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In response to the multitarget tracking problem of distributed sensors with a limited detection range, a distributed sensor
measurement complementary Gaussian component correlation GCI fusion tracking method is proposed on the basis of the
probabilistic hypothesis density filtering tracking theory. First, the sensor sensing range is extended by complementing the
measurements. In this case, the multitarget density product is used to classify whether the measurements belong to the
intersection region of the detection range. The local intersection region is complemented only once to reduce the
computational cost. Secondly, each sensor runs a probabilistic hypothesis density filter separately and floods the filtering
posterior with the neighboring sensors so that each sensor obtains the posterior information of the neighboring sensors.
Subsequently, Gaussian components are correlated by distance division, and Gaussian components corresponding to the same
target are correlated into the same subset. GCI fusion is performed on each correlated subset to complete the fusion state
estimation. Simulation experiments show that the proposed method can effectively perform multitarget tracking in a
distributed sensor network with a limited sensing range.

1. Introduction

The main task of multitarget tracking (MTT) technology is
to detect targets in clutter environment and estimate their
motion parameters in real time [1, 2]. Among the many
existing multitarget tracking technologies, nearest neighbor
(NN) [3], probabilistic data association (PDA) [4, 5], multi-
ple hypothesis tracking (MHT) [6], and random finite set
(RFS), multitarget tracking algorithm is called the main
method. The first three methods have been widely used in
the field of multitarget tracking. They use a certain distance
criterion to divide the observation set through data associa-
tion processing, and convert the multitarget tracking prob-
lem into multiple independent single-target tracking
problems for processing. For relatively complex multitarget
tracking problems, correlation errors are prone to occur,
resulting in the degradation of tracking performance. The
PHD filtering [7] method based on random finite sets pro-
vides a new solution to the above-mentioned new problems
of multitarget tracking. Strict mathematical description, its
biggest advantage over the traditional multitarget tracking

algorithm is that it can avoid the data association calculation
between the observation and the target. With the help of
particle filter (PF) technology and Gaussian Mixture (GM)
technology, the research team represented by Vo has suc-
cessfully obtained two approximate realization forms of
these PHD filters, namely, GM-PHD [8] and SMC-PHD
[9]. The PHD filtering method is based on a solid mathemat-
ical foundation, which can better reflect the essence of the
target tracking problem, can avoid the data association prob-
lem in the traditional method, and has less computational
complexity in complex multitarget tracking applications, so
it is used in more and more field of application [8–19].

The multisensor information fusion technology effec-
tively fuses the information obtained by multiple sensors
and can obtain a more accurate description of the problem
than the information obtained by a single sensor. In fact,
multisensor information fusion is not a new concept. In a
broad sense, the cognitive process of human beings through
various senses such as sight, hearing, smell, taste and touch
is essentially an information fusion process. With the emer-
gence of various new sensors, the vigorous development of
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signal processing technology and the great improvement of
hardware computing performance, real-time data fusion
processing can be performed more efficiently, so data fusion
technology has been widely used. Compared with single-
sensor systems, multisensor systems have several advan-
tages: first, the fusion of observations obtained by several
sensors can improve the estimation of the target state. If
the data can be combined in an optimal way, the estimation
accuracy can be improved statistically by increasing the
amount of data; second, the observation quality can also be
improved by using the relative motion between sensors.
For example, two sensors and the target form a triangle. If
the corresponding relationship between the observation
angles of the two sensors relative to the target is known,
the target can be positioned by the triangulation method,
which is widely used in commercial navigation and geologi-
cal surveys. Third, multisensor systems can extend temporal
and spatial coverage. Because one sensor may detect places
that other sensors cannot, a certain sensor may detect
objects in a certain period of time that other sensors cannot
detect in that period of time.

Sensor fusion technology can provide more effective
information about targets in time and space. Multiple sen-
sors cooperate with each other to effectively track and esti-
mate the state and number of targets. Information fusion is
a key algorithm in multisensor networks, and distributed
MTT algorithms have the advantage of being more fault-
tolerant and flexible than centralized fusion frameworks
and have received much attention recently [20–24]. General-
ized covariance intersection (GCI) [25, 26] fusion theory is
an effective method to solve the distributed multisensor
MTT fusion problem, also known as exponential mixture
density (EMD) [27]. GCI fusion is equivalent to calculating
the density of minimizing the sum of information gains
from local posteriors Kullback-Leibler divergences (KLD)
[28, 29], thus avoiding the problem of double counting pub-
lic information [30]. The method has also been successfully
applied to multisensor PHD filter fusion [31–33], multisen-
sor CPHD filter fusion [34], and multisensor multi-Bernoulli
filter fusion [35].

In fact, GCI fusion rules tend to keep only trajectories
present in all local posteriors. This defect is exacerbated
when sensors have different fields of view (FoV). At present,
there are many methods to solve the problem caused by the
finite field of view of the sensor in the generalized covariance
intersection fusion process. Based on the GM-PHD filter,
Battistelli et al. proposed a simultaneous localization and
mapping solution to solve the problem that different sensors
have different detection fields [36]. Vasic et al. model the
uncertainty of the target in regions that cannot be explored
between sensors, using the idea of a uniform intensity
throughout the region to initialize all local PHDs [37]. At
the same time, Vasic et al. also proposed to use the distance
value between each Gaussian component to improve the
GCI fusion algorithm [37], but this method overestimated
the number of targets and caused false positives. Kai et al.
proposed a method of supplementary measurement to
expand the field of view [38]. Recently, there are many
new improved algorithms, such as introducing the GCI

fusion algorithm into the label random finite set multitarget
tracking method [39–43], and the feasibility of the algorithm
has been proved, but there are still many problems to be
dealt with, including parameter setting as well as inconsis-
tent labels. The problem of sensor fusion is not just for
object tracking, it can also be applied to a wider space,
including object detection and estimation.

