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Insulators are basic parts of high-voltage transmission, and detecting faults of insulators is a critical task.Most state-of-the-art methods
contain two or more stages, including insulator detection and defect locating. Some also involve hand-designed components to
improve the performance due to the complicated and misleading background of the wild. To automatically detect faults in UAV-
captured insulator images, this paper presents a method that introduces DETR into insulator defect detection. With the self-
attention mechanism in Transformer, the model can naturally exploit its advantage in focusing on the target area. However,
training DETR requires large data sets and long training schedules to establish spatial relations in sparse locations, which makes it
generally not feasible to train in small data sets. To explore the possibility of training a well-performing model with a data set that
minimizes the cost of collecting insulator images, transfer learning techniques were applied to this process. To compensate for the
disadvantage of DETR in detecting small objects at more precise scales, an improved loss was transplanted to this model. The
results show that our proposed method can detect defects directly from UAV images without the need to locate the insulator first,
while providing competitive performance with a lower cost of collecting training samples.

1. Introduction

Insulator, as a kind of special insulation control part, is
widely used as an electrical component in high-voltage trans-
mission. Insulators provide support and ensure insulation
between the conductor and high-voltage wire connection
tower. Due to various electromechanical stresses caused by
changes in the environment and electrical load conditions,
the damage could occur and the effect of insulators may be
reduced, thus causing loss of reliability in the transmission
of the entire line. Therefore, the detection of insulator defects
is one of the most common and important tasks in the regu-
lar inspection and maintenance of the power grid.

Concerning the enormous amount of transmission towers
standing in the wild, manual one-by-one inspection per-
formed by human workers becomes impossible. With the help
of unmanned aerial vehicles (UAV) and inspection programs
on the computer, images of high-voltage line components can
be collected and processed in a more labor-saving way. Then,
there comes another problem, which is how to improve the

accuracy and efficiency of detecting the insulator and defect.
Huge amounts of effort have been applied to this issue.

There was a time when hand-designed classifiers and
detectors took over this area. Image processing techniques
using MPEG-7 EHD (edge histogram method) were applied
[1], which is an algorithm to extract and calculate the edge
characteristic of the insulator. Image segmentation by convert-
ing the color space of the image was proposed to extract insu-
lators from aerial images [2]. Wu et al. [3] proposed a texture
segmentation algorithm to partition aerial images into subre-
gions based on the Principal Component Analysis (PCA)
and Global Minimization Active Contour (GMAC) model.
Another image processing method is proposed by Khalayli
et al. [4], which uses co-occurrence matrices to extract texture
features and classify these features by the polynomial classifier.
A segmentation framework [5] using the active contour model
to locate and extract insulators. Liao et al. [6] proposed a
robust insulator detection algorithm to deal with the complex
background in aerial images by local features and spatial
orders. Zhai et al. [7] presented an algorithm based on saliency
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and adaptive morphology in a unified framework with a limi-
tation of insulator type. This was then resolved by Zhai et al.
[8], which can detect defects of both glass and ceramic insula-
tors based on spatial morphological features, while achieving
high accuracy of over 91%. These methods widened the road
to the detection of insulator defects, broadened our minds,
and developed insulator detection methods. However, strong
domain ability is needed when designing these approaches
involving color and texture features or traits hidden in other
forms, and hand-crafted feature extractors are prone to get
disturbed by the complicated background and objects cover-
ing the insulators randomly.

With the development of GPU acceleration for comput-
ing, deep neural networks started to push the performance
of the tasks in various areas to new state-of-the-art continu-
ously and so it did to insulator defect detection. Several
methods were proposed with segmenting insulators from the
background before detecting the defect. Chen et al. [9] pro-
posed a method that used a second-order full convolutional
network (SOFCN) to extract the insulator area in the image
and then obtain the fault region with the full convolutional
network (FCN). Gao et al. [10] proposed a modified condi-
tional generative adversarial network with a reconstructed
generator and a discriminator composed of an FCN based
on patchGAN to segment the insulator in pixel-wise. Sady-
kova et al. [11] presented a model based on YOLOv2 to detect
faults using aerial images based on drones in various weather
conditions. Tao et al. [12] presented a deep CNN cascading
architecture that splits the entire detection task into two stages,
including the localization of the insulator and the detection of
defects, reaching a relatively high precision of 0.91 and a recall
of 0.96. Zhao et al. [13] pushed the two-stage method further
using Faster RCNN combined with improved FPN and color
space adaptive algorithm. However, tasks were split into two
or more stages to acquire higher accuracy and hand-crafted
techniques are still needed to reduce the interference of com-
plicated background in the aerial images.

