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An important measurable indicator of urbanization and its environmental implications has been identified as the urban
impervious surface. It presents a strategy based on three-dimensional convolutional neural networks (3D CNNs) for extracting
urbanization from the LiDAR datasets using deep learning technology. Various 3D CNN parameters are tested to see how they
affect impervious surface extraction. For urban impervious surface delineation, this study investigates the synergistic
integration of multiple remote sensing datasets of Azad Kashmir, State of Pakistan, to alleviate the restrictions imposed by
single sensor data. Overall accuracy was greater than 95% and overall kappa value was greater than 90% in our suggested 3D
CNN approach, which shows tremendous promise for impervious surface extraction. Because it uses multiscale convolutional
processes to combine spatial and spectral information and texture and feature maps, we discovered that our proposed 3D
CNN approach makes better use of urbanization than the commonly utilized pixel-based support vector machine classifier. In
the fast-growing big data era, image analysis presents significant obstacles, yet our proposed 3D CNNs will effectively extract
more urban impervious surfaces.

1. Introduction

Global urbanization has accelerated dramatically in the pre-
vious few decades. Around 68% of the global population will
be living in cities by 2050 [1]. It can lead to various environ-
mental problems, such as ecological issues, poor air quality,
deterioration of public health, and changes in the microcli-

mate that can lead to extreme weather, higher temperatures,
limited water availability, and a continued vulnerability to
natural disasters [2]. Due to the spectral and structural
diversity and complexity of urban surfaces over a small area,
these issues make sophisticated urban analysis difficult [3].
As a result, it is imperative to keep an eye on urban areas
at all times. In metropolitan settings, where many items are
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mobile (vehicles and temporary buildings) and where infra-
structure, vegetation, and construction are continuously chang-
ing, systematic monitoring and updating of maps are vital.

With the advancements in remote sensing technologies
[4], spatial and temporal analyses of metropolitan areas are
now possible [5]. A strong new tool for urban analysis is air-
borne remote sensing, which provides fast mapping of a city
for various planning [6], management operations [7], and
monitoring of urban and suburban land use [8] activities.
For example, social preferences, the regional ecosystem,
urbanization change, and biodiversity can all be studied
using this method [2]. An important component of studying
three-dimensional city geometry and modelling urban mor-
phology is to use urban remote sensing to identify various
objects, heterogeneous materials, and mixes [9, 10]. How-
ever, the developing problems necessitate a cutting-edge
technology solution, including sensors and analysis method-
ologies at the cutting edge of development. Urban land cover
types can be identified using spectral, spatial, and structural
aspects of remote sensing devices, constantly improving.
There has been an increase in the use of LIDAR (light detec-
tion and ranging) in urban mapping, as well as hyperspectral
data (HS) and synthetic aperture radar (SAR). Urban set-
tings can be studied using various electromagnetic spectrum
components, ranging from microwave radar to the reflective
spectral range. Since they require oblique illumination of the
scene, these high-resolution photographs are subject to
occlusion and layover, making it difficult to analyze dynamic
metropolitan environments [11, 12].

Single sensor urban land cover classification accuracy
and interpretability in densely populated areas are frequently
inadequate [13, 14]. Extensive analyses are required because
of the substantial spectrum variance within a single land
cover type caused by urban heterogeneity. The spectral and
spatial-structural properties of urbanization (such as roofs,
parking lots, highways, and pavements) differ significantly.
Urban heterogeneity can be estimated using several
methods, including scale and geographic resolution. Hetero-
geneity is defined by scale as the absence or grouping of
materials into a single class, such as individual trees, forest
type, or vegetation in general [15, 16]. The amount of pixel
mixing depends on the spatial resolution. Nevertheless,
increased spatial resolution increases the variability of the
physical substance, making analysis more challenging.

Materials can be distinguished without reference to ele-
vation context using HS data, which provides spectral infor-
mation about the studied materials. The problem with pure
spectral analysis is that it ignores object identification, and
most objects are made of various materials, resulting in
extremely high intraobject heterogeneity. As an example of
how LIDAR data differs from other data types, consider
asphaltic open parking lots and highways, which have
varying heights of coverage [17, 18]. As a result, passive
remote sensors such as HS are more sensitive to changes in
air conditions and lighting than active sensors such as
LIDAR are. When paired with HS data, this LIDAR charac-
teristic allows for physical correction of shadow and lighting
and intensity measurement for urban land cover mapping in
shadowed areas.