In this paper, we propose the principle of complemen-
tary measurements to compensate for the limited detection
range of sensors, which cannot get the measurement infor-
mation of the whole scene. That is, the measurements out-
side the detection range of the sensor are complemented
by other sensors, and the multitarget density product is used
to classify whether the measurements belong to the intersec-
tion region of the detection range, and the measurements
that do not belong to the intersection region are comple-
mented, which can avoid repeated complementation of the
same region to reduce the amount of computation. Direct
GCI fusion may lead to large tracking errors and computa-
tional complexity for different Gaussian components repre-
senting different targets. The distance correlation GCI
fusion method is used, i.e., the complementary measures
are correlated by distance division to associate Gaussian
components that may be the same target to the same subset.
Subsequently, GCI fusion is performed on the different cor-
related subsets, and the fusion state estimation is completed.
The performance of the fusion algorithm is verified by sim-
ulation scenarios.

The following sections are arranged as follows: Section 2
introduces the background of the algorithm, including PHD
filtering, limited field-of-view sensors, and GCI fusion rules;
Section 3 analyzes the reasons for GCI fusion mismatch; Sec-
tion 4 introduces the solution of this paper, including mea-
surement complementarity and improved GCI fusion
method based on distance threshold; the fifth section verifies
the effectiveness of this algorithm in the multitarget tracking
environment by comparing the improved algorithm in this
paper with some traditional algorithms. Abbreviations sec-
tion is the acronym for this article.

2. Background

2.1. PHD Filtering. Set the multiobjective statement set and
measurement set as Xk and Zk. Dkjk−1ðxjZðkÞÞ represents
the density function corresponding to the multiobjective
posterior density at time k, which is the first-order moment
approximation of the multiobjective posterior density, and is
usually called PHD in the target tracking theory based on
random finite sets.

The prediction equation for PHD is [7]

Dk k−1j x Z kð Þ
���� �

=
ð
ϕk k−1j x, xk−1ð ÞDk−1 k−1j

Á xk−1 Z
k−1ð Þ

���� �
dxk−1 + γk xð Þ,

ð1Þ

where ϕkjk−1ðx, ξÞ = βkjk−1ðx, ξÞ + ekjk−1ðξÞf kjk−1ðx, ξÞ, βkjk−1
is the PHD of the derived target, ekjk−1 is the survival
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probability of the target, f kjk−1 is the transition probability
density of a single target, and γk is the PHD of the nascent
target.

The update equation of PHD filtering is expressed as [7]

Dk kj x Z kð Þ
���� �

= LZk
xð ÞDk k−1j x Z k−1ð Þ

���� �
, ð2Þ

where LZk
ðxÞ = 1 − PD,kðxÞ +∑zk∈Zk

ðPD,kðxÞLzðxÞ/λcðzkÞ +
Dkjk−1ðPD,kLzÞÞ, LzðxÞ represents the observation likelihood
function of a single target, λ represents the clutter intensity,
cðzkÞ represents the clutter spatial distribution, λcðzkÞ repre-
sents the PHD of the clutter random set, PD,k represents the

detection probability, and Dkjk−1ðPD,kLzÞ =
Ð
PD,kðxÞLzðxÞ

Dkjk−1ðxjZðk−1ÞÞdx .The multitarget density πðXÞ of Poisson
RFSX takes the following form:

π Xð Þ = exp −
ð
X
D x Z kð Þ

���� �
dx

� �Y
x∈X

D x Z kð Þ
���� �

, ð3Þ

where χ is the given area.

2.2. Sensor Network Field of View. Single sensor has a finite
detection field of view. When the tracking environment is
full of clutter, the multisensor fusion algorithm needs to col-
lect the measurements of each sensor to effectively estimate
the state and number of multiple targets. Assuming that
the sensor locations are known, and sensor s has a finite
FoVs, defined as

FoVs = x ∈ X : psD xð Þ > 0f g: ð4Þ

Among them, psD represents the detection probability of
the sensor s in the limited field of view. Each sensor usually
has a different field of view due to its type, location, and
orientation.

Figure 1 shows the detection network of two sensors.
Their respective detection areas have intersections and
non-intersections. The shaded part represents the intersec-
tion area they detect, and the nonshaded part represents
their non-intersection detection area. The detection range
of sensor 1 is

FoV1 = R 1½ � ∪ R 2½ �, ð5Þ

where R½i� represents the ith area in the entire multisensor
detection network. ∀i ≠ j and R½i� ∩ R½j� =∅. The entire
detection area of the multisensor detection network R can
be expressed as

R = ∪
3

i=1
R i½ �: ð6Þ

Consider a sensor network consisting of sensors with the
limited field of view, where information sharing is required
because the sensors have a limited field of view for detection.
Denote by SjðtÞ, the set of sensors that can reach sensor j
after t step communication.

