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Currently, digital images are widely communicated by media using social media applications. The general public captures the
digital images for preserving the family and personal memories and to share with their friends and family. Digital images have
been used extensively in forensic science to present the digital images as proof in the court and law enforcement agencies,
which present a loophole for the culprits to forge the digital image and change the proofs and evidence. Copy-move forgery
(CMF) is among the most widely employed image manipulation methods. In this method, the area of the image is duplicated
to some other part to modify its content by applying different postprocessing operations on images like blurring, color
reduction, and scaling which is a challenging research problem in copy-move forgery detection (CMFD). In this paper, an
efficient and effective CMFD method is presented to identify the single and multiple altered areas in an image in the presence
of postprocessing operations. The proposed CMFD method divides the image into circular blocks. It computes a rotation-
invariant feature vector from each circular block of the image by applying local intensity order pattern (LIOP) features. The
computed feature vectors are then compared using Euclidean distance to locate the suspected image’s forged areas. The
experimental results of the proposed CMFD method are reported on three standard datasets of the CMF, namely, CoMoFoD,
KLTCI, and MICC-F220. The experimental analysis of the proposed CMFD method on these datasets indicates that it
produces robust performance (detection accuracies of 97.29% on the CoMoFoD dataset, 98.53% on the KLTCI dataset, and
97.57% on the MICC-F220 dataset) as compared with state-of-the-art CMFD methods in terms of the standard performance
evaluation parameters of the CMF.

1. Introduction

In the digital revolution age, digital samples are a common
means of information. The availability of powerful imaging
tools like Photoshop and Corel Draw has enabled modifying
the image content much easier without compromising qual-
ity. On a negative note, it paved the way for forgeries. The
abusive use of image tampering has brought major security

challenges. Thus, it is of utmost importance to verify the
authenticity of the images. Therefore, it is a challenging task
to verify an image’s originality accurately. Image validation
is required in information sensitive departments like the
military, media, court, medical appliances, banking, and
news agencies. In CMF, a portion from the same image is
taken and pasted to another location; significant characteris-
tics, i.e., chrominance information, noise, light, and
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brightness variations, remain the same which makes the
identification procedure a difficult task [1]. Different
approaches like pixel, camera, format physical, and
geometry-based are applied to identify image alteration.
Because of the multidimensional behavior of image forgery
problems, some methods can show better detection results.
In contrast, others can no longer be useful, and it depends
upon the forgery attack to which an image is subjected [1].
In [2], Zernike moments of circular blocks were utilized to
analyze tempered images for locating copy-move regions.
The Zernike moment-based features do not produce robust
performance in the case of applying scaling operation on
the blocks of the forged image during copy-move operation.
There are also high computational costs associated with
moment-based techniques. To reduce the dimensions of
the feature vectors, principal component analysis (PCA)
was applied to small-sized image blocks. However, it is not
able to identify the transformations of rotation or scaling [3].

Keypoint-based approaches work to calculate features
only for associated keypoints and improve computational
efficiency as well as the effectiveness of CMF like keypoint-
based methodologies, namely, scale-invariant feature trans-
form (SIFT) and speeded-up robust features (SURF) [4].
These frameworks may not be successful in detecting flat
duplicate regions. Figure 1 presents an example of CMF
and splicing forgery attacks. A 9-dimensional vector was
previously introduced to find the fixed angle rotation to
detect image forgery [5]. However, this technique could
not detect small copied regions in a forged image. Further-
more, a technique was proposed to detect the image features
using a local binary pattern (LBP) [6], which exhibits robust-
ness against blurring, flipping, and rotation. Still, its perfor-
mance degraded while detecting the areas having general
angles. A CMFD technique was proposed to identify dupli-
cated regions using a special ordering of the wavelet coeffi-
cients from lower to higher frequency subbands. However,
this technique was inefficient to defect forgery in com-
pressed and noisy areas of an image [7]. Another technique
was proposed to detect corresponding blocks’ similarity in a
forged image using kernel PCA. However, this technique
does not consider some geometric operations like scaling
and shearing. Moreover, a technique was proposed to detect
signal resampling using the expectation/maximization (EM)
algorithm, which was helpful in image forgery detection.
However, this technique limits evidence with the uncom-
pressed and high-resolution format [8].

As a consequence of incredible image handling instru-
ments, the forgeries in digital images effectively become a
genuine social issue. This is done with the intent of
highlighting a certain object or hiding or removing an object
from the image and by applying different postprocessing
attacks like blurring, color reduction, scaling, and rotation
on images. By and large, a counterfeiter uses some relative
changes to roll out the improvements outwardly flawless.
Most existing copy-move recognition strategies are not com-
pelling when duplicated locales are under mathematical
twists. Unlike block-based approaches, which extract fea-
tures from every block, the keypoint-based approach takes
descriptors from selected places on the image. As a result

of the reduced number of descriptors, a faster CMF detec-
tion approach based on keypoints can be designed. SIFT,
SURF, binary robust invariant scalable keypoints (BRISK),
and other feature descriptor methods are among the options.
When a tampering operation is performed on an image, the
actual pattern of the image is destroyed because it loses/
changes the main meaning of the information carried within
an image. Two detection methods have been defined; the
active method and the passive method for CMF. In the
active method, previous knowledge, idea, or concept of
images is required to insert the information/image into the
original image. For example, digital signs and the image
watermark are used to identify duplicated areas of the image.
The passive method is the simple method, it does not require
any previous or basic information. The tampered or copied
areas do not leave any real-time signs but it becomes very
essential to know about the basic statistics of authentic
images and resolve the inconsistent pattern in the image.

The following are the main contributions of the pro-
posed CMFD method.

It computes LIOP features over circular blocks (instead
of standard square blocks used by traditional CMFD
methods) to generate the rotation-invariant feature vector.
LIOP features present the more detailed image information
by employing the direction-based relation of the central
pixel to its neighborhoods. Therefore, it helps identify those
features that are robust to postprocessing attacks of CMF
(like scaling and rotation changes) and assist in effectively
detecting the CMF.

