
quantile values is that the quantile values increase dramatically
at the beginning of the action segment. To confirm this hypoth-
esis, the variation curves of the quantile values and their differ-
ence curves were plotted for uniform increases of Xr values
from 1% to 100% as shown in Figure 6. By the experiment, it
can be observed that there is a steep increase in the quantile
values near 50%. Substituting the quantile values at this point
into the inertial data plot to do the verification basically matches
with the starting and ending thresholds of the data, and the pat-
tern is verified on the data of other kinds of actions. The partic-

ular quantile point obtained throughout the hypothetical
process experiment was then referred to as the maximized
group clustering quantile value, in the sense that it maximizes
the concentration effect of the low-amplitude motion segment
and continues to increase the quantile increasing the spacing
between quantile values significantly. The mathematical deter-
mination method of maximizing the cluster clustering quantile
value not only requires first plotting the quantile value change
curve but also requires the minimization of the squared differ-
ence as the objective function for the line fitting and taking its
inflection point, and such a calculation process is undoubtedly
very complicated in practical application.

The number of anchor nodes is the number of attributes
in the localization decision. The anchor node ratio is the
ratio of the number of anchor nodes to the total number
of nodes in the localization area. Adjusting the anchor node
ratio will affect the localization performance. Increasing the
ratio of anchor nodes will increase the deployment cost.
Therefore, the performance of the proposed algorithm with
different anchor node ratios is simulated to find the best
value that meets the localization accuracy requirements
and saves energy. In performing the simulation, three neural
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network-based localization algorithms, GRNN, FFNN, and
ELM, are selected as the comparison algorithms. As can be
seen in Figure 7, the RLE of all four localization algorithms
in different localization areas decreases as the proportion
of anchor nodes increases. With the transition from under-
ground parking lots and indoor office areas to relatively less
crowded areas such as campus roads and open activity areas,
the reduction in crowd density reduces electromagnetic
interference and small-scale fading in the surrounding envi-
ronment, leading to a decrease in the RLE of all algorithms.
From the figure, it can be seen that the relative localization
error of the algorithm in this paper is the smallest, which
is better than the three comparison algorithms and shows
a stable decreasing trend in different regions. It indicates that
the algorithm in this paper has the best localization perfor-
mance; GRNN is slightly inferior, while ELM and FFNN
have the worst performance.

In a multiarea localization scenario, the population den-
sity and geographic location of buildings affect the ambient
noise level in the localization space, while the localization
performance of the algorithm varies with the noise standard
deviation. A larger noise standard deviation indicates a more
disturbing environment and a harsher wireless environment
in which it is located. To verify the adaptability of the local-
ization algorithm to different regions in the localization
space and the robustness to environmental interference,
the variation of RLE with noise standard deviation in differ-
ent regions is simulated. The simulation results are shown in
Figure 8. In the four localization regions, the RLE of all four
algorithms increases more significantly with the increase of
the noise standard deviation. From the figure, it can be seen
that the relative error of the FFNN algorithm fluctuates the

most in the four regions, and the rising trend is more obvi-
ous. The localization error of the ELM algorithm also
increases rapidly with the increase of noise standard devia-
tions, especially in the underground sports field and the
open region where the stability is poor. In contrast, the rela-
tive localization error (RLE) of the GRNN algorithm and the
algorithm in this paper grows steadily. The RLE of the
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algorithm proposed in this paper is significantly better than
the comparison algorithm in four regions, and the difference
value between regions is the smallest. The fluctuation range
of RLE of the algorithm in this paper is smaller in the indoor
sports area, underground sports field, campus sports field,
and open area. It indicates that the algorithm in this paper
has better robustness in different regions, can adapt to the
changes of environmental noise, and has better stability of
positioning accuracy.

The sequence length of tennis action data is unified to
128 samples by the resampling algorithm, i.e., each segment
of action data is saved in the form of a 12 × 128 matrix, and
the data matrix is expanded and spliced into a one-
dimensional vector to be fed into the network learning. In
addition, due to the translation property of sliding window
segmentation, a segment of tennis action may be segmented
into multiple data windows. A common data form is the
basis for sharing research results. This paper gives a com-
mon inertial device standard, motion recording scheme,
and data storage form and establishes a simple error calibra-
tion scheme for MEMS devices in motion capture applica-
tion scenarios and a data cleaning method for the low
automation of the data acquisition process. Observing the
grayscale plot of the confusion matrix, it can be found that
both recognition schemes are relatively easy to cause mis-
judgment for two types of tennis actions: forehand lunge
and backhand lunge. From a practical perspective, this is
because the two types of tennis actions are relatively close
to each other, the trajectory of the racket is a lunge action,
and the difference only lies in whether the player’s grip is
forehand or backhand. Figure 9 shows an example of the
accelerometer output curve for the two motions.

Such experimental results reflect the fact that the device
mounting solution of fixing the measurement device to the
sports apparatus, while minimizing the hindrance to the col-
lector’s movement, can also lead to the resulting tennis

action dataset being less sensitive to the differentiation of
grip patterns, and based on this situation, mounting the
motion acquisition device set on different lateralities of the
racket is a viable solution.

4. Conclusion

This paper focuses on the study of motion recognition algo-
rithms based on inertial motion capture schemes through
wireless sensors. Since most of the current motion analysis
is a shallow use of general algorithmic models, often not
combined with expertise in the field of inertial guidance to
target the characteristics of inertial data, and the research
results are limited to small-scale motion datasets, this paper
establishes a standardized motion recognition research pro-
cess that best fits inertial motion capture schemes. This
paper establishes a standardized motion recognition
research process that best fits the inertial motion capture
scheme, including a summary of data processing experience
and a generalization of ideas for decomposing the emotion
recognition task.

The main research work is divided into the following
parts: (1) Acquisition and preprocessing of inertial datasets:
a common data form is the basis for sharing research results;
this paper gives a common inertial device standard, motion
recording scheme, and data storage form and establishes a
simple error calibration scheme for MEMS devices in
motion capture application scenarios and a data cleaning
method for the low automation of data acquisition process.
(2) Motion interception algorithm research: from the offline
recognition and online recognition of two research modes,
focus on the needs of this paper and the implementation of
the motion interception algorithm under the event window
and motion window, respectively. To accurately detect the
starting and ending points of motion, a stable motion ampli-
tude indicator function is established using the Teager
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operator combined with Gaussian smoothing filtering, a
parametric modeling method for motion thresholds is
derived, and an adaptive threshold determination scheme
based on energy peaks is determined, which can accurately
intercept the effective signal segments of various motions.
Based on the professional research foundation in the field
of statistics and signal processing, we designed a set of fea-
ture calculation schemes that can cover the motion charac-
teristics to the maximum extent, including a total of 19
types of features under statistical features, signal time-
frequency features, and system modeling features, and pro-
posed a set of scientific feature contribution evaluation
indexes based on the principle of information gain, and opti-
mized and adjusted the applied feature combination scheme
by combining the tennis action dataset, and the feature
dimension was reduced by 20.78% under the streamlined
combination. The feature dimensionality was reduced by
20.78%, while the classification accuracy only decreased
from 97.99% to 97.60%.
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