2.3. GCI Fusion Rules. A key technology for multitarget
tracking using distributed sensor networks is the PHD
information fusion between multisensors. Optimal PHD
fusion among different sensors is difficult to achieve because
the common information among the sensors is usually
unknown, especially in large multisensor networks. Next,
we will introduce the generalized covariance intersection
fusion algorithm.

Now assume that the multitarget posterior probability
density functions of the two sensors are π1,kðXÞ and π2,kðXÞ,
which are conditional on the measurements obtained by the
two sensors in the detection area of the multisensor network.
When the correlation between the measurements collected
by the two sensors is unknown, the two multiobject posterior
probability densities can be fused with the help of the GCI
fusion rule [21]. Under the GCI rule, the probability density
function after fusion is

π1,2
k Xð Þ = π1,k Xð Þω1π2,k Xð Þω2Ð

π1,k Xð Þω1π2,k Xð Þω2δX
, ð7Þ

where ω1 and ω2 are the relative importance weights of each
multitarget posterior probability density function satisfying
ω1 + ω2 = 1. There are two weight calculation methods and
one method that can guarantee fusion convergence [34].
Another method is to select the cost function that minimizes
the target weights according to the optimization process
[31]. The fusion density given by the fusion rule Equation
(7) is the minimization of the weighted sum of KLDs with
respect to the density to be fused.

π1,2
k = arg inf

π
ω1DKL π π1,k

À Á
+ ω2DKL π π2,k

À ÁÀ Á
, ð8Þ

where

DKL π π1,k
À Á

=Δ
ð
π Xð Þ log π Xð Þ

πi Xð Þ δX: ð9Þ

Pairing N multitarget densities with their corresponding
fusion weights into a set, i.e., �π = ðπi, ωiÞi∈N , the GCI scatter
Gð�πÞ is defined as [8]

G �πð Þ =min
π

〠
i∈N

ωiDKL π πikð Þ = − log c �πð Þ, ð10Þ

R[1] R[2] R[3]
S1 S2

Figure 1: Multisensor detection network detection area.
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where

c �πð Þ =
ðY

i∈N
πi Xð Þ½ �ωiδX: ð11Þ

The GCI coefficient cð�πÞ satisfies 0 < cð�πÞ < 1.

3. Analysis of GCI Fusion Issues

For most single sensors, due to the limitations of the sensor’s
own performance, such as detection capability, detection
range, and transmission rate, the scene data information
provided by the sensor is incomplete and the data type is
single. In addition, it is also susceptible to the influence of
complex environment, which produces data caused by noise
and interference clutter, which cannot provide accurate tar-
get information. In order to make up for the defect of a sin-
gle sensor, multiple sensors are used to detect the target in
the scene at the same time, so that the target in the scene
can generate at most one measurement on each sensor,
and then complete the information sharing between adja-
cent sensors and data communication. Fusion estimation is
performed at the fusion center.

However, the multisensor fusion method sometimes leads
to poor fusion matching results due to the defects of a single
sensor. It has been analyzed earlier that when the GCI fusion
algorithm is applied to a multisensor network where each sen-
sor has a limited detection field of view, the number of targets
will be falsely reported. This section uses an actual simulation
scenario to verify the GCI fusion algorithm.

In the multisensor network, the number of sensors is set
to 2, the tracking method adopts GM-PHD filtering, the
probability of target survival is 0.99, the detection probabil-
ity within the detectable range of the sensor is 0.98, and
the detection probability is 0 in the area outside the detec-
tion range. The observation area is ½‐2000, 2000� × ½0, 2000�

ðm2Þ. For simplicity, set up two targets to do a circular
motion. The schematic diagram of multisensor network
tracking is shown in Figure 2. Among them, ∘ represents
the starting position of the target movement, Δ represents
the end position of the target movement, the target 1 is in
the field of view FoV1 of the sensor 1, the target 2 is in the
field of view FoV2 of the sensor 2, and neither target is in
the intersection area of the field of view.

The estimated number of targets is shown in Figure 3. As
can be seen from Figures 2 and 3, each sensor can only
detect one target, and after GCI fusion, it will directly cause
all two targets to be lost. The reason is that the detection
range of a single sensor is limited, so that a single sensor
can only detect targets within its own detection area and lose
targets outside its own detection area. In the fusion process,
because the weights given by the two sensors to the Gaussian
components corresponding to the same target measurement
value are too different, the fusion algorithm fails and the tar-
get is lost.

From the simulation results, it can also be known that
the traditional GCI fusion algorithm can effectively fuse
the Gaussian components of different sensors corresponding
to the same target only when the target is in the intersection
of the multisensor network detection area. If only some sen-
sors can detect the target, and some sensors cannot detect
the target, that is, when the target is in the multisensor
non-intersection detection area, the traditional GCI fusion
algorithm will inevitably have false positives, which will lead
to the loss of the target. The essential reason is also because
the GCI fusion algorithm fuses the weights of the Gaussian
components of the same target by each sensor. If a sensor
cannot detect the target, the Gaussian component weight
value will be too small, which will affect the final state extrac-
tion, resulting in the loss of the target.