Urban environments include spectral ambiguity and
reduced spectral value under the shadow of terrain changes,
buildings, and trees, which can be solved by adding LIDAR
data as provided by [19, 20], disregarding the spatial and spec-
tral resolution of airborne-based HS sensors. Many new urban
surface classification methods use active and passive remote
sensing techniques such as airborne LIDAR and hyperspectral
data to overcome the limitations of individual sensor capabili-
ties (HL-Fusion). Using an HL-Fusion for land cover classifica-
tion can provide additional information on three-dimensional
topography, spatial structure, and spectral data.

For this reason, it is important to combine spectral, spa-
tial, and elevation data while studying the city environment
[21, 22]. The airborne HL-Fusion has been tested for use
in the classification of urban land cover. On the other hand,
various combination methods based on physical or empiri-
cal approaches are put into practice at various data and
product levels. Furthermore, due to the complexity of the
fusion processes, no standard framework exists for fusing
these sensors. As a result, a complete review of prior data
fusion research may help researcher’s better grasp the poten-
tial, constraints, and prevalent issues that limit categoriza-
tion outcomes in cities [23–25].

Classifiers for HS data have been developed using machine
learning (ML) approaches. Different mapping approaches are
used to achieve the categorization goal depending on the tar-
get. Algorithms for machine learning are constantly being
improved, allowing them to extract increasingly complex fea-
tures in an organizedmanner. Deep learning, a machine learn-
ing subfield, is credited with developing this capability (DL)
[26, 27]. Spatiospectral feature extraction from HS data has
been accomplished using DL [1, 2]. BothML and DLmethods
are useful for classifying data in remote sensing, although var-
ious algorithms are better at extracting different attributes
from pixels or objects. It is necessary to understand the fea-
tures that can be extracted before selecting a classification
technique for HS data [28, 29]. Due to its ability to uncover
unique deep characteristics at the pixel level, however, a per-
pixel classification can produce noisy findings in an urban set-
ting considering the large spatial distribution.

When the training dataset is insufficient, classification
results will be limited in performance and accuracy since
they heavily depend on the amount of training samples.
We looked at incorporating contextual information around
pixels and object-oriented classification to improve the
findings and reduce heterogeneity. ML and DL algorithms
[23, 30] outperform classical classifiers in the urban setting,
especially when trained quickly.

The initial goal of this study is to learn more about 3D
CNNs’ ability to extract urban urbanization from high-
resolution (HR) data. Researchers compared the results to those
of support vector machine (SVM) and 2D CNN approaches to
see if it worked. We’ve also shown how the suggested 3D CNN
model’s various parameters affect impervious surface extraction.

2. Literature Review

To map impermeable surfaces, scientists have relied on
satellite images with a range of spatial and temporal
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resolutions. Medium and low spatial resolution images, such
as Landsat and MODIS data, are appropriate for large-scale
urbanization mapping due to their spectrum information
and high temporal resolution [26, 27]. However, in large-
area mapping, issues with mixed pixels confuse when
extracting impermeable surfaces. High spatial resolution
images can provide a lot of information regarding land use
and land cover. Still, the spectral similarities of diverse
objects, as well as the shadows created by large structures
or enormous trees, make it difficult to extract urbanization
[28, 29]. Images captured with hyperspectral technology
eliminate the spectral homogeneity of a land class’s spectral
similarity while also reducing the spectral heterogeneity of
various things [21, 22]. Using SAR, land information previ-
ously obscured by clouds can be retrieved, and impervious
surfaces under huge tree crowns can be found using SAR
images [19, 20]. However, the SAR image’s coherent noise
poses a substantial challenge for impermeable surface
extraction. As a result, urban impervious surface mapping
using single-source imagery has several limitations. Several
datasets derived from diverse image capture technologies
have lately been deemed useful in addressing these difficul-
ties [9, 17], including medium–low spatial resolution
(MLR) photos, optical photos, SAR photos, high spatial res-
olution (HSR) photos, and light detection and range
(LiDAR) data, to name a few [16, 19]. The height informa-
tion provided by LiDAR data can greatly distinguish
between objects with identical spectral characteristics, which
can help with impervious surface extraction [18]. For exam-
ple, even though the spectral aspects of the houses, roads, and
bare land are often comparable, there is a significant height
disparity. To cope with various objects with a similar spec-
trum, LiDAR height information is useful. In addition, build-
ings’ roofs are flatter than trees’ crowns. Buildings and trees
can be distinguished using the LiDAR height variance.