It is proficient in identifying single and multiple CMF
from digital images.

It also minimized the feature vector’s size for block rep-
resentation which reduces the computational complexity for
CMFD without utilizing any clustering and machine learn-
ing methods.

The remaining sections of this paper are structured as
follows: state-of-the-art CMFD methods are reviewed in Sec-
tion 2. In Section 3, the methodology of the proposed CMFD
method is presented in detail. The experimental results are
presented in Section 4. Finally, the conclusion along with
future work directions is presented in Section 5.

2. Related Works

The section presents details of the active and passive image
region duplication detection techniques. Alkawaz et al. [9]
applied discrete cosine transform with 8 × 8 overlaying
blocks to detect forgery regions in digital images. They also
applied lexicographic sort for feature sorting. Bilal et al.
[10] employed a fusion of speed-up robust features and
binary robust invariant scalable keypoint features for image
forgery areas detection. Huang et al. [11] extracted SIFT
descriptors of an image. They achieved good detection
results for many types of postprocessing, i.e., JPEG compres-
sion, size, and angle variations, and under the presence of
noise attacks. But the method is not efficient to the low
signal-to-noise ratio (SNR) and small-sized tampered areas.
Bayram et al. [12] used counting bloom filters (CBF) and
fluorescence molecular tomography (FMT) for CMFD. They
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used counting bloom filters (CBF) as an alternate to lexico-
graphic sorting. They proposed FMT features for rotated,
scaled, and highly compressed images. They achieved time
efficiency by using CBF. However, robustness is reduced in
that effort. Pan and Lyu [13] used a technique based on SIFT
features of the image invariant to traditional sample trans-
form like geometrical and illumination distortions. They
used efficient approximation to achieve the correct represen-
tative set of features matching and transforming among cop-
ied areas. As their performance relies on identifying efficient
SIFT features, it causes a limitation for the regions with few
visual structures. Another limitation is for the images with
intrinsically identical areas, which leads to an increase in a
high false-positive rate (FPR). Bo et al. [14] introduced an
effective approach for locating CMF based on SURF. It is
used for detecting SURF interest points to find the possible
copied areas in the suspected samples. This framework is
efficient for image transformations and postprocessing
attacks like noise, blurring, size, and angle variations; how-
ever, it is inefficient for automatically locating forged regions
and their boundary. Guo et al. [15] presented a hybrid LBP
scheme that matches globally rotation invariant with locally
invariant LBP keypoints using local binary pattern variance
(LBPV). LBPV is used to measure the directions of the tex-
ture image and the distinction between images. This method
could decrease the feature dimensions while maintaining the
classification accuracy better and better categorization cer-
tainty than existing rotation invariant LBP.

Hu moments were used by Liu et al. [16] to detect image
forgery. By Gaussian pyramid decomposition, they acquire a
low-frequency subimage. They used the overlapping circular
subimage blocks and extracted from those circular blocks
the Hu moments’ characteristics. As they computed Hu
moments on the square’s inscribed circle, their method is
robust to the rotation. So, the false alarm rate increases

due to discarding the pixels outside of the inscribed circle.
For image forgery detection, Bravo-Solorio and Nandi [17]
made attempts based on log-polar maps. To obtain 1D rota-
tion/reflection-invariant descriptors, they used log-polar
maps. Then, to those descriptors, they mapped independent
overlapping pixel blocks. Then, they mapped independent
overlapping blocks of pixels to those descriptors. Their
method is efficient in memory usage because of dimension
reduction of blocks but is not much robust to high postpro-
cessing like reflection, rotation, and scaling. By integrating
discrete cosine transform (DCT) coefficients analysis, Lin
and Wu [18] presented a technique for splicing and CMF
localization. It blends them with double JPEG compression
and SURF. To locate the copy-and-paste operations of sam-
ple portions, the former approach is used. To find duplicates
of the same entity, SURF is used. This method can identify
the forged regions effectively, identify the nonoriginal
regions, and detect multiple artifacts. Shivakumar and Baboo
[19] suggested detecting SURF and k-dimensional tree-(KD-
Tree-) based copy-move forgery. To find copied regions of
various sizes, SURF is used. For multidimensional data
matching, the latter procedure is used. In image distortion
and scaling, this method works well but cannot detect tam-
pered regions of a small scale. A tempered image detection
approach based on improved DCT was introduced by Cao
et al. [20]. They applied DCT and extracted four features
from each block on the fixed-sized image blocks to minimize
keypoint vectors’ size. For multiple CMF, Gaussian blurring,
and noise pollution, this method is successful. It uses the
function vector of a reduced dimension.

A passive forgery identification approach employing a
dyadic wavelet transform (DWT) was suggested by Muham-
mad et al. [21]. This scheme’s input image is split into
approximation (LL1) and subbands of detail (HH1).
Matched pairs are obtained based on the resemblance