From the simulation, it can be seen that each sensor can
only generate the corresponding set of measurements within
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Figure 2: Real track.
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its own limited detection range and cannot detect all targets.
If all targets are to be detected and information is to be
shared, then it is necessary that different sensors can share
their own detection information among themselves. How-
ever, suppose all the measurement information from one
sensor is shared directly to another sensor. In that case, it
may lead to the reuse of information in the intersection
region of the detection range of the two sensors, which in
turn leads to the problem of combinatorial explosion. As
shown in Figure 1, if the information is shared between Sen-

sor 2 and Sensor 1, the information in the R½2� region is
shared repeatedly, resulting in an increased computational
burden for the intersection region measurement set.

4. Solutions

4.1. Complementary Measurements. In order to realize that a
single sensor can detect and track the whole tracking scene,
information sharing between different sensors is needed, and
the measurement information from one sensor is directly
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communicated to another sensor. However, to avoid the
reuse of measurement information, a distinction needs to
be made between intersecting and non-intersecting areas of
sensor detection ranges.

Let the measurement set of all sensors at the moment
k be �Zk = fZFoV1

1,k , ZFoV2
2,k ,⋯,ZFoVs

s,k g, where the measurement

set generated by the sth sensor in its FoVs is Z
FoVs
s,k = fz1s,k,

z2s,k,⋯,zMs,k
s,k g, and Ms,k is the number of measurements of

the sth sensor at the moment k. When a sensor is to supple-
ment another sensor with measurements, it is necessary to
supplement the measurements outside the intersection area
rather than sharing all measurements to another sensor,
which would lead to the reuse of information and increase
the computational burden.

Therefore, it is necessary to partition the PHD function
in and out of the intersection region. Assuming that two sen-
sors use PHD filters in their respective fields of view (the
state spaces corresponding to the regions are FoV1 and
FoV2, respectively), PHD D1ðxÞ and D2ðxÞ are obtained,
respectively. PHD DðxÞ is a common function of a single tar-
get x and therefore also contains the spatial location infor-
mation of the sensors. Since the PHD filter is not defined
for the target density outside the detection range, it can be
extended, i.e.,

~D1 xð Þ =
D1 xð Þ, x ∈ FoV1

0, x ∉ FoV1

(
: ð12Þ

The same is done for D2ðxÞ to obtain

~D
2
xð Þ = D2 xð Þ, x ∈ FoV2

0, x ∉ FoV2

(
: ð13Þ

The product of the two sensors is

~D
1,2

xð Þ = ~D
1
xð Þ ⋅ ~D2

xð Þ: ð14Þ

Assuming that each sensor can accurately obtain the PHD
function belonging to its own detection region, we have

~D
1,2

xð Þ > 0, x ∈ FoV1 ∩ FoV2ð Þand~D1
xð Þ > 0and~D2

xð Þ > 0
~D
1,2

xð Þ = 0, ~D
1
xð Þ = 0or~D2

xð Þ = 0

8<
: :

ð15Þ

Equation (15) shows that under the condition of no com-
plex interference, the extended two-sensor PHD product can
be determined to be located in the intersection region of the
detection range of the two sensors if it is not a zero value. This
property can be used to divide the PHD function between the
intersection region of the sensor detection range and the
region outside the intersection by using the PHD product to
find the common measurement information of the two sen-
sors and distinguish them.

Therefore, when sensor 2 is complementary to sensor 1
in terms of measured values, the area in FoV2 that has been

complemented is

Rc,2 = FoV1 ∩ FoV2, ~D
1,2

xð Þ > 0: ð16Þ

Therefore, the region in FoV2 that is not complementary
to sensor 1 is

Ru,2 = FoV2 − Rc,2, ~D
1,2

xð Þ = 0: ð17Þ

From Equations (16) and (17), it is possible to obtain the
area Ru,2 where sensor 2 is not complementary to sensor 1. It

is possible to share the measurement information Z
Ru,2
2,k of

this area to sensor 1. In this way, the information of the mea-
surement of the sensor 1 is also shared to the sensor 2 in the
same way, which also completes the complementary mea-
surement of the two sensors. However, when two sensors
are observing the same area, the noise on the two sensors
is generally different. Therefore, when complementing the
sensor measurements, noise should be added appropriately
as a way to increase the randomness of the samples. When
the sensor complements the measurements, the set of mea-
surements on sensor s is

ZR
s,k = ZFoVs

s,k ∪ ∪
i∈s,i≠s

Z
Ru,i
i,k + v

Ru,i
i,k

� �� �
, ð18Þ

v
Ru,i
i,k ∼N z ; 0, Rkð Þ, ð19Þ

where ZR
s,k represents the lumped sum of measurements of

sensor s at time k, v
Ru,i
i,k denotes the measurement noise obey-

ing Gaussian distribution, and Rk is the measurement noise
covariance matrix at time k. After the two sensors complete
the complementary measurements, the final measurement
set at time k is ZR

k = fZR
1,k, ZR

1,kg.
Once the measurements are complementary, each sensor

contains all the measurements in the sensor network, and
the measurements located in the sensor detection intersec-
tion area are not reused, which also greatly reduces the com-
putational burden. Moreover, with the complementary
measurements, even a newborn target function within a sen-
sor can be detected in time, because the measurement shar-
ing helps the sensor network to share the newborn target
function to each sensor in time, effectively improving the
tracking performance of the whole sensor network.