However, for the most part, picture categorization was
carried out using one- or two-dimensional (1D/2D) CNNs.
Three-dimensional (3D) CNNs can model spatial, textural,
spectral, and other information simultaneously because of
their 3D convolutional function. Although 3D CNNs are
already widely utilized for movies and volumetric images,
their performance in extracting urban urbanization from
satellite images has yet to be proved.

3. Methodology

The best performance in remote sensing comes from CNNs
or multistage feed-forward neural networks. Computer
advancements such as high-performance GPUs and rectified
linear units are being used to create CNNs on a large scale
(ReLU), and dropout or data augmentation methodologies
have just recently been practical in remote sensing, a long
time after they were first proposed. We propose employing
3D convolutions to calculate multiple LiDAR data features
using a 3D kernel in CNNs.

The 3D CNN employed in our work is based on the
notion of a convolutional neural feed-forward network with
numerous hidden layers to enhance abstraction capabilities
as shown in Figure 1.

The input layer of the DNN structure employed in this
study has a set of 64, 32, 16, or 8 neutrons. After that, we
used four dense layers with 210, 29, 28, and 27 neurons,
followed by a sigmoid classification layer with two outputs
to demonstrate the abnormal and benign traffic categoriza-
tion. For the experiment purpose, only five neurons with

Hidden layers

Input layer

x1

x2

xn

y1

y2

Output layer

Figure 1: Deep neural network model.

Convolutional layer Subsampling Fully connected

Feature volumes

Input

Figure 2: 3DCNN image classification model.

Figure 3: The output layer employs softmax nonlinearity in
multiclass logistic regression.

Table 1: Samples of sets of pixels selected in study.

Class Training Validation Test

Urban 2000 200 200

Vegetation 1000 200 200

Bare soil 300 200 200

3Journal of Sensors



(a) (b)

(c) (d)

(e) (f)

Figure 4: Sample images taken from datasets.
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(a) Input image

(b) Feature extraction

Figure 8: Continued.
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numerical and category information are used in the input
layer; after that, there are two thick layers with 28 and 27
neurons, as well as an output layer with a sigmoid activation
function, which determines if the mobile activity is benign or
pathological. The equation can express deep neural network
model as

aij = σ 〠
k

wi
jk a

l−1
k + bij

 !
⋯ , ð1Þ

where aij is the jth neuron in the (l-1) th activation layer.
And overall is the sum of k neurons in the l-1th layer.

3.1. 3D CNN Model Architecture. A 3D CNN is a powerful
model for learning representations for volumetric data since
it uses a 3D volume or a sequence of 2D frames as input.
When extracting 3D characteristics or establishing a 3D
association, 3D CNNs are utilized. Convolutions in three
dimensions (or 3D) apply a three-directional (3-direction)
filter to the dataset to calculate low-level feature representa-
tions. Typically, their output takes the form of a cube or
cuboid. A 3D filter can move in all three directions when
used in 3D convolution (height, width, and channel of the
image). The element-by-element multiplication and addition
yield one number at each place. Due to the filter’s 3D move-
ment, the output numbers are also arranged in 3D. The final
result is 3D data. Figure 2 shows the 3DCNN image classifi-
cation model.

3.2. Model Training. Buildings, roads/other forms of urban-
ization, trees, grasslands, and bare soils are the five land
cover classifications in our research area. The number of

classes in our research field determines the size of the output
layer. For the output layer, softmax nonlinearity is used in
multiclass logistic regression. As a result, a K-dimensional
vector is created, with each member representing the likeli-
hood of a specific class occurring in the dataset. In a mini-
batch B, for each input sample. Figure 3 shows the output layer
employs softmax nonlinearity in multiclass logistic regression.