Original image

(a) Original image

Tampered image

(b) Tampered image

Detected result

(c) Detected result

Figure 1: A visual example of copy-move forgery (CMF).
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between LL1 and HH1. For booming copy-move detection,
this method offers the best approach to finding matched
and unmatched portions among blocks of a sample. Kakar
et al. [22] suggested a booming content-based image recov-
ery technique to find image forgery based on the MPEG-7
image signature tools. Using a keypoint corresponding pro-
cedure that uses the critical constrictions in similar feature
pairs distinguishes the copied parts. These techniques help
us get high true-positive rates and low false positives for real
and synthesized forgeries. Nevertheless, it is accurate only
for separate samples and wide duplicated regions. Zhao
and Guo [23] suggested a DCT- and SVD-based CMF iden-
tification methodology. To obtain quantized blocks further
distributed into subblocks, the former technique is employed
for fixed-size overlapping image blocks. SVD is imple-
mented in each block, and its highest singular value is used
to decrease the dimension as a feature. For a sample influ-
enced by Gaussian blurring or JPEG compression, this tech-
nique may identify the forged regions. Lynch et al. [24] used
comparison blocks as a dominant feature to minimize the
processing cost of image forgery detection. As the dominant
function, they used the average grey value of blocks. If their
dominant feature varies greatly, a deep level comparison
(made by a statistical hypothesis test) of the two blocks will
not be made. For images influenced by JPEG compression,
Gaussian blurring, etc., or in the case of lighter or darker
duplicated areas, their technique worked well. Li et al. [25]
used circular block characteristic vectors for CMFD. Feature
vectors using rotation-invariant LBP were mined. Their sys-
tem works well for typical postprocessing activities such as
blurring or scaling and geometric transformations such as
rotation or flipping. Their methodology, however, lacks the
required range of feature dimensions and has less robustness
for lower-angle rotations such as 200 or 300 degrees.

Hashmi et al. [26] introduced an effective method for
CMF localization employing discrete wavelet transform
(DWT) and SIFT features. The former method distributes
the suspected sample into four parts. SIFT is used to find
the key features. These key features are used to detect the
resemblances between descriptor vectors, which helps find
the tempered image. This framework identifies image tem-
pering even when the image is scaled/rotated and then
pasted. Li et al. [27] worked on the CMFD for the image sub-
jected to affine transforms. They extracted rotation and
scaling-invariant features from the image’s overlapping cir-
cular blocks using polar harmonic transform (PHT). Then,
circular blocks were lexicographically sorted, and their
Euclidean distances were compared to detect tampered
regions. Their method performs well for lower rotation
angles like 100 or 120 degree and general angles like 300
or 350 degree. In [28], a digital image forensic technique is
proposed that focuses on the detection of image forgery
based on the assessment of the light source for an image.
This is an object-based method that estimates the lighting
properties and hence detects the forgeries for various objects
in the image. The model for digital forensics identifies the
lighting discrepancies in the objects of an image and pro-
vides results indicating a difference between real and fake
images. Lighting directions are estimated using azimuth

and orientation parameters. The errors that appeared in
the results are overcome by implementing the automatic
selection of probes. This approach generates the 3D shape
which is further used to detect the 3D lighting in the image
for various objects. Finally, least-square optimization is used
to improve the accuracy of this technique. Zandi et al. [29]
presented an accommodative similarity threshold for a
CMF identification approach based on locality-sensitive
hashing (LSH). LSH is employed for finding the adjacent
neighbors, which helps in detecting the forged image. The
proposed technique could greatly decrease the number of
false matches, improving computational cost and perfor-
mance. Tian et al. [30] presented a method to locate the
forensic changes from the digital images. Initially, the input
sample was divided into overlapping blocks. The oriented
FAST and rotated BRIEF (ORB) algorithm was employed
over each block to compute the features. After that, the
cosine and Jaccard distance metrics were used to measure
the similarity between the computed keypoints. The
approach in [30] exhibits better forgery detection accuracy
which utilize ORB features and novel similarity measure
technique; however, it may not perform well for the images
showing huge scale variations. Kumar et al. [31] proposed
a technique to correctly identify the forgery and imitations
in the digital images. This technique works for images hav-
ing any type of object present in the scene. By assessing
the lighting parameters, this technique identifies the manip-
ulated object and returns the angle of incidence concerning
the light source direction. Two patches are taken from the
original part while one patch is chosen from the fake part
of the image. The differences between their angle values
prove that the image is fake concerning lighting assessment
in the scene. In this approach, if the angle difference is more
or less than 10 degrees between the fake and original patch,
then the patch is considered a forgery. If the angle is within
this defined angle difference range, then image patches are
considered consistent patches; otherwise, the patches are
inconsistent and therefore belong to a forged part. The pro-
posed method is tried on JPEG images browsed from online
forged images or taken from well-known research datasets.
The demonstrated results produce a robust forgery recogni-
tion rate on an image dataset comprising various types of
manipulated images.

Abdel-Basset et al. [32] introduced a method to identify
the image manipulations. Initially, the SIFT approach was
applied to an input image to calculate the keypoints. Then,
density-based spatial clustering technique was used to com-
pute the clusters from detected features. Thirdly, RANSAC
was utilized to remove the false clusters. Finally, the Struc-
tural Similarity Index (SSIM) metric was used to detect the
matching areas. The method in [32] is robust to copy-
move forgery detection; however, it may not detect the forg-
eries made within flat image areas. The method in [33]
shows better manipulation detection accuracy, however, at
the expense of huge computational complexity. Niyishaka
and Bhagvati [34] introduced a framework to identify the
alterations made within digital images. After preprocessing,
the Laplacian of Gaussian (LoG) was applied to compute
the blobs of the input sample. Then, BRISK features were
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computed from each blob, and Euclidian distance was com-
puted among them to locate the matching areas. The
method in [34] shows better performance than CMFD; how-
ever, for input samples with a large background area, its
detection accuracy degrades badly. Soni et al. [35] presented
a method to detect image forgeries. Initially, the input sam-
ple was distributed into nonoverlapping blocks on which the
SURF algorithm was applied to detect the keypoints. Then,
similar regions were localized. After this, the maximally sta-
ble extremal regions (MSER) technique was used to form the
large blocks from each detected matched region. The SURF
features were extracted from the identified MSER blocks.
In the next step, the affine transform was used to remove
outliers. Finally, the similarity was computed to locate foren-
sic changes. The method in [35] performs well for CMFD;
however, it may not show good performance under the pres-
ence of multiple CMF attacks in an image. Rani et al. [36]
introduced the image manipulation detection approach to
find image forgeries. To achieve this, a pixel-based forgery
detection framework for copy-move and splicing-based
forgeries is suggested in this paper. The preprocessing is per-
formed on data to enhance textural information by applying
enhanced SURF. Various features are estimated, and tem-
plate matching is done for the identification of fake image
regions. The relevant key parameters are estimated and com-
pared with the calculated threshold value. The demonstrated
results show that the proposed framework attains robust
detection accuracy compared to the state-of-art image forg-
ery detection techniques. In [37], a technique is proposed
for multiple light source-based forgery detection for hetero-
geneous image surfaces, nearby surface geometry, and tex-
ture information to assess the lighting environment. The
Phong reflection model is implemented to estimate the
structural profiles. The method works in two phases. In the
first phase, preprocessing over selected patches is performed
followed by angle and error estimations in the second phase.
To identify such forgeries, elevation angles concerning
mounted light sources are estimated. The value of the eleva-
tion angle is computed for various patches of the image. This
method is also validated for synthetic image datasets and
tested for generalized forged images. An experimental result
demonstrates better forgery detection accuracy compared
with state-of-the-art methods in this domain. [38] proposed
a technique to detect image manipulation. By using a single
light source, the incident light source angle is returned which
is achieved by estimating illumination from the image. This
technique is validated by computing the angle for all objects
in the scene. The incident and reflection angle for all the
image objects should be consistent; however, if these condi-
tions are violated then, objects are not consistent concerning
light source direction. Errors are approximated by applying
a least-square estimation. The technique shows that from
subpatch estimations, the calculation of light source direc-
tion can be approximated which itself is unique to detecting
image forgery. The obtained differences in the estimated
values of angle above a threshold angle are considered as a
fake object w.r.t light source, and therefore, the image is
taken as phony. Finally, the results demonstrate that the
identification of forged parts is successfully done for light-