This paper focuses mainly on simplifying the pipeline of
insulator fault detection and improving the performance
with a relatively low cost of collecting training data. Carion
et al. [14] proposed DEtection TRansformer (DETR) as an
end-to-end object detector which adopted the encoder-
decoder architecture of transformer [15]. With the help of
the attention modules, the network can generate attention-
aware features from the image and focus more on the
selected region, thus contributing to identifying the insulator
defect from complicated backgrounds, and it can also pro-
duce representations with more discerning features to
improve accuracy. However, the data sets are extremely large
to train transformer models and converge to an acceptable
level. Collecting and labeling data sets in this order of mag-
nitude are not usually feasible in insulator defect detection,
and data sets containing thousands of images are quite large
in this area. To mitigate this, we propose an insulator fault
detection model based on DETR and transfer learning
methods with a simplified process compared to other
methods and provide competitive performance. Also, an
improved loss was grafted to this model to help solve the
imbalance problem and suppress the disruption from useless

backgrounds of the aerial images. The core contributions of
this paper are as follows:

(1) We propose a new power line insulator defect detec-
tion method based on image recognition in a deep
learning way leveraging the self-attention mechanism
of transformer without the need of designing hand-
crafted and expert-knowledge-based components

(2) We explored and tested several different layer clipping
choices of fine-tuning to reduce the amount of training
data and improve the performance of detecting defects

(3) We tested and verified the transplanted focal loss on
DETR of alleviating the class imbalance problem on
insulator defect data and improving accuracy

The remainder of this article is organized as follows. Sec-
tion 2 introduces the structure of Transformer and DETR.
Section 3 presents the insulator defect detection method.
In Section 4, experiments and results are presented. The
conclusions and discussions are in Section 5.

2. Revisiting Transformer

Transformer models [15] have been proposed in the field of
Natural Language Processing (NLP) with astounding perfor-
mance. It has now been widely applied in NLP domains such
as machine translation [16] and many others. In recent years,
Transformer models have attracted a lot of sights in the com-
puter vision area and have been adapted into different tasks
such as image classification [17] and object detection [14].
The structure of Transformer model is shown in Figure 1.
The left part is the encoder and the right part is the decoder.
The transformer is composed of several couples of encoders
and decoders. Each encoder has the same structure which con-
sists of a multi-head attention layer and a feed-forward layer.
After each layer, there exists an add and norm operation
which adds and normalizes the output of this layer and the
residual connection of the previous layer. Then, the output
of the encoder was sent as the input of the decoder’s multi-
head attention. The decoder looks much like the encoder but
with an additional masked multi-head attention layer which
takes the output embedding as input and sends its output to
the decoder’s multi-head attention. The input embedding
and output embedding are processed by a positional encoding
layer to mix the positional information into the embedding
sequence. The output of the decoder is sent to a linear layer
and softmax layer to generate output probabilities.

In Figure 1, some of the individual blocks can be easily
found in the popular frameworks of deep learning. The
FFN block is a simple feed-forward network and the
Add&Norm block just adds the residual connections and
performs layer normalization [18]. The Linear&Softmax
block performs linear projections and produces the proba-
bilities of prediction by softmax operation. The other blocks
are discussed in the subsections.

2.1. Self-Attention. Self-attention can be taken as an aggrega-
tor which can calculate the association between each element
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and all other elements in the same context. In language-
related tasks, these elements are the embedding sequences
of words. When processing images, the elements are repre-
sentations of pixels. An element more related to another will
have a higher attention score. These attention scores can be
converted to weighted representations to help the model
make decisions. The computation of self-attention layer
can be demonstrated as follows: given d as the dimension
of the embedding and n as the number of the vectors, X ∈
ℝn×d as the vector sequences, three matrices Wq, Wk, and
Wv to be adjusted through the learning process as suitable
weights and another three matrices generated from the same
input X by multiplying Wq, Wk, and Wv as Q = XWq, K =
XWk, and V = XWv, the attention score can be calculated as

Attention = Softmax Q · KΤffiffiffiffiffi
dk

p !
· V : ð1Þ

The dot product ofQ · KΤ is divided by a scale
ffiffiffiffiffi
dk

p
which

is the dimension of a key vector to normalize the value. Then,
use the Softmax operation to convert the result to a probability

distribution and then multiply it by the matrix V to obtain the
weighted summation. Elements with a higher attention score
will receive more focus while processing the inputs.

