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Automatic extraction of road information from remote sensing images is widely used in many fields, such as urban planning and
automatic navigation. However, due to interference from noise and occlusion, the existing road extraction methods can easily lead
to road discontinuity. To solve this problem, a road extraction network with bidirectional spatial information reasoning (BSIRNet)
is proposed, in which neighbourhood feature fusion is used to capture spatial context dependencies and expand the receptive field,
and an information processing unit with a recurrent neural network structure is used to capture channel dependencies. BSIRNet
enhances the connectivity of road information through spatial information reasoning. Using the public Massachusetts road
dataset and Wuhan University road dataset, the superiority of the proposed method is verified by comparing its results with
those of other models.

1. Introduction

Roads play an important role in urban planning, traffic navi-
gation, map updating, and other fields [1]. With the rapid
development of remote sensing satellites and sensors, it is
becoming increasingly easy to collect very high-resolution
(VHR) satellite imagery, which can provide sufficient data
sources for road extraction. Therefore, extracting road infor-
mation from VHR satellite imagery has become a popular
topic of research. To date, researchers have developed many
different road extraction methods [2], which can be generally
divided into traditional methods and deep learning methods.

Traditional road extraction methods rely on road image
features and the construction of a theoretical model [3]. For
example, Song and Civco used a shape index and density
features to extract road features [4], Valero et al. proposed
the use of directional morphological operators that can flex-
ibly fit straight and slightly curved structures for road extrac-
tion [5], and Dai et al. used a multiscale directional
histogram and sector descriptor to extract road information
through heuristic tracking [6]. However, the image features

used to extract roads in these methods are manually
designed and lack an automatic learning process. Conse-
quently, traditional road extraction methods have the disad-
vantages of low automation, complex operation, and high
time consumption.

Deep learning methods rely on a hierarchical feature
expression framework to mathematically model specific
problems in the real world and then use the resulting models
to solve similar problems [7]. Different from traditional road
extraction methods, deep learning methods have the charac-
teristics of high automation and a strong learning ability [8],
allowing them to better handle occlusion and shadows on
roads. For example, a road structure refined convolutional
neural network (CNN) was proposed by Wei et al. [9], which
incorporates the geometric information of the road structure
in the network learning process; Kestur et al. used a U-
shaped fully convolutional network (U-FCN) that combines
shallow fine-grained layers with a final-score layer to extract
roads [10]; and Zhang et al. proposed a deep residual U-Net
model [11], which combines the advantages of residual
learning and U-Net [12, 13], for the road extraction task.
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Although deep learning methods have achieved good
results in automatic road extraction, these methods still
often produce discontinuous road segments, which cause
great difficulties in practical applications. There are two
main reasons for this: (1) the occlusions and shadows caused
by trees, buildings, etc., may cause a deep learning model to
fail to correctly capture the information of occluded and
shadowed roads. (2) The texture of a road may be very sim-
ilar to that of the surrounding ground features, causing the
model to be unable to extract clear road boundaries and
locations. Both of these situations will lead to incomplete
road extraction results, resulting in discontinuous roads.

At present, to address the discontinuity problem in road
extraction, researchers have proposed various network
models to directly improve the road extraction results. For
example, He et al. proposed a road extraction network that
relies on an encoder–decoder structure [14]. In the decoder
component of this network, the spatial resolution of the fea-
ture maps is gradually restored by upsampling, but the
details of the road edges are also lost. To prevent the loss
of road edge details, Zhou et al. proposed a boundary and
topologically-aware neural network (BT-RoadNet) [15].
This network extracts both rough features and fine features
and then fuses them to improve the road extraction results.
However, each channel contains a specific semantic feature,
and BT-RoadNet ignores the relationships between the
channels. Lu et al. proposed a globally aware road detection
network with multiscale residual learning (GAMSNet) [16].
This network uses global average pooling to process chan-
nels and then uses a fully connected layer to establish the
relationships between channels to improve the accuracy of
road extraction. Although this network considers the rela-
tionships between channels, a large amount of road infor-
mation will inevitably be lost when the channels are
subjected to global average pooling. The above semantic
segmentation network undeniably improves the accuracy
of road extraction to a certain extent and improves the over-
all effectiveness on this task. However, the above network
will still produce road discontinuities during the road
extraction process.