based image forgery detection. Kumar et al. [39] presented
a forgery detection technique based on estimations of multi-
ple light source directions. This method uses a pixel patch
from the image region to estimate the source light vector.
The implementation is done for images where one and more
light sources are available in the scene. This technique can
identify image forgery in terms of elevation angle obtained
from a source of light and surface normal. This technique
is tested for both outdoor and indoor images under certain
known parameters. The novelty of this technique is that
photo manipulation detection is done using a multiple-
light source detection. It produces robust performance as
compared with state-of-the-art image forensic techniques
by making certain assumptions about surface properties
and illumination parameters.

Javed and Jalil [40] presented a novel approach for
detecting suspicious images using deep learning. The tech-
nique transforms the image into the byte level to identify
the forgery in real-time. Zhang et al. [41] utilized the joint
probability density matrix [JPDM]; the technique after
detecting the input image as forged uses JPDM to correlate
within the discrete coefficients transform [DCT]. Islam
et al. [33] presented a deep learning-based framework,
namely, generative adversarial network (GAN) to show the
forensic changes made within digital images. Initially,
VGG-19 architecture was used to measure the deep features
of a suspected sample. Then, two atrous spatial pyramid
pooling (ASPP) operations were used to compute both con-
textual and cooccurrence keypoints, which were later com-
bined to pass to the detection branch. Agarwal and Verma
[42] presented a deep learning-based technique, namely,
VGGNet along with the adaptive patch matching (APM)
method was applied for CMFD. This approach is robust to
various image transformation attacks like blurring and com-
pression; however, the technique is suffering from high com-
putational costs. Table 1 presents the critical analysis of the
state-of-the-art CMFD methods.

3. Methodology

A detailed description of the proposed CMFD method for the
detection of copy-move forgery is presented in this section.
Firstly, the color image is converted to grayscale. Secondly,
the image is distributed into circular blocks of 8 × 8 pixels.
In the third step, features are extracted from each circular
block of the image by applying the LIOP descriptor [48]. In
the fourth step, a comparison of blocks’ features is performed
by applying Euclidean distance to highlight the forged regions
of the image. Postprocessing is performed as the last step to
make the detection results clearer. A visual presentation of
the proposed CMFD method is exhibited in Figure 2.

3.1. Formulation of the Problem. In CMF, similarities of the
tampered regions are always small against a predefined
threshold. So, for tampered grayscale images, CMFD focuses
on identifying two nonintersecting regions that are hole-less
and have larger similarities.

For an image represented by Iðx, yÞ, the forged image
I’ðx, yÞ depends on the regions S = fs1, s2,⋯:snÞ that is
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mathematically defined as follows:

Sl = Sk ⇒ s2k k < st ⇔ Δj j >Vt , ð1Þ

where

s2k k = 〠
n

i=1
sli − skij j, ð2Þ

where s2, a metric norm, represents the distance between
source regions sk and destination regions sl of the forged
region. The s2 must be less than the similarity threshold dt ,
whereas Δ = ðΔx,ΔyÞ is the translation vector, and Vt = ½
Vtx, Vty� is the corresponding threshold. Therefore,

sk = sl+Δ,
sl = sk−Δ:

ð3Þ

Table 1: Overview of the state-of-the-art CMFD methods.

Reference Framework Limitations

Bilal et al. [1]
SURF descriptor along with mDBSCAN clustering technique was
employed to locate the forged area in a given image. This method

exhibits better CMFD performance.

The approach is unable to detect the manipulation
from the flat regions of the image.

Roy et al. [43]

The SURF descriptor together with the RLBP approach was utilized
for keypoint computation, while the g2NN method was used for
similarity measurement. Finally, hierarchical clustering [44]

approach was utilized to cluster the manipulated part of the input
image. The method works well under the presence of postprocessing

operations.

The approach exhibits poor detection accuracy over
samples of low quality.

Alkawaz et al.
[9]

In this method, correspondence between the DCT coefficients was
computed by employing the Euclidian distance formula to identify
the forgeries from the input images. This framework exhibits better

CMFD performance.

The false choice of block size can lead to a serious
reduction in detection accuracy.

Bilal et al.
[10]

In this approach, two methods, namely, SURF and BRISK, were used
to compute the image features. The hamming distance was computed
to measure the similarity between the keypoints. And the DBSCAN
clustering approach was employed to localize the altered content.