There are two arrows making from one and along with
another one as inputs of the multi-head attention in
Figure 1. That is part of the cross-attention mechanism
pretty much the same as self-attention but with K and V
replaced by linear projection results from another input
which is the output from the encoder. Unlike the self-
attention modeling the relations between the elements in a
sequence, the cross-attention module can calculate the sim-
ilarity of the vectors, which can be taken as the degree of
relationship between the elements and queries.

2.2. Multi-Head Attention. There exists a concern that only
one self-attention head may not focus on the most related
element. The stochastic initialization operation may put
the start point to a place that will lead the self-attention head
to focus on a local relevant element, not the global one. This
situation can be improved by adding multiple self-attention
heads, which are called Multi-Head Attention. With multi-
ple heads to scan the elements, the randomness of the

Add & norm

Add & norm

FFN

Multi-head attention

Add & norm

Add & norm

FFN

Multi-head attention

Add & norm

Masked multi-head attention

Input embedding Output embedding

Positional encoding

Output probabilities

Linear & softmax

Figure 1: The model structure of Transformer [15]. The three arrows generated from one are part of the self-attention mechanism, which
corresponds to Q, K , and V in Equation (1) generated from the same input by three different linear projections. That is why it is called “Self-
Attention.” The two arrows making from one are the K and V generated from the encoder and along with the Q from the previous layers of
decoder as inputs to the multi-head attention which is also called “Cross-Attention.”
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initialization turns into an advantage that can distribute the
heads to different start points that converge to different loca-
tions of the elements. Then, the output of the self-attention
head h1hn can be concatenated as follows:

MultiHead = Concat h1,⋯,hnð ÞW ′, ð2Þ

whereW ′ is a matrix of learnable weights to project the out-
put to the final multi-head attention values.

2.3. Masked Self-Attention. In certain aspects, an encoder-
decoder couple is designed to predict the probabilities of
the next element in the sequence, which means that it should
not peep at the ground truth elements in the output embed-
dings. In other words, the module can learn nothing from
cheating. But the self-attention layer can participate in the
processing of all elements. Then, a mask was added to the
self-attention layer to make it blind for the future sequence,
and this is called Masked Self-Attention. It is implemented
by calculating the Hadamard product [19] of the attention
value and an upper triangular matrix M:

Softmax Q · KΤffiffiffiffiffi
dk

p ∘M

 !
: ð3Þ

Then, the masked self-attention layer can be used in the
decoder to process the output embeddings without the con-
cern of seeing the future.

3. Method

3.1. Structure of DETR. DETR [14] was an adaption of the
transformer model to simplify the general object detection
pipeline. Several hand-designed components were widely used
in traditional models relying on prior knowledge in certain
fields, setting anchors or non-maximal suppression steps.
With the transformer encoder-decoder modules and the
well-designed architecture of DETR, end-to-end object detec-
tion became more than possible. The detection task was
treated as solving a set prediction problem based on two parts,
which are the self-attention module and the bipartite match-
ing loss. The relationships of the elements in a sequence can
be discovered and established by the self-attention architecture
and meanwhile can help to generate a set of bounding boxes.
The loss function can measure the differences between the
predicted box and ground truth boxes based on the bipartite
graph matching so that to make the position and category of
the predicted box closer to the ground truth.

The simplified overall architecture of DETR is illustrated
in Figure 2. It contains three parts to work: a CNN backbone
to generate activation maps with lower resolution from the
initial images, several encoder-decoder couples to process
the activation maps, and feed-forward networks (FFN) to
predict the classes and bounding boxes. Positional encoding
was added to the activation maps to retain positional infor-
mation. Unlike the original transformer architecture pro-
posed in [15], the DETR transformer decoder module
processes all object queries at the same time without mask-

ing some of them out. In other words, to take advantage of
the ability of the self-attention module that can globally rea-
son the relationship between all objects, the context of the
whole image shall be preserved for the transformer decoder.
The final predictions were made by the feed-forward net-
works. Three layers of perceptrons were used to predict the
coordinates, heights, and widths of the bounding boxes,
while the class labels were predicted by a single linear layer.