To better solve the problem of road discontinuity, a
road extraction network with bidirectional spatial informa-
tion reasoning (BSIRNet) is proposed in this paper. In
BSIRNet, a spatial reasoning perception module (SRPM)
is established to capture spatial context dependence, a
channel reasoning perception module (CRPM) is estab-
lished to capture interchannel dependencies, and a multi-
scale skip connection structure is used to capture more
semantic information.

The major contributions of this research are summarized
as follows:

(1) A road extraction network with bidirectional spatial
information reasoning (BSIRNet) is proposed. BSIR-
Net captures the dependencies of the road informa-
tion in the spatial dimension and the channel
dimension simultaneously. Moreover, BSIRNet
extracts multiscale features of roads and integrates
them to capture more road information. The BSIR-

Net method proposed in this research enhances the
information reasoning ability applied in the road
extraction process to solve the problem of discontin-
uous road extraction

(2) A spatial reasoning perception module (SRPM) and
a channel reasoning perception module (CRPM)
are proposed. The SRPM is aimed at capturing spa-
tial context dependence such that at each location,
the characteristics of the neighbourhood can be
adaptively inferred to expand the receptive field.
The CRPM is aimed at establishing the relationships
between channels and capturing the dependencies
between channels. Together, the SRPM and CRPM
can solve the problem that road information cannot
be captured due to occlusion and shadows

(3) A multiscale skip connection structure is used to
extract multiscale semantic features and perform fea-
ture fusion processing. Feature maps of different
scales contain different road information. A low-
level feature map captures rich spatial information
and can highlight the road boundaries, while a
high-level semantic feature map reflects the road
location information [17]. Our multiscale skip con-
nection structure can solve the problem of unclear
road boundaries caused by similar textures of roads
and background features

The BSIRNet model proposed in this paper was verified
on road datasets from Massachusetts and Wuhan Univer-
sity. The experimental results show that this method is supe-
rior to the existing deep-learning-based road extraction
methods.

The rest of the paper is structured as follows. Section 2
introduces related network architectures. Section 3 describes
the details of BSIRNet. Section 4 describes the datasets used
in the experiments, the experimental setup, and the experi-
mental results and presents a comprehensive analysis. Sec-
tion 5 discusses the methods and advantages of BSIRNet.
Finally, we summarize our conclusions in Section 6.

2. Related Architectures

As shown in Figure 1, the basic network used in BSIRNet is
DeepLabV3+ [18], which, in turn, uses the improved Xcep-
tion network as its backbone [19]. In the entry flow of the
improved Xception network, all max pooling layers are
changed to depthwise separable convolutions with stride =
2. In the middle flow, the residual blocks are repeated 16
times instead of 8 times. The atrous spatial pyramid pooling
(ASPP) unit includes 5 different convolution operations,
which extract different feature maps, and concatenation is
then applied for multiscale feature fusion. DeepLabV3+ uses
depthwise separable convolution to reduce the number of
parameters to improve its computational efficiency.

A spatial information inference structure (SIIS) enables
multidirectional message passing between pixels when it is
integrated to a typical semantic segmentation framework
[20]. Since the spatial information could be propagated
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and reinforced via interlayer propagation, SIIS can learn
both the local visual characteristics of the road and the
global spatial structure information. We also take inspiration
from the advantages of SIIS. As shown in Figure 2, in SIIS,
each feature map is divided into blocks by rows or columns,
and information processing units with a recurrent neural
network are sequentially applied to establish the semantic
context [21].

Although DeepLabV3+ is an efficient semantic segmen-
tation network, its convolutions can process only one local
neighbourhood at a time, and it cannot effectively capture
the long-range dependencies of the road information in the
road extraction task. Similarly, although SIIS can establish
contextual semantic relations, its convolutions can handle
only one local neighbourhood at a time, and SIIS does not
consider the relationships between channels.