4.2. Gaussian Mixture PHD Filtering GCI Fusion. The GCI
fusion algorithm is used to fuse the PHD Da,kðxÞ and
Db,kðxÞ of the sensor a and sensor b, and the fused PHD is
generated after fusion, as follows:

Da,b
k xð Þ = Da,k xð Þ½ �ω1 Db,k xð Þ½ �ω2 : ð20Þ

The formula is expressed in exponential form, and the
Gaussian mixture term cannot be expressed in exponential
form, and an approximate scheme can be used to express it,
as follows:
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Ds,k xð Þ½ �ωs = 〠
Ms,k

i=1
~αs,k,iN x ; ~ms,k,i, ~ps,k,i

À Á
, ð21Þ

where ~ms,k,i, p
a,b
k,i,j, and αa,bk,i,j are the mean, covariance, and

weight of the Gaussian components, respectively. Then, cal-
culate the fused PHD result and the parameter value in it
by the following formula

Da,b
k xð Þ = 〠

Na

i=1
〠
Nb

j=1
αa,bk,i,jN x ;ma,b

k,i,j, pa,bk,i,j
� �

, ð22Þ

where

pa,bk,i,j = ~pa,k,i
À Á−1 + ~pb,k,j

� �−1
� �−1

, ð23Þ

ma,b
k,i,j = pa,bk,i,j ~pa,k,i

À Á−1
~ma,k,i + ~pb,k,j

� �−1
~mb,k,i

� �
, ð24Þ

αa,bk,i,j = ~αa,k,i~αb,k,jN ~ma,k,i − ~mb,k,j ; 0, ~pa,k,i + ~pb,k,j
� �

: ð25Þ

ma,b
k,i,j, p

a,b
k,i,j, and αa,bk,i,j are the means, covariances, and

weights of the Gaussian components after fusion, respectively.
The communication method in the literature [44–46]

can converge faster. It can effectively cope with scenarios
where the limited field of view does not completely overlap
[47], so this algorithm uses this method for intersensor com-
munication due to the limited detection field of view of indi-
vidual sensors and the need for information sharing among
neighboring sensors.

Let the number of sensor-to-sensor communication iter-
ations be t = 0, 1,⋯, T , and SsðtÞ denotes the set of neigh-
boring sensors with distance t from the sth sensor. After
the sensor s = 1,⋯, S iterates t times, the set of posterior
probability densities on that sensor is

π
tð Þ
s,k Xð Þ = ∪

j∈Ss ≤tð Þ
πj,k X j

À Á
: ð26Þ

When t = 0, πð0Þ
s,k ðXÞ = πs,kðXÞ.

When described by the Gaussian component DðxÞ, after
t iterations, it can be expressed as follows:

ml
s,k, pls,k

n oNs,k

l=1
= ∪

j∈Ss ≤tð Þ
ml

j,k, plj,k
� �N j,k

l=1
, ð27Þ

where

Ns,k tð Þ =Ns,k + 〠
j∈Ss ≤tð Þ

Nj,k: ð28Þ

After the communication is completed, Gaussian Mixture
probability hypothesis density GCI fusion is performed on
each sensor. By the GCI fusion weight calculation Formula
(25), we can see that the large distance between the Gaussian
components leads to small fusion weights tends to 0 when

the distance increases. In this paper, the Gaussian components
from the same target are correlated to the same subset by cor-
relating the Gaussian components after communication. Then
GCI fusion is performed for each correlated subset using the
Equation (22). The Gaussian components are correlated using
the distance correlation method [43], which calculates the
martingale distance between the Gaussian means ms,k,i and
ms′,k,j of the Gaussian components from different sensors s′
∈ Ssð≤tÞ after communication on sensor s.

d = ms,k,i −ms′,k,j
À ÁTQ−1

s,k ms,k,i −ms′,k,j
À Á

, ð29Þ

where Qs,k is the process noise covariance matrix, and a
threshold Dmax is set to control the correlation subset. If the
distance d <Dmax between two Gaussian components, then
these two Gaussian components are considered as the same
target and can be put into a subset. The setting of Dmax has a
clear physical meaning, which indicates that the distance
between statesms,k,i andms′,k,j does not exceed the probability
of the standard deviation Dmax [48] or a lower limit of the
probability, which is calculated as

Pr ms,k,i −ms′,k,j
À ÁTQ−1

s,k ms,k,i −ms′,k,j
À Á

≤D2
max

h i
≤ γ

N
2 , D

2
max
2

� �
,

ð30Þ

whereN denotes the number of target states and γ denotes the
incomplete cardinality distribution.