This method is robust to image transformation operations.

The intense changes in scaling, brightness, and color
reduction may degrade the detection performance.

Bi et al. [45]
This work employed SIFT descriptor for features computation along

with an adaptive patch matching algorithm for similarity
measurement. The work performs well for CMFD.

This technique is computationally complex.

Chen et al.
[46]

A block-based CMF detection approach, namely, the BSMRG
algorithm, was applied to identify the altered image patches. The

method is computationally efficient.

The performance of this method is highly
dependent on the block size.

Muzaffer and
Ulutas [47]

This method used a SIFT descriptor-based approach for CMFD
where binarized descriptors were employed to identify the

manipulated regions. This work is computationally less expensive.
Performance needs further improvements.

Tian et al.
[30]

After dividing the image into small blocks, the ORB algorithm was
employed over each block to compute the features. Then, the cosine
and Jaccard distance metrics were used to measure the similarity to
locate the CMF. The approach exhibits better CMFD accuracy.

Performance degrades for the samples with huge
scale variations.

Abdel-Basset
et al. [32]

In this work, the SIFT approach together with the density-based
spatial clustering technique was used to identify the forensic changes.
The method is robust CMDF and exhibits better detection accuracy.

Unable to locate the changes made within flat image
regions.

Islam et al.
[33]

A deep learning-based framework DOA-GAN was introduced to
locate the image forgeries. The approach shows better manipulation
detection accuracy even under the occurrence of postprocessing

attacks.

This technique is economically inefficient.

Niyishaka
and Bhagvati
[34]

In this technique, the LoG was applied to compute the blobs of the
input sample. Then, BRISK features were computed from each blob,
and Euclidian distance was computed among them to locate the

matching areas. The approach shows better performance to CMFD.

The performance of this method degrades for
samples with a large background area.

Soni et al.
[35]

In the presented framework, the SURF algorithm along with the
MSER technique was applied to detect the digital alterations from the
input samples. The method performs well for CMFD under the

occurrence of noise and light alterations.

Not robust to detect the multi-CMF attacks.
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Due to the postprocessing attacks on the images, detect-
ing forgery while handling rotation and scaling attacks can
be harder for rotation and scale-invariant descriptors.
Hence, the proposed CMFD method also incorporates the

mechanism for handling rotation and scale variances within
the image. The postprocessing attacks of scaling and rotation
on the forged image can be mathematically modeled using
the following equations that serve as an image forgery
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model:
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x′′
y′′

" #
=
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" #
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cos θ sin θ
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" #
x′

y′

" #
,

x′′ = λφx′ cos θ + λφy′ sin θ,
y′′ = −λφx′ sin θ + λφy′ cos θ,

ð4Þ

where x′ and y′ denote the coordinates of the duplicated
area of the image; θ, λ, φ denote the angle of rotation, a scal-
ing factor, and flipped area of the forged image, respectively.
Forger applies postprocessing attacks over an entire image
like blurring and noise, to conceal the forgery effects, making
it difficult to detect forgery. Hence, the proposed CMFD
method aim is to detect the duplicated regions dl and dk to
highlight the duplicated contents in the existence of various
postprocessing operations.

3.2. Preprocessing and Division of the Image into Circular
Blocks. After visually analyzing duplicated regions in the illu-
mination domain, a standard color space conversion method
is employed by the proposed CMFD method to convert each
RGB forged image to a grayscale forged image. At first,
image key points highlighting the distinct information of
image content are located, and then, the corresponding fea-
ture vectors are captured. A feature vector is a collection of
image statistics obtained from the keypoints’ local neighbor-
hood. For key points and features to be effective, they should
capture distinct positions in an image, and be robust against
local geometric distortions, noise, illumination variations,

etc. The proposed methodology utilizes LIOP descriptor
for keypoint detection and description. For the sake of dis-
tinction, the keypoint-based techniques divide the image
into subparts, and features are collected for each subpart
separately, which are joined together at the end. Most of
the existing methods use a pixel-based approach to extract
image features. For example, SIFT used a 4 × 4 grid as the
feature extraction source region and 3 to 8 bins in one direc-
tion. The other direction, respectively, is utilized by gradient
location-orientation histogram (GLOH) as a log-polar grid.
These existing methods require a consistent orientation for
each subpart of the image and descriptor construction per
that specified orientation to make the descriptor rotation
invariant. So, the accuracy and efficiency of these methods
depend on the selection of subparts orientation. Due to these
limitations, these methods are not robust to detect forgeries
in postprocessed images. To avoid the orientation estimation
for rotation-invariant features, the spin image technique is
used, which further divides the image subparts into five cir-
cles/rings. However, its discriminative power is low, as it
splits the image in one direction, i.e., radial direction, and
is unable to handle angular direction. In the proposed
CMFD method, the input grayscale image (forged image)
is transformed into the circular block using the polar coordi-
nate system that is defined using the following mathematical
equation:

I r,Ɵð Þ = P I a, bð Þ: a0, b0ð Þð Þ, ð5Þ

where ða0, b0Þ is the origin of the circle, r is the radius, and
the Ɵ is the axis of the circle. As compared to grid-type
region decomposition methods, it has low discriminative
power. In grid-type region decomposition, all local pixels
of an image subpart are sorted as per their intensities in

ImgIn ➔ The input image matrix
ImgGray ➔ Grayscale image
ImgBlocks ➔ A two-dimensional matrix where each block is represented by 8 × 8 pixels
ImgFeatures ➔ Matrix representing feature space
EDist ➔ Euclidean distance between neighborhood features
D ➔ Region marker based on the threshold
ImgReconst ➔ Reconstructed image
Thresh ➔ Threshold determining if the Euclidean distance between feature spaces could mark the region
Step 1: ImgGray ← Grayscale(ImgIn) //Convert the RGB image into grayscale image
Step 2: ImgBlocks ← Divide(ImgGray,8) //divide the image into [8 × 8] circular blocks
Step 3: FOREACH block in ImgBlocks