3.3. Hypertuning of Parameters of 3D CNN Model. The 3D
CNN model’s starting parameters significantly impact the
extracted information and classification results. To improve
the training accuracy of the CNN model, it is critical to
choose an ideal choice of CNN hyperparameters. The train-
ing and validation samples were used to select hyperpara-
meters in our work. The size of the input image (m), the
size of the convolution kernel (n), the pooling dimension
(p), the number of feature mappings (t), and the number
of CNN layers are all investigated to see how they influence
classification accuracy (L). The best hyperparameters are
then used to build a 3D CNN model.

First, we use different convolutional kernel sizes
n = ½2, 4, 6, 8, 10, 12, 14, 16, 18, 20� and pooling dimensions
p = ½2, 4, 6, 8, 10, 12� with input image layers mmcd (c = 10)
when m = 25, L = 1, and t = 50 to test the accuracy of 3D
CNNs. The best n and p parameter combination may be
found using epoch. Second, we investigate the accuracy of
various input picture sizes m and output feature counts t
using ideal n and p values and a preset parameter L = 1. This
iterative approach is used to find the best values for m and t.
Finally, we examine how changing input picture sizes
(m = ½3, 5, 7�) and the number of CNN layers (L = ½1, 2, 3�)
affect the classification performance of CNNs with varied
layer counts utilizing the optimal combination of n and p,

(a) (b) (c)

(d) (e) (f)

(c)

Figure 8: Urban areas classified from Azad Kashmir datasets using LiDAR to 3D CNNs.
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m, and t.m and L are revised iteratively until they are discov-
ered to be optimal.

4. Results and Discussions

There is an experimental location in Azad Kashmir, State of
Pakistan. The WV-2 data was collected on October 2021,
whereas the aerial LiDAR data was collected in August
2021. The period of data has been selected from 2016 to
2021. Based on the 3D CNN model, we divided the study
area into three land classes: urban surfaces, vegetation, and
bare soil. Table 1 shows the pixels utilized in 3D CNN clas-
sification for training, validation, and testing.

Using deep learning approaches for remote sensing pic-
ture categorization, we used around the same number of
training samples as other studies, with a total of about
3000–7000. 3D CNN model training uses training samples,
validation samples for hyperparameter adjustment, and test-
ing samples for ultimate accuracy assessment. Figure 4
shows sample images taken from datasets.

4.1. Hypertuning of Model. To determine the best 3D CNN
parameters for model construction, randomly selected train-
ing and validation samples were used to evaluate their per-
formance. Figure 5 shows the pixel sizes with pretrained
kernel size and error %, while Figure 6 shows the impact
of t on image size and error %.

Figures 5, 6, and 7 show the pretraining accuracy of 3D
CNN models influenced by different 3D CNN model param-
eters. Parameters n and p have an effect, and parameters m
and t perform well. Parameters m and L perform well as well.
(A pixel is the smallest possible unit of image input size.)

Figure 8 shows the urban areas classified from Azad
Kashmir datasets using LiDAR to 3D CNNs. The error
matrix approach is used to conduct the accuracy assess-
ment’s error matrix.

Various accuracy metrics are calculated, including the
producer’s accuracy, the user’s accuracy, the system as a
whole, and the overall kappa coefficient (Table 2).

5. Conclusions

This study proposed and used to extract urbanization detec-
tion using LiDAR datasets by using a 3D CNN technique
based on convolution. We investigate the effects of various
3D CNN settings on urbanization extraction in more detail
in this study. Through the use of deep learning and 3D con-
volutional, ReLU, and pooling operators, our suggested 3D
CNN technique can automatically extract spectral and spa-
tial data and textural and elevation features, resulting in
improved urbanization extraction performance (particularly
for the construction of roofs and roads). According to the
findings of this study, the urbanization extraction is signifi-
cantly influenced by the 3D CNN settings. The convolu-
tional kernel size n and the pooling dimension p are
combined to form n½2p, 3p�, the best combination. An image
size m impacts the accuracy and calculation time of the algo-
rithm. For parameter m, a value in the 20-40 range works
best. The impervious surface extraction’s performance is
most steady at L = 2, which is also true for CNN. For the
3D CNN approach, the benefit of using several sources of
data is less pronounced. The 3D CNN model can extract
urbanization accurately from a single-source HR picture.

Data Availability
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