Then GCI fusion is performed on the associated subsets.
Suppose that at the moment k the sensor s is associated with
Cs,k subsets, each of which represents the same target, and
the number of Gaussian components corresponding to each

cluster c = 1,⋯, Cs,k is JðcÞs,k , the set of sensors in which all

Gaussian components in the subset are located is SðcÞs,k ⊆ Ss,kð
≤TÞ, and the Gaussian components in the cth subset are

written as fmðc,lÞ
j,k , pðc,lÞj,k gJ

ðcÞ
j,k

l=1 , where j ∈ SðcÞs,k . Then GCI fusion

is performed for each correlation subset

Ds,k xð Þ½ �ωs = 〠
j∈S cð Þ

s,k

α
cð Þ
j,kN x ;m cð Þ

j,k , p
cð Þ
j,k

� �
: ð31Þ

The number of targets after running PHD filtering for
local sensors is estimated as [7]

N̂s,k k−1j = N̂s,k−1 ps,k + 〠
Jβ,k

j=1
αβ,k,j

0
@

1
A + 〠

Jγ,k

j=1
αγ,k,j, ð32Þ

N̂s,k = N̂s,k k−1j 1 − pD,k
À Á

+ 〠
z∈Zk

〠
Jk k−1j

j=1
αk,j zð Þ, ð33Þ

where Jβ,k and Jγ,k represent the number of derived Gaussian
components and newborn Gaussian components at the
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moment k, respectively. The number of communication
GCIs after fusion is estimated as

�Ns,k =
1

Ss,k ≤Tð Þ�� �� 〠
j∈Ss,k ≤Tð Þ

Nj,k: ð34Þ

After the fusion of all associated subsets on sensor s is
completed, each subset is a new Gaussian component repre-

sented as f�mðcÞ
s,k , �p

ðcÞ
s,kg

Cs,k

c=1, and then the state is extracted on

this sensor by �mðcÞ
s,k and �Ns,k, and the filtered updated Gauss-

ian component is returned for use in the next iteration.
The distributed sensor measurements complementary

Gaussian component correlation GCI fusion tracking
method is summarized as Algorithm 1:

The state extraction is performed according to

f�mðcÞ
s,k , �p

ðcÞ
s,kg

Cs,k

c=1, s = 1,⋯, S to obtain Xs, and return the state
estimate and the filtered Gaussian component.

Output: Gaussian components fml
s,k, pls,kg

Ns,k
l=1 and Xs for

each sensor after filtering update.

5. Simulation and Experimental Results

5.1. Simulation Parameter Settings. In the multisensor net-
work, the detection field of each sensor is limited, and the fil-
tering algorithm GM-PHD filter of each sensor is set. The
detection area of the multisensor network is set as ½‐1500,
1500� × ½‐1000, 1000�ðm2Þ so that in the detection area, a
total of 6 targets will appear. The time of the 6 targets is dif-
ferent, and the 6 targets may appear from 4 different posi-
tions. When the number of targets is satisfied under
variable conditions, each target moves in a straight line at
a uniform speed. In the target tracking performance com-
parison chart, the traditional GCI-GM-PHD algorithm and
each GM-PHD algorithm are compared with the improved
algorithm in this paper.

The target state is composed of the position and velocity
of the x-axis and the position and velocity of the y-axis,

Input: Filtered Gaussian component ffms,k−1,l , ps,k−1,lgNs,k−1
l=1 gS

s=1 at time k − 1. The measure set �Zk = fZFoV1
1,k , ZFoV2

2,k ,⋯,ZFoVs
s,k g at time k.

For s = 1,⋯, S
Quantitative complementation according to (12)(13)(14) yields ZR

k
End

The Gaussian component association is performed according to (29) to obtain ffmðc,lÞ
j,k , pðc,lÞj,k gJ

ðcÞ
j,k

l=1g
Cs,k

c=1
, where Cs,k denotes the number

of subsets after association.
For c = 1,⋯, Cs,k
Calculate the Gaussian component Ds,kðxÞ according to equation (31)
Calculate the number of target estimates according to equations (32) and (33) �Ns,k
End

The new Gaussian component is obtained at the sensor after fusion f�mðcÞ
s,k , �p

ðcÞ
s,kg

Cs,k

c=1
End

Algorithm 1
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Figure 4: Real target track and detection range.
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Figure 5: Single-sensor tracking results (no measurement sharing).
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Figure 7: Continued.
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respectively, and its expression is xk = ½px,k vx,k py,k vy,k�, and
the state equation in the filter filtering process is

xk =

1 0 T 0
0 1 0 T

0 0 1 0
0 0 0 1

2
666664

3
777775xk−1 +

T2/2 0
0
T

T2/2
0
T

2
66664

3
77775wk−1: ð35Þ

In the state equation, set the sampling interval T to 1 s,
the total movement time of each target to 100 s, and set the
process noise to wk ∼Nð0, 5Þ, then the Gaussian component
intensity of the new target can be expressed as the following
formula:

γk xð Þ = 〠
4

i=1
ωi
γ,kN x ;mi

γ,k, piγ,k
� �

, ð36Þ
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Figure 7: Performance comparison of different algorithms in dense clutter and low detection probability environments.
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where m1
γ,k = ½0 ; 0 ; 0 ; ‐10�T , m2

γ,k = ½0 ; 3 ; 400;−7�T , m3
γ,k =

½−800 ; 3 ; ‐800 ; 15�T , m4
γ,k = ½600 ; 15 ; 100;−5�T , and the

newborn target weight ωi
γ,k = 0:03. The process noise of the

newborn target obeys Gaussian distribution with zero mean
and its covariance is set as Qi

sp,k = diag ð½100, 100, 100, 100�Þ.
In the simulations in this section, the frequency of