Consequently, DeepLabV3+ and SIIS will both result in
road discontinuities to varying degrees. To address the
shortcomings of these existing architectures, we propose
our road extraction network with bidirectional spatial infor-
mation reasoning (BSIRNet).

3. Method

Figure 3 shows the overall flow chart of BSIRNet. BSIRNet
is based on DeepLabV3+ and consists of Xception, ASPP,
SIIS, SRPM, and CRPM components and a multiscale skip
connection structure. The SRPM is used to capture the spa-
tial context dependence, the CRPM is used to capture the
dependence between channels, and the multiscale skip con-
nection structure is used to capture more semantic informa-
tion. The detailed architecture of BSIRNet is described in
the following.

As shown in Figure 3, four outputs are generated from
the input image after the deep convolutional neural network

(DCNN): three low-level feature maps of different scales and
one high-level semantic feature map. The three low-level
feature maps of different scales correspond to the output_
stride of the entry flow in Xception, which takes values of
4x, 8x, and 16x. These low-level feature maps represent the
extracted spatial information, boundary information and
location information of the roads in the input image.

The high-level semantic feature map is the output of the
exit flow and serves as the input to the ASPP structure. The
high-level semantic feature map undergoes five different
convolution operations in the ASPP structure to yield out-
puts corresponding to five different scales. The five different
convolution operations include a 1 × 1 convolution, three
dilated convolutions with different dilation rates, and an
image pooling operation. Among the three dilated convolu-
tions with different dilation rates, the 3 × 3 dilated convolu-
tion with a dilation rate of 6 yield features with a smaller
receptive field and clearer boundaries (fine features). In con-
trast, the 3 × 3 dilated convolution with a dilation rate of 18
yield features with a larger receptive field and blurred
boundaries (rough features). The image pooling operation
consists of global average pooling of the input features,
followed by upsampling to the original size.

In summary, the road boundaries in the fine features are
clear, but the receptive field is small. The road boundaries in
the rough features are fuzzy, but the receptive field is large. If
the fine feature pixels can be associated with the neighbour-
hood pixels corresponding to the rough features, not only
can a reasoning relationship be established between each
location and its neighbourhood but the receptive field in
each region can also be expanded.

3.1. Spatial Reasoning Perception Module (SRPM). Since the
convolution operations of DeepLabV3+ can process only
one local neighbourhood at a time, the spatial context
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Figure 1: The architecture of DeepLabV3+.
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information obtained is limited, which prevents the network
from capturing the long-range dependence of the road
information. Therefore, we propose the SRPM to capture
the spatial context dependence so that neighbourhood char-
acteristics can be adaptively inferred for different locations,
and the receptive field can be expanded.

In the SRPM, we use t different repeated paddings to
expand the edge pixels of the feature map, such that each
pixel of the feature map has a relative translation; thus, a
set of feature map sequences fm1,m2,⋯,mtg is obtained.
We then apply concatenation to fuse the feature map
sequence fm1,m2,⋯,mtg to establish the inference rela-
tionship between each location and its corresponding
neighbourhood and expand the receptive field of the feature
map. The detailed structure of the SRPM is shown in

Figure 4. The SRPM takes a rough feature map (pink) and
a fine feature map (orange) as input. For the fine features,
we use repeated padding (green) to fill in a layer of edge
pixels in each of the four directions of the fine feature
map to obtain f .