To find the best prediction for the class labels and
bounding boxes, the matching loss based on the Hungarian
algorithm [20] can be described as:

ℓh y, ŷð Þ = 〠
N

i=1
−log p̂bσ ið Þ cið Þ + 1 ci≠∅f gℓbox bi, b̂bσ ið Þ

� �h i
, ð4Þ

where y represents the ground truth objects, ŷ denotes the
predicted ones, and bσðiÞ can be taken as the index of the
predicted box. And N needs to be set as a number larger
than the number of actual objects that could appear in the
image. To match the numbers, a class label ∅ was added
to the classes of objects to represent the case “No object.”
The loss for the bounding boxes is defined as follows:

ℓbox b, b̂σ
� �

= λiouℓiou b, b̂σ
� �

+ λL1 b − b̂σ
��� ���

1
: ð5Þ

When the matched object falls into the label ∅, the
corresponding loss value becomes zero. Otherwise, the loss
will be determined by the probability of being in the same
class as the predicted class and the ground truth, and by
the difference between the predicted box and the actual
one. The loss of boxes is calculated by the intersection
over union (IoU) and the L1 norm of the coordinates.

Image

CNN

Encoder

Decoder

FFN FFN FFN

Class & BBox

Positional
encoding

Object
queries

Figure 2: The simplified representation of DETR structure [14].
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Table 1: Treatment of layers.

Transferred weights
Backbone ResNet

Transformer Encoder/decoder layers

Clipped and retrained layers

Class embedding Linear 256 × 80ð Þ⟶ Linear 256 × 2ð Þ

Bbox embedding

Linear 256 × 256ð Þ⟶ Linear 256 × 128ð Þ
Linear 256 × 256ð Þ⟶ Linear 128 × 128ð Þ
Linear 256 × 4ð Þ⟶ Linear 128 × 4ð Þ

WCNN WTrans... W1 W2 W3 W4

WCNN WTrans... W1 W2 W3 W4

WCNN WTrans... W1 W2 W3 W4

WCNN WTrans... W1 W2 W3 W4

Input A Label A

Input B

Label BInput B

Label B

Input B Label B

Figure 3: Overview of the treatment and control of the pre-training and fine-tuning of this model. The model was pre-trained on domain A
and transferred to domain B. Rectangles colored with green represent weights obtained from pre-training of domain A, the purple ones
represent weights adjusted in fine-tuning, the blue ones represent the layer of weights for classification which are clipped and retrained
on domain B, and the yellow ones represents the linear layer weights for bounding box regression which are retrained on domain B.
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The λiou and λL1 are super parameters to determine the
proportion of these parts.

3.2. Transfer Learning. Models based on Transformer can
exert the advantage of self-attention mechanism to exploit
the spatial relations of the elements in a sequence and help
to acquire higher accuracy. However, the difficulty [21] of
training transformers hinders us from further exploration in
this area. Models with Transformer structures usually need a
huge amount of data and more training epochs to converge
compared to traditional networks. That is partly derived from
the amount of the necessary information to establish the cor-
rect relations of the elements. [22] have provided several
observations on this issue to help get better results, but the
amount of data in insulator defect detection is still quite hard
to reach the requirement of Transformer structures. Thus,
transfer learning methods are transferred into this area to help
change the model from untrainable to well-performing.

Transfer learning [23] is an efficient framework in
machine learning. A normal training process is based on
the assumption that training and testing data are distributed
independently in an identical way. When the assumption

cannot be satisfied, transfer learning can be applied to tackle
this problem. Studies [24, 25] have been pushed upon this
diagram and showed the ability to improve performance
through learning information from other data sets. Basic
notations of transfer learning are briefed as follows:

Given DS, T S, DT , and T T as the source domain, task
and the target domain, task satisfying DS ≠DT or T S ≠
T T . Transfer learning utilizes the knowledge from DS to
help accomplish the T T or achieve better performance for it.

As have been stated in [26], learned features in different
layers in a deep neural network contribute differently to the
target learning task. The model in this paper was pre-trained
on COCO [27] which is a well-known large-scale data set for
the purpose of common object detection, segmentation, and
captioning. There are over 330000 images for training,
210000 of which are labeled, and there are 1.5 million
instances of objects and 80 categories. To maximize the
advantage of the learned features of general objects, most
layers of the pre-trained model are preserved, and linear
layers on the top are clipped to adapt to the target domain.
Then, the model was fine-tuned on a relatively small-sized
data set. The preserved layers also participated in the fine-

(a)

(b)

Figure 4: Visualization of the weights of the last encoder layer. Take two points around the defect as reference points, the weights of self-
attention shows a high correlation with defect areas. The images of (a) and (b) are two samples randomly selected from the data set.
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tuning process and are adjusted to fit the new task. The clas-
sification layer was clipped and retrained during the fine-
tuning process and two layers for bounding box regression
are clipped progressively to explore the transferable ability
of these layers and how do they produce boost effects on
generalization and specification ability when transferring
and fine-tuning on a new data set.