ImgFeatures ← Extract LIOP features(block) //extract LIOP features from each circulate block
END

Step 4: For i = 1: Size(ImgFeatures)-1
EDist ← Euclidean(ImgFeatures[i], ImgFeatures[i+1])
IF(EDist <= Thresh)
D[i]=1
ELSE
D[i]=0
END

END
Step 5: ImgReconst ← Postprocessor(D)

Algorithm 1: Algorithm of the proposed CMFD method.
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ascending order. Then, subparts are further decomposed
into B ordinal bins as per their order of intensities. This
region decomposition is invariant to postprocessing attacks

like rotation and contains more information than ring-type
region decomposition. The circular blocks are fed into the
feature extraction step of the next section.

3.3. Local Intensity Order Pattern-Based Features. The local
information of subparts of the image varies depending upon
the methods used for feature description. For example, the
spin image method develops a histogram based on the inten-
sity change of local subparts of the image while SIFT and
GLOH populate histograms based upon the gradient’s orien-
tation. More recent methods focus on more robust features
of local regions of the image, like LBP-based methods used
histogram of local binary patterns which are centrally sym-
metric, and local ternary patterns (LTP) are also used to
populate histogram which is a step ahead of LBP. LBP and
LTP use the intensities of sample points that are centrally
symmetric, so do not consider the relationship of sample
points in the neighborhood. They also require locally consis-
tent neighboring points in orientation to make rotation
invariance better. However, these methods make them vul-
nerable to errors in orientation estimation. Keeping these
facts into view, the local intensity order pattern (LIOP) can
be used to overcome these limitations of existing methods
for effective feature representation of the image contents.
The proposed CMFD method uses LIOP features for the
salient objects of the forged image which uses the intensity
order of neighboring sampled points as the local informa-
tion. It is robust to the rotation because its sampling is
rotation-invariant and maps the consistent local orientation.
Due to all these reasons, its expected discriminative power is

Table 2: Precision, recall, and F-measure of the proposed CMFD
method on the CoMoFoD dataset (values of the performance
parameters are in normalized form).

CoMoFoD images Precision Recall F-measure

Leaves 0.9029 0.7774 0.8355

Rocks 0.8407 0.9791 0.9046

Flowers 0.9890 0.7521 0.8544

Table 3: Performance analysis of the proposed CMFD method on
the CoMoFoD dataset after applying different postprocessing
attacks on the images (values of the performance parameters are
in normalized form).

Operation Precision Recall F-measure

JPEG compression 0.9967 0.7637 0.8518

Rotational transformation 0.9794 0.7571 0.8541

Color reduction 1 0.6268 0.7706

Scale transformation 0.9998 0.7212 0.8379

Additive noise 1 0.7222 0.8387

Blurring 0.9929 0.6738 0.8028

Contrast adjustment 1 0.7178 0.8358

Brightness change 0.9993 0.7474 0.8552

Figure 3: Visual results of multiple CMFD using the proposed CMFD method on tampered images of the CoMoFoD dataset.
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high as compared with existing sparse representation-based
methods like SIFT and SURF.

3.4. The Formation of LIOP Feature Vectors. In this step, the
proposed CMFD method computed the LIOP descriptors
from detected keypoints that are stored in ordinal bins and
formed the feature descriptor from each circular block of

the image. Mathematically, the LIOP descriptor can be
defined as follows:

LIOPdescriptor = des1, des2, des3,⋯⋯ , desp
� �

,

desi = 〠
x∈bini

w xð ÞLIOP xð Þ, ð6Þ

Figure 4: Visual results of the proposed CMFD method on the CoMoFoD dataset after applying different postprocessing attacks on images
(top-bottom, rotational, scale transformation, blurring, and color reduction).

Figure 5: Visual results of the proposed CMFD method on the CoMoFoD dataset after applying different postprocessing attacks on images
(top-bottom, contrast adjustment, JPEG compression, additive noise, brightness change).
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where wðxÞ is the weighting function, which, upon any
changes in rotation and monotonic intensity, increases the
invariance of LIOP descriptors, and LIOPðxÞ is the LIOP
descriptor of a circular block of point x (origin of a circular
block). A LIOP point with a more distinct neighborhood is
given a larger weight to make the descriptor more robust.
The weighting function wðxÞ is mathematically defined as
follows:

w xð Þ =〠
i,j
sgn I xið Þ − I xj

� ��� �� − Tlp

� �
+ 1, ð7Þ

where sgn ðÞ is the sign function and wðxÞ counts the dis-
tinct sample pairs and measures the intensity variations of
neighboring sample points for a circular block of point x.
Let BðxÞ be an M-dimensional vector of point x in the local
patch, with the intensities of M neighboring sample points
of point x. The LIOPðxÞ is mathematically expressed as fol-
lows:

LIOP xð Þ =Θ γ B xð Þð Þð Þ,
LIOP xð Þ =U Ind γ B xð Þð Þð

M! ,

LIOP xð Þ = 0,⋯, 0, Ind πð Þð Þ
1

, 0,⋯, 0
� �

,

ð8Þ

where BðxÞ = ðIðx1Þ, Iðx2Þ,⋯,IðMxÞÞ ∈ BM and IðxiÞ repre-
sents the intensity of ith neighboring sample point xi. The
local patch is distributed into M! partitions where a LIOP
represents every partition. The point x has M neighboring
sample points, which are distributed equally along a circle
having a radius R. For creating rotation invariant samples,
the first point is sampled to point x from the local patch’s
center along the radial direction, and the farther point out
of the two radial direction points is chosen as the starting
sample point. The M − 1 points that are remaining are
inspected in an anticlockwise way. The four neighboring
points of x, i.e., x1, x2, x3, and x4, remain consistent in all

the patches that are rotated, i.e., x′1, x′2, x′3, and x′4, respec-
tively. Due to the one-to-one relationship between the subset
and the permutation, all the probable permutations in ΠM

listed in an index table can be made by encoding BM’s sub-
sets. To map M!-dimensional feature vector WiM!

with per-
mutation π, a function Θ is formulated over the index
table; all Θ elements are 0 besides the ith element, which is
Equation (6). The Θ is mathematically formulated as:

Θ πð Þ =WInd πð Þ
M! , π ∈ΠM, ð9Þ

where IndðπÞ is the index of π in the index table and Wð
Ind ðπÞ/M!Þ = ð0,⋯,0, ð1/ðIndðπÞÞÞ, 0,⋯,0Þ. The extracted
circular block-based features of each circular region of the
image are now ready to get matched in the next step.