For the rough features, first use repeated padding to fill
the rough feature map with one layer of edge pixels in the
up and down directions and two layers of edge pixels on
the right to obtain r1. Second, we fill in two layers of edge
pixels on the right and bottom sides of the rough feature
map to obtain r2. Then, we fill the rough feature map with
one layer of edge pixels in the left and right directions and
two layers of edge pixels on the bottom to obtain r3. Analo-
gously, we also fill in layers of edge pixels to obtain r4, r5, r6,
r7, and r8. Finally, concatenation is used to merge f , r1, r2, r3
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Figure 2: The architecture of the spatial information inference structure (SIIS).
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, r4, r5, r6, r7 and r8 obtained via the above operations. Let us
consider the middle pixel of the fine feature map (red in f )
as an example. When f is combined with r1, a reasoning
relationship is established between the middle pixel of the
fine feature map and the pixel to the right in the correspond-
ing rough feature map (red in r1). Then, as the result con-
tinues to be merged with r2, a reasoning relationship is
established between the middle pixel of the fine feature
map and the pixel to the lower right in the corresponding
rough feature map (red in r2). As the result continues to
be merged with r3, a reasoning relationship is established
between the middle pixel of the fine feature and the pixel
below in the corresponding rough feature map (red in r3).
Finally, r4, r5, r6, r7, and r8 are sequentially merged to estab-
lish reasoning relationships between the middle pixel of the
fine feature map and each pixel in its neighbourhood in the
corresponding rough feature map. Because the receptive field
of the rough feature map is larger, not only are reasoning rela-
tionships established between the fine feature map and the
corresponding neighbours in the rough feature map but the
receptive field of the fine features is also increased.

As shown in Figure 3, the SRPM is used to establish spa-
tial reasoning perception relations for the five different scales
of the ASPP output features. Since the output of the last
image pooling operation does not have a corresponding
rough feature map, the image pooling output can be used
as both rough features and fine features to establish spatial
reasoning perception relations.

3.2. Channel Reasoning Perception Module (CRPM). Each
channel contains a specific semantic feature, but existing
deep learning networks do not consider the relationships
between channels when performing road extraction [16].
Therefore, we propose the CRPM to capture the interdepen-
dencies between channels to mitigate the discontinuity of
roads. The proposal of the CRPM is also inspired by SIIS
[20]. Although SIIS can efficiently establish semantic context
relationships, it does not consider the transfer of informa-
tion among recurrent neural network information process-
ing units, easily leading to gradient disappearance or
gradient explosion. Therefore, based on the above consider-
ation, the number of skip connections in the CRPM is
increased relative to SIIS to prevent gradient disappearance
or gradient explosion.

The detailed structure of the CRPM is shown in
Figure 5. As shown in part I of Figure 5, the input to the
CRPM is a tensor with dimensions of C ×H ×W consisting
of SIIS output, where C, H, andW represent the numbers of
channels, rows and columns, respectively. The tensor is first
divided into k chunks along C, with the thickness of each
chunk being w = C/k. Then, each chunk in the obtained
sequence S1 = fC11, C12,⋯, C1kg is sent into CRNN1 one
by one. To prevent the gradient from disappearing or
exploding, a skip connection is added after every four
chunks. CRNN1 is the first information processing unit of
the CRPM. The main structure of a convolutional RNN
(CRNN) unit is shown in Figure 6. This unit takes a
three-dimensional tensor as input and produces an output
in the same form to establish the reasoning relationships
between channels. Specifically, the first chunk C11 is opti-
mized by CRNN1 to generate a new chunk C21 of equal size.
When CRNN1 optimizes the second chunk C12, the most
recent new chunk C21 will also be taken as input to provide
the channel information. When the skip connection is opti-
mized for the fifth chunk C15, the generated chunks C21 and
C24 are used as inputs to provide channel information. This
process continues until the last chunk Ck1 is updated, and
during this process, the channel information is continuously
transmitted downward.

In part II of Figure 5, the new chunks C21, C22,⋯, C2K
form a sequence S2 = fC2K ,⋯, C22, C21g from bottom to
top, which is then sent into CRNN2 for optimization in the
same way as in part I to produce k new chunks. These new
chunks are then connected in the C dimension to form a
complete tensor with dimensions of C ×H ×W, which is
returned as the output tensor of the CRPM.

3.3. Multiscale Skip Connection Structure. Combining multi-
scale features is important for achieving accurate segmenta-
tion because feature maps of different scales contain
different information. Low-level feature maps capture rich
spatial information and can highlight the boundaries of
roads, while high-level semantic feature maps reflect the
location information of roads [17]. DeepLabV3+ operates
at a single scale in the improved Xception. Therefore, in this
work, multiscale features are extracted from Xception to
extract more road information. Our multiscale skip connec-
tion structure fuses feature maps of different scales and then
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Figure 4: The architecture of the spatial reasoning perception module (SRPM).
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learns a hierarchical representation of the aggregated multi-
scale feature maps.