Monte Carlo simulations is set to 100. The filter needs to
prune and merge the Gaussian components before state
extraction, so as to obtain the best estimation effect, so the
parameter setting of pruning and merging is particularly
important. In this simulation, the stage threshold and dis-
tance threshold of the Gaussian component are, respectively,
set. Threshold, state extraction threshold and merge thresh-
old are set as 10−5, Dmax = 4, 0.5, and 10. Ultimately, the
maximum number of Gaussian components is 100. The
tracking error value is finally measured by the OSPA dis-
tance, which is expressed as

OSPAp,c xk, x̂kð Þ

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min ∑ xkj j

i=1 dc xik, x̂
π ið Þ
k

� �� �p
+ cp x̂kj j − xkj jð Þ

x̂kj j
p

vuut
:

ð37Þ

Among them, the target state value is xk, the separation
parameters are c > 0 and dcðx, yÞ =min ðc, kx − ykÞ, and 1
≤ p <∞ is the distance sensitivity parameter, which is taken
in the simulations, c = 200 and p = 2. If the OSPA distance is
smaller, the error value of the multitarget state estimation
will be smaller.

In the sensor network, the positions of the two sensors
are set to ð‐500m,−100mÞ and ð500m,−100mÞ, respectively,
and the two sensors provide the measurement values of each
target within their detection range. The detection range of a
single sensor is limited, which is consistent with the previous
description. The radius of the detection range of the sensor is
set to 700m, and the detection probability of the filter to the
target is set to 0.95 in this detection range, and the expres-
sion is as follows:

psD =
0:95, x ∈ FoVs

0, x ∉ FoVs

(
: ð38Þ

The measurement of each sensor is the position informa-
tion detection of the target by a single sensor, so the mea-
surement equation in the filtering process can be set as
follows:

zk =
1 0 0 0
0 1 0 0

" #
xk + vk, ð39Þ

where the measurement noise vk ∼Nð0, 5Þ. Set the average
clutter per unit volume to 90.

5.2. Scenario 1: Complementary Verification of Multisensor
Measurements. To verify the improvement in tracking the
performance of the proposed complementary measurement
method (CM-GM-PHD) relative to the method of all shar-
ing measurement (SM-GM-PHD) in this paper, filtered
tracking is performed by a single sensor. This multitarget
tracking scenario has a clutter rate λ = 90, a survival
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Figure 9: Continued.
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probability ps,k = 0:99, and a detection probability pD,k = 0:95
for the sensor’s effective field of view. Figure 4 shows the real
trajectory of the target and the limited detection range of the
sensors, each of which has the same performance with a
sensing radius of 700m.

Figure 5 illustrates the single-sensor tracking effect with-
out measurement sharing, and Figures 5(a) and 5(b) show

the tracking effect of sensor 1 and sensor 2, respectively.
Corresponding to Figure 3, due to the limited detection field
of view, two targets are lost for sensor 1 and sensor 2, respec-
tively, resulting in a dramatic degradation of tracking
performance.

Figures 6(a) and 6(b) show the tracking measurement
plots after the measurements are complementary and the
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Figure 9: Tracking simulation effect of each algorithm in Scene 2.
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tracking measurement plots after the measurements are all
shared, respectively. The comparison shows that the single
sensor can detect and track all the targets after the comple-
mentary or shared measurements, and the tracking perfor-
mance is greatly improved. It can be seen from Figure 6(b)
that the sharing of all measurements will lead to the reuse
of the measurements in the intersection area of the sensor
detection range, and there are too many redundant Gaussian
components in the measurements, which contain a lot of
clutter. After the pruning and merging step is performed
by the controller, the clutter will have a greater probability
of being regarded as the real target, so the number of false

targets will also increase, which can also be reflected in the
subsequent target number estimation simulation.

Figure 7 shows the tracking error comparison graph and
the target number estimation comparison graph. From
Figures 7(a)–7(c), it can be seen that the tracking error is
reduced. All targets in the field of view can be tracked after
the measurements are shared between sensors, and the
tracking error is also much reduced. The tracking perfor-
mance is improved after the measurements are complemen-
ted between sensors. With the Figure 7(d) we can know that
the number estimation is overestimated due to the duplicate
sharing of measurements in the intersection region caused
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by the sharing of measurements, the effect is better when the
measurements are complementary. The target number esti-
mation is closer to the true value.

It is obvious from Figure 8 that the calculation efficiency
of the measurements complementary method is significantly
higher than that of the measurements sharing method
because the measurements complementary method avoids
duplicate information sharing in the intersection region.

5.3. Scenario 2: Field-of-View Complementary Gaussian
Component Correlation GCI Fusion Performance Analysis.
In the limited field of view distributed multisensor network,
set the communication iteration maximum value T = 3,
threshold Dmax = 4, and other settings as in Scenario 1. The
following simulations are compared by different methods.
The first method is the measure-complementary Gaussian
component correlation GCI fusion method (GCI-CM-GM-
PHD), which is the algorithm proposed in this paper. The
second method is the GCI fusion method with all shared
Gaussian components of the measurements (GCI-SM-GM-
PHD). The third method is a direct GCI fusion estimation
of multisensor information without measurement sharing.
The fourth method is the measurement complementary
method (CM-GM-PHD).