3.5. Feature Matching. As mentioned earlier, CMFD focuses
on identifying duplicated regions that are (a) nonintersect-
ing and (b) have a similarity count less than a defined
threshold. To show the copied regions from the given query
image, the resemblance among each circular block-based
feature is computed using the Euclidean distance formula
that is mathematically defined as follows:

dij =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xj
� �2 − yi − yj

� �2
r

< T , ð10Þ

where xi, yi, xj, and yj are indicating the locations of the
pixels of keypoints from two blocks. T is a defined threshold
with a global value of 0.7 for the proposed CMFD method.
Therefore, the data points from the two circular block-
based features are said to be similar if the distance dij among
them is less than 0.6; otherwise, they are declared as
unforged. The threshold value has a substantial impact on
the matching process, as choosing a very small value of the
threshold results in an increased rate of false matches, while
using a large threshold value in the CMF process causes to
eliminate the detection of forged areas.

Table 4: Performance comparison in terms of precision, recall, and F-measure parameters of the proposed CMFD method with its
competitive methods on the CoMoFoD dataset.

Name of the parameter Agarwal and Chand [50] ZM-cart [51] PCT-polar [51] Proposed CMFD method

Precision (%) 95.70 0.8480 0.8770 96.60

Recall (%) 97.80 0.5090 0.4910 98.00

F-measure (%) 96.73 0.6361 0.6295 97.29

Table 5: Performance analysis of the proposed CMFD method in the existence of different postprocessing attacks on the tampered images
of the KLTCI dataset (values of the performance parameters are in normalized form).

Operation Translation Scale+Flip Rotate+Flip Illumination change Blur 3 × 3 Blur 5 × 5 Average performance

JPEG-80 0.9907 0.9641 0.9701 0.9703 0.9841 0.9516 0.9718

JPEG-100 0.9981 0.9756 0.9812 0.9929 0.9905 0.9737 0.9853

SNR-30 0.9711 0.9251 0.9365 0.9419 0.9406 0.9297 0.9408

SNR-40 0.9957 0.9705 0.9812 0.9834 0.9887 0.9692 0.9814
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The complete algorithm of the region duplication detec-
tion from digital images using the proposed CMFD method
is as follows:

4. Evaluation Measures, Experimental Results,
and Discussions

4.1. Performance Evaluation Measures. For the proposed
CMFD method, assessment measures, i.e., precision (P),
recall (R), and F-measure, are utilized to measure and com-
pare the detection results of the proposed CMFD method
with ground-truth images. Precision is the fraction of the
percentage of predicted forged samples that are forged. (i.
e., locate samples that are already manipulated). A recall is
the fraction of the percentage of actual forged samples that
are properly predicted forged (i.e., the number of returned
samples being identified as manipulated from all the forged).

F-measure is a composite metric that is used to measure the
accuracy of the proposed CMFD method as it employs both
P and R parameters. These performance parameters are
mathematically defined in the following equations.

P =
Tp

Tp + Fp
,

R =
Tp

Tp + Fn
,

F‐measure = 2 × P × R
P + R

� �
,

ð11Þ

where Tp indicates the total samples, which are accurately
detected as forged, Fp indicates the total misclassified

Figure 6: Visual results of the proposed CMFD method on tampered images of the KLTCI dataset.
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samples as forged, and Fn indicates the proportion of sam-
ples wrongly classified as original and forged.

4.2. Experimental Requirements and Results. The perfor-
mance of the proposed method is evaluated using three stan-
dard datasets of the CMF that are CoMoFoD, KLTCI, and
MICC-F220. The experiments are computed on a computer
with the following hardware and software specifications;
Microsoft Windows 8.1 (64-bit), MATLAB 2017b (64-bit),
Intel Core i7 processor with 2.4GHz, 500GB hard disk
drive, and 8GB of RAM.

4.2.1. Performance Evaluation on Copy-Move Forgery
Detection (CoMoFoD) Dataset. The CoMoFoD dataset con-
tains 260 forged image sets in two categories [49]. The first
category contains image sets, each with a dimension of 512
× 512 pixels, and the second category contains 60 image
sets, each with a dimension of 3000 × 2000 pixels. These
images have different forgery attacks like translation, splic-
ing, rotation, distortion, and scaling. Different types of post-
processing methods are applied to all tempered and genuine
samples, such as JPEG compression, noise adding, blurring,
and color reduction. The experimental details of the pro-
posed method on this dataset are reported in the following
subsequent sections.

(1) Multiple CMFD Demonstrations. In this section, experi-
mental details of the proposed CMFD method are analyzed
by tampering with multiple forged areas of the image on
the CoMoFoD dataset. The performance analysis of the pro-
posed method in terms of visual results is presented in
Figure 3. Table 2 presents its experimental details on differ-
ent images of the CoMoFoD dataset in terms of performance
parameters that are precision, recall, and F-measure. After
analyzing experimental details in this section, it can be con-
cluded that the proposed CMFD method produces robust
performance on the CoMoFoD dataset in the case of multi-
ple forged areas of the image.