In the multiscale skip connection structure, we use con-
catenation to fuse the three low-level feature maps of differ-
ent scales with the processed high-level semantic feature
map to capture more road information and improve the
accuracy of road extraction. Then, 1 × 1 convolution and
upsampling are used to process the fused multiscale features
to obtain the final output.

4. Experiments and Analysis

4.1. General Details of the Experiments

4.1.1. Datasets. In our experiments, we use the Massachu-
setts road dataset and the Wuhan University road dataset.
The Massachusetts road dataset consists of 1171 images, of
which 1108 images are used for training, 14 images are used
for validation, and 49 images are used for testing [22]. The
size of each image is 1500 × 1500 pixels, and the resolution
is 120 cm/pixel. The Wuhan University road dataset con-
tains images from Boston and its surrounding cities in the
United States, Birmingham in the United Kingdom, and
Shanghai in China [16].

4.1.2. Data Preprocessing. For the Massachusetts road data-
set and Wuhan University road dataset, since there are
more background (nonroad) pixels in each image than
road pixels, erroneously predicting road pixels to be back-
ground pixels is the main source of loss. Optimizing the
semantic segmentation network can reduce the overall loss,
but with the optimized semantic segmentation network,
there is a high probability that uncertain pixels will be mis-
identified as background instead of as road pixels. To solve
this problem, we adopt a simple and effective data prepro-
cessing strategy known as the category ratio cropping
(CRC) method [20].

As shown in Figure 7, we take an image I in the training
set and its corresponding ground-truth label image L as an
example. First, we use the same stride s and a w ×w
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cropping window to perform sliding cropping on fI, Lg to
obtain a set of subimages and corresponding sublabels fIsi,
Lsig, where s = 494 and w = 512. Second, Lsi is used to calcu-
late the ratio Ri = ½n1/ns, n2/ns,⋯, nc/ns�, where nc denotes
the number of pixels belonging to class C in Lsi and ns
denotes the total number of pixels in Lsi. Finally, the mini-
mum value in Ri, min ðRiÞ, is compared against a specified
threshold θ. For pairs of Isi and Lsi, only images with min ð
RiÞ greater than the threshold θ are retained. We set the ratio
threshold θ, which is a user-defined constant, to 0.01 [20].

After CRC data preprocessing, the imbalance in the
numbers of road pixels and background pixels is effectively
alleviated, thereby improving the efficiency of model train-
ing. In the end, we obtain 8988 images from the Massachu-
setts road dataset for training, 124 images for validation, and
386 images for testing. Similarly, we obtain 4568 images
from the Wuhan University road dataset for training, 30
images for validation, and 127 images for testing.

4.1.3. Analysis of Experimental Parameters. To prevent
excessively regular data from causing network overfitting
or nonconvergence, we preprocess the training dataset
using a data enhancement method that disrupts the order

of the data. Second, considering that resizing will result in
the loss of detailed image information, all images are used
in their original size (512 × 512) to train the network. All
models are trained with the same parameter settings and
in the same environment. Specifically, we use the Adam
optimizer for model training on a Windows 10 computer.
The computer is equipped with an NVIDIA GeForce RTX
2080 Ti graphics card (with 11GB of memory), allowing
a batch size of 2 images. The learning rate for the Massa-
chusetts road dataset is initially set to 1e − 3 and reduced
by 0.85 every three epochs. The learning rate for the
Wuhan University road dataset is initially set to 1e − 4
and reduced by 0.85 every three epochs. On these two data-
sets, the proposed network (BSIRNet) converges within
only 50 epochs.