Figure 9 shows the simulation results of the four
methods for pairwise target tracking. Figures 9(a)–9(c) show
the multitarget OSPA error, OSPA location error, and cardi-
nalities estimation error, respectively. From Figures 9(a) and
9(b), it can be seen that the GCI-CM-GM-PHD tracking
error is lower due to the use of the GCI fusion method,
which increases the fault tolerance of the PHD filter and
converges the Gaussian components of the same target
through the threshold, which greatly reduces the tracking
error. The conventional GCI fusion method, on the other
hand, causes the tracking target to be lost due to the absence
of the complementary measurements, which is the main rea-
son for the larger error. However, with the Figure 9(c) we
can know that the cardinalities estimation error of GCI-
SM-GM-PHD is higher than that of the GCI-CM-GM-
PHD algorithm. However, with the Figure 9(c) we can know
that the potential estimation error of GCI-SM-GM-PHD is
higher than that of GCI-CM-GM-PHD algorithm, because
the GCI-CM-GM-PHD algorithm uses Gaussian component
product. Distinguish the Gaussian component in the inter-
section area of the sensor detection range to avoid the
repeated use of the Gaussian component in the intersection
area. In this way, through the pruning and merging step
and GCI fusion, the probability of clutter being regarded as
a real target is greatly reduced, and the number of targets
can be estimated more accurately. The difference in target
number estimation can be seen from Figure 9(d).

5.4. Scenario 3: Simulation Experiment (the Number of
Targets Increases). In this section, more targets are set to
enter the multitarget tracking scene. A total of 12 targets
appear at different times. First, the condition of the time-
varying target number is satisfied. In this simulation scene,
the targets exist in the multitarget tracking scene at the same
time. The maximum number is 10 and the average number

of clutter per unit volume is set to 30. The actual situation
of the multitarget tracking scene and the filtered results of
each algorithm are shown in Figures 10 and 11.

The target tracking results are shown in Figure 10(b),
and clear tracking results can be obtained. In the tracking
scene, due to the existence of clutter, the filtering algorithm
often mistakenly identifies clutter points with larger weights
when extracting states during the filtering process. It is a real
target, which leads to some noise in the tracking results. But
when the clutter point is regarded as the real target, the
fusion algorithm will filter it through the distance threshold
in the algorithm.

It can be seen from Figures 11(a) and 11(b) that the GCI-
CM-GM-PHD algorithm can adapt to the situation. In terms
of OSPA error, the GCI-CM-GM-PHD algorithm shows the
best performance. It can be seen from Figures 11(c) and
11(d) that the GCI-CM-GM-PHD algorithm performs better
than the other three algorithms, which also indirectly proves
that the algorithm is effective in this situation stability. It can
be seen from the number estimation in the figure that the
single-sensor CM-GM-PHD algorithmwill mistake the clutter
as the real target because it is difficult to adapt to the multitar-
get environment in the dense clutter environment, resulting in
an overestimation of the number. In the traditional GCI-GM-
PHD algorithm, due to the limited field of view of the sensors,
during the fusion process, due to the large difference in weight
between the sensors, the target is lost and the estimated num-
ber of targets is low. GCI-SM-GM-PHD is used because too
many measurements are reused, resulting in the estimated
number of targets being higher than the true value.

In order to verify that the stability of the filtering, in the
final simulation experiment, the OSPA distance error value
of each algorithm in the scene under the change of clutter
rate and the change of detection probability is summarized
and analyzed. And finally from the summary, it can be seen
from the analysis in Figures 12(a) and 12(b) that the algo-
rithm in this paper can show high stability under different
clutter rates and different detection probabilities, indicating
that the algorithm can perform better in the complex multi-
target tracking scenarios.

After the simulation comparison of the above scenarios,
the tracking performance of the algorithm proposed in this
paper has been significantly improved compared with other
traditional algorithms. The algorithm can improve the
robustness of distributed multisensor networks for multitar-
get tracking in dense clutter environment while maintaining
computational efficiency, which proves the effectiveness of
the proposed algorithm.

6. Conclusion

For the distributed multisensor multitarget tracking problem
with a limited detection field of view, this paper proposes a
distributed field-of-view complementary Gaussian compo-
nent correlation GCI fusion tracking method. The algorithm
is based on the traditional GCI-GM-PHD filtering to com-
plement the measurements in the field of view. Its advan-
tages in computational efficiency and tracking accuracy can
be proved through simulation experiments. Then the fusion
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after distance correlation of Gaussian components greatly
increases the tracking accuracy and stability of the algo-
rithm, and the number of targets is estimated more accu-
rately. The simulation experiments in this paper mainly
focus on linear motion targets, and extending the algorithm
in this paper to more general scenarios is a future work that
needs to be done, such as maneuvering targets. In addition,
the study can be extended to investigate spoofing attack to
track estimation of multitarget states [49].

Abbreviations

MTT: Multitarget tracking
NN: Nearest neighbor
PHD: Probabilistic hypothesis density
GM: Gaussian mixture
SMC: Sequential Monte Carlo
EMD: Exponential mixture density
KLD: Kullback-Leibler divergences
CPHD: Cardinalized probability hypothesis

density
GCI: Generalized covariance intersection
GCI-GM-PHD: Generalized covariance intersection
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CM-GM-PHD: Complementary measurement GM-
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SM-GM-PHD: Sharing measurement GM-PHD
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