(2) Postprocessing Attack Demonstration. Postprocessing
attacks on images include blurring, additive noise, compres-
sion, variations in brightness levels, color reduction, contrast
adjustment, and rotational and scale invariance. Table 3
illustrates that the proposed CMFD method performs
remarkably even in the presence of postprocessing attacks
on the images of the CoMoFoD dataset. The visual results
of the proposed CMFD method are shown in Figures 4
and 5 after applying different postprocessing attacks on the
images of the CoMoFoD dataset, which also proves the
robust performance of the proposed CMFD method.

Figure 7: Visual results of the proposed CMFD method on the tampered images of the MICC-F220 dataset.

Table 6: Performance comparison of the proposed CMFD method
on the MICC-F220 dataset with state-of-the-art CMFD methods
(values of the performance parameters are in normalized form).

Methods Precision Recall F-measure

Manu and Mehtre [54] 0.9050 0.9550 0.929328

Cozzolino et al. [51] 1.0000 0.5940 0.745295

Thampi et al. [55] 0.8160 0.9273 0.868097

Proposed CMFD method 0.9835 0.9682 0.97579

Table 7: Performance comparison in terms of the computational
complexity of the proposed CMFD method with its competitor
CMFD methods on the MICC-F220 dataset.

Methods CPU time (in seconds)

Proposed CMFD method 03.32

Yang F. et al. [56] 12.40

Yang B. et al. [57] 10.20

Soni et al. [35] 09.20

Popescu and Farid [8] 70.97

Fridrich et al. [58] 294.69
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The robustness of the proposed CMFD method is also
tested by comparing its performance with state-of-the-art
forgery detection methods. Table 4 presents experimental
details in terms of precision, recall, and F-measure parame-
ters of the proposed CMFD method and its comparison with
competitive forgery detection methods. After analyzing
experimental details in Table 4, it can be concluded that
the proposed CMFD method also produces robust perfor-
mance as compared with its competitive methods.

4.2.2. Performance Evaluation on the Kodak Lossless True-
Color Image (KLTCI) Dataset. The KLTCI dataset [52] con-
tains 24 photographic-quality images of different subjects
under various lighting conditions and various locations; the
images are high-dimension with a resolution of 1024 × 1536
pixels. The images of this dataset comprise several back-
grounds and exterior conditions such as sea, sky, walls, and
buildings. By using Adobe Photoshop, tempered images for
the KLTCI dataset are manipulated. The various combinations
of postprocessing attacks, i.e., translation, blurring, and rota-
tion, along with CMF, are used to construct forged images.
Copy-move regions in this dataset possess an approximate
dimension that varies from 100 × 100 pixels to 550 × 200
pixels. Table 5 presents the performance analysis of the pro-
posed CMFDmethod on the KLTCI dataset in the occurrence
of several postprocessing attacks. After reviewing the experi-
mental information provided in Table 5, it can be concluded
that in the presence of various postprocessing attacks on the
tampered images, the proposed method also exhibits a robust
performance on the KLTCI dataset.

The visual results of the proposed CMFD method on dif-
ferent sample images of the KLTCI dataset are shown in
Figure 6, which also proves its robust performance on this
dataset. In Figure 6, the first to fourth columns show the
original images, tampered images, detection results of the
proposed CMFD method, and ground-truth images,
respectively.

4.2.3. Performance Evaluation on the MICC-F220 Dataset.
TheMICC-F220 [53] dataset contains 220 images. The dataset
contains a tampered image using a scale and rotational trans-
formation. The tampered images included in this dataset have
different sizes ranging from 700 × 400 pixels to 800 × 600
pixels. The analysis of the proposed CMFD method is evalu-
ated using the MICC-F220 dataset, and its experimental
results are compared with state-of-the-art CMFD methods
that are Manu and Mehtre [54], Cozzolino et al. [51], and
Thampi et al. [55]. The visual results of the proposed CMFD
method conducted on the MICC-F220 dataset are shown in
Figure 7. The comparison detail of the proposed CMFD
method in terms of performance evaluation parameters is pre-
sented in Table 6. The experimental analysis in terms of visual
and evaluation parameters on this dataset also proves the
robustness of the proposed CMFD method.

4.2.4. Comparison of Computational Complexity. The perfor-
mance analysis of the proposed CMFD method is also per-
formed by considering its computational complexity as
compared with competitor CMFD methods. Its computa-

tional complexity is reported on a desktop computer equipped
with the following hardware and software resources: CPU:
Intel Core i7@2.10GHz, RAM: 8GB, hard disk: 500GB, Win-
dows 10 operating system (64 bit), MATLAB 2017B (64 bit),
VLFeat version 0.9.21-MATLAB library. Table 7 presents
details of the computational complexity (time in seconds) of
the proposed CMFD method and its comparison with com-
petitor CMFD methods on the MICC-F220 dataset.

5. Conclusion and Future Directions

In this article, a novel method of copy-move forgery detection
from digital images is presented. The proposed CMFD
method divides the image into circular blocks and computes
a rotation-invariant feature vector from each circular block.
The similarity between each feature vector is computed by
applying a Euclidean distance to detect forged image areas
and to remove false matches. The LIOP descriptor assists the
proposed CMFDmethod in effectively detecting the tampered
areas of the image even in the presence of different postproces-
sing attacks and also enables it to effectively detect the single
and multiple CMF areas of the image. The LIOP descriptor
also assists the proposed CMF method to detect the tampered
regions more efficiently as compared with SIFT and SURF fea-
tures. The proposed CMFD method produces promising
results on the CoMoFoD, KLTCI, and MICC-F220 datasets
as compared to the state-of-the-art CMFD methods. There is
room for improvement of the proposed CMFD method to
detect small and extremely smooth, or blurred regions from
the tampered images. The performance of the proposed
CMFD method can also be analyzed by considering the deep
learning-based method for CMF as well as other types of forg-
eries can be considered like image splicing.
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