4.1.4. Evaluation Metrics. To evaluate the performance of a
road extraction method, we adopt the following three evalu-
ation metrics:

(1) The F1 score is an evaluation metric defined as the
harmonic mean of the precision (P) and recall (R),
and it is calculated as shown in

IL

LS1 LS2 LSi ISiIS2IS1

Calculate category
ratio Ri

Filter IS and LS with
Ri by threshold θ

LS1

LS3

IS1

IS3

Original Samples:

Samples reserved:

Figure 7: The process of applying the category ratio cropping (CRC) method to a typical sample from the Massachusetts road dataset.
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F1 = 2 ×
p × R
P + R

: ð1Þ

(2) The intersection over union (IoU) is a comprehen-
sive metric. It is defined as the ratio of the overlap
area to the union area between the ground-truth
map and the predicted map, and it is calculated as
shown in

IoU =
TP

FN + FP + TP
, ð2Þ

where TP, FN, and FP denote the numbers of true positives,
false negatives, and false positives, respectively. True posi-
tives are correctly identified road pixels; false negatives are
road pixels incorrectly identified as nonroad pixels, and
false positives are nonroad pixels incorrectly identified as
road pixels

(3) The kappa coefficient is an indicator for a consis-
tency test and can also be used to measure the accu-
racy of semantic segmentation [23]. It may take
values in the range of -1 to 1 but usually falls
between 0 and 1. The greater the value of the kappa
coefficient is, the higher the accuracy. The kappa
coefficient is calculated as shown in

kappa = Pa − Pe
1 − Pe

, ð3Þ

(a) Optical image (b) Ground truth (c) BSIRNet (d) GAMSNet (e) SII-Net

Figure 8: Road extraction results on the Massachusetts road dataset.

Table 1: Quantitative evaluation results on the Massachusetts road
dataset.

Method F1 score Kappa IoU

BSIRNet 0.7548 0.7392 0.6062

GAMSNet 0.7454 0.7311 0.5941

SII-Net 0.7199 0.7094 0.5623

8 Journal of Sensors



where Pa is the “actual agreement rate,” and Pe is the “theo-
retical agreement rate.”

4.2. Experiment Using the Massachusetts Road Dataset. In
this experiment, road extraction is regarded as a semantic
segmentation problem, focusing on the extraction of com-
plete roads. We compare the proposed BSIRNet with two
other road extraction methods based on semantic segmenta-
tion, namely, GAMSNet and the DeepLabV3+ network with
SIIS (SII-Net). As shown in the first and second rows of
Figure 8, our proposed BSIRNet completely extracts the
occluded road, while the other two networks do not achieve
complete extraction of this road. As shown in the third and
fourth rows of Figure 8, for roads whose texture is similar to
that of surrounding ground features, BSIRNet can also
extract these roads completely. This shows that BSIRNet
does not only solely depend on the visual characteristics of
roads but also has some spatial information reasoning ability
by virtue of modelling the specific context of roads. In par-
ticular, compared with GAMSNet and SII-Net, BSIRNet
has a stronger spatial reasoning ability.

We also conduct a quantitative evaluation to compare
the effectiveness of these methods. As shown in Table 1,
the BSIRNet proposed in this study obtains an F1 score of
0.7548 and a kappa coefficient of 0.7392, greater than those
of GAMSNet (with an F1 score of 0.7199 and a kappa coef-
ficient of 0.7094). Compared with those of SII-Net, the F1
score and kappa coefficient of BSIRNet are increased by
3.49% and 2.98%, respectively. Because of the multiscale skip
connection structure of BSIRNet, the extracted roads have
clear boundaries. Compared with GAMSNet and SII-Net,
BSIRNet also achieves a higher IoU. This shows that our
spatial information reasoning perception network combined
with a multiscale skip connection structure can effectively
extract roads. The above experimental results verify the
superiority of BSIRNet.

4.3. Experiment Using the Wuhan University Road Dataset.
Using the Wuhan University road dataset, we further com-
pare BSIRNet with the above two road extraction methods
based on semantic segmentation. As shown in Figure 9,
BSIRNet is able to completely extract roads occluded by

(a) Optical image (b) Ground truth (c) BSIRNet (d) GAMSNet (e) SII-Net

Figure 9: Road extraction results on the Wuhan University road dataset.
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trees, unlike GAMSNet and SII-Net. Moreover, as shown in
the third row of Figure 9, in complex situations, the BSIRNet
extraction results have stronger continuity than the results of
the other two networks.

Similarly, we conduct a quantitative evaluation of the
road extraction results on the Wuhan University road data-
set. In Table 2, it can be clearly seen that BSIRNet outper-
forms the other two networks on the Wuhan University
road dataset. Compared with those of GAMSNet, the F1
score and kappa coefficient of BSIRNet are increased by
1.28% and 1.31%, respectively. Compared with those of
SII-Net, the F1 score and kappa coefficient of BSIRNet are
increased by 3.41% and 3.77%, respectively. In addition,
the extraction results of BSIRNet have stronger continuity,
and the IoU value is also significantly higher than those of
the other two networks. These experimental results show
that our method results in fewer false extractions and miss-
ing extractions, thus further verifying that our method can
alleviate the problem of discontinuity in road extraction
results based on deep learning in the presence of occlusion
and texture similarity.

5. Discussion

In the BSIRNet model proposed in this paper, the SRPM is
established to capture spatial context dependence, the
CRPM is established to capture interchannel dependencies,
and the multiscale skip connection structure is used to
capture more semantic information. The SRPM and CRPM
together solve the problem that road information sometimes
cannot be effectively captured due to occlusion and
shadows. The multiscale skip connection structure solves
the problem of unclear road boundaries caused by road tex-
tures similar to those of surrounding ground features. BSIR-
Net does not solely depend on the visual characteristics of
roads but instead achieves some spatial information reason-
ing ability by modelling the specific context of roads,
thereby solving the problem of road discontinuity caused
by noise and occlusion.

In the above experiments, we use the Massachusetts road
dataset and the Wuhan University road dataset to compare
the BSIRNet model proposed in this paper with GAMSNet
and SII-Net. The experimental results prove the effectiveness
and superiority of BSIRNet, especially in overcoming the
influence of occlusion to maintain the continuity of the
extracted roads. The experimental results on the Massachu-
setts road dataset show that BSIRNet can completely extract
roads affected by occlusion. Furthermore, when the road tex-
ture is very similar to the texture of surrounding ground
object, BSIRNet can also extract roads with clear boundaries.

As shown in Table 1, compared with those of SII-Net, the F
1 score, kappa coefficient, and IoU of BSIRNet on the Massa-
chusetts road dataset are increased by 3.49%, 2.98%, and
4.39%, respectively. The road extraction results of BSIRNet
are also significantly better than those of GAMSNet on this
dataset. Moreover, as shown in Table 2, the experimental
results on the Wuhan University road dataset further prove
the effectiveness and superiority of BSIRNet. Additionally,
the method proposed in this paper has certain reference signif-
icance for the discontinuous extraction of other linear ground
objects such as railways, power lines, pipelines, and rivers.

6. Conclusions

This paper proposes a road extraction network with bidirec-
tional spatial information reasoning (BSIRNet), which can
effectively improve the accuracy of road extraction. Roads
possess natural connectivity; however, when an existing
method extracts a road, discontinuity problems can easily
arise due to interference from noise and occlusion. To solve
this problem, we establish a spatial reasoning perception
module (SRPM) to capture spatial context dependence and
a channel reasoning perception module (CRPM) to capture
interchannel dependence in BSIRNet. At the same time, we
use a multiscale skip connection structure to capture more
semantic information. Using the public Massachusetts road
dataset and the Wuhan University road dataset, the superi-
ority of the proposed method is verified by comparing its
results with those of other models. When a road is occluded
or shadowed by trees, buildings, etc., or the texture of the
road is very similar to that of surrounding objects, BSIRNet
can effectively improve the accuracy of road extraction. The
quantitative results of our experimental evaluation also con-
firm the superiority of the proposed method. However, using
very high-resolution (VHR) satellite imagery to classify road
materials still presents great challenges. Therefore, in future
work, we will conduct related research and propose a model
for classifying road materials.
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Table 2: Quantitative evaluation results on the Wuhan University
road dataset.

Method F1 score Kappa IoU

BSIRNet 0.7684 0.7392 0.6238

GAMSNet 0.7556 0.7261 0.6072

SII-Net 0.7343 0.7015 0.5801
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