The treatment of the layers is presented in Table 1. The
weight of the backbone and transformer part is transferred
and the weight of class embedding and bbox embedding
are retrained during fine-tuning. The size of class embedding
and bbox embedding layers are clipped as in Table 1. Note
that during our experiments one more layer clipped of bbox
embedding, the performance dropped one more step and all
bbox layers clipped will lead to unacceptable performance.
So in Figure 3, we only presented two clipping conditions.
We will talk about it in case study of failure in Section 4.
The full detailed structure of DETR is shown in the Appendix.

3.3. Focal Loss. Lots of models predicting bounding boxes are
based on the process of proposing unbiased initial boxes and
performing regression based on these boxes. DETR [14] pre-
dicts a set of bounding boxes among those N initializations
where N is predefined as a number much larger than the
actual number of possible target boxes. This feature introduces
an imbalance between the actual targets and the useless pre-
dictions. The widely used loss that DETR adopts is the stan-
dard cross-entropy loss, which can be calculated as follows.

CE p, yð Þ =
−log pð Þ if y = 1
−log 1 − pð Þ otherwise:

(
ð6Þ

Here, y is the predicted binary for the class label and p is
the predicted probability. If we simplify the branch for p and
1 − p as pt , then we get:

CE ptð Þ = − log ptð Þ: ð7Þ

The function indicates that the cross-entropy loss treats
the predictions of all the samples equally, and the optimization
process will measure the steps in the same way. Lin et al. [28]
proposed focal loss to help the model descend in a way focus-
ing on the samples that are harder to learn:

FL ptð Þ = − 1 − ptð Þγ log ptð Þ, ð8Þ

where γ is an adjustable parameter between 0 and 5 that can
control the degree of neglect or focus. As the pt of the easy
samples grow close to 1, the loss values of these samples are
ignored to a certain extent while those hard examples are nat-
urally emphasized and reflected in the overall loss. This
improved loss compared to the canonical focal loss can relieve
the imbalance problem during the training process and help to
improve the model’s accuracy.

3.4. Defect Detection. Compared to the two-stage methods,
our proposed method can detect the defect location directly
from the images. The image to be tested is fed into the back-
bone part based on a convolutional neural network to gener-
ate feature maps with concentrated representations. ResNet
[29] is used as the backbone in this part. Degradation prob-
lems start to become insurmountable when normal deep
networks become deeper, and the deeper layers will look like
starting to just copy the features learned by shallower layers.

(a)

(b)

Figure 5: Visualization of the attention weights for several query ids of the last decoder layer. The corresponding decoder attention weights of the
predicted bounding boxes show that the weights are clustered on the defect areas. The images of (a) and (b) are the corresponding images of Figure 4.
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With the residual connection, ResNet can learn more com-
plicated feature maps with deeper construction.

The learned feature maps are then collapsed to one fea-
ture map of d ×HW after reducing the dimension of feature
maps by a 1 × 1 convolution layer, where d denotes the
reduced dimension and HW represents the height and width
of the collapsed feature map. Then, the feature map shall be
sent to the encoder layers with position information added
by the positional encoding step to supplement the
permutation-immutability of transformer architecture. Sine
and cosine functions are used to adjust the frequencies
according to the dimension of the sequence. Given pos as
the position of the input sequence and i as the dimensional

serial in the sequence, the positional encoding can be com-
puted like below:

PE pos,2ið Þ = sin pos
100002i/dmodel

� �
, ð9Þ

PE pos,2i+1ð Þ = cos pos
100002i/dmodel

� �
: ð10Þ

Based on the supplemented inputs, the encoder layers
forward the sequences to establish the attention relations
of the elements. In these layers, global information of the
whole scene participated in the process of computing the

Insulator defect
data set

Prepare image
annotations

Validation setTraining set

Clip
bounding box

layers

Clip
classification

layer

Train on COCO

Transfer weights

Transplant
focal loss

Update weights

Optimal model

Predictions

Figure 6: The overall process of the method.
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attention score. The elements in the input sequence will be
modeled to find the matching parts in the image without
disturbance from the background. Instances are separated
progressively in an approximate way. As shown in
Figure 3, the weights of the last encoder layer focus on a
few parts of the image around the defects. Self-attention
is a fairly large matrix that contains the attention scores
for every element over the others, so we randomly selected
two reference points near the defect location to visualize
the attention weights.

The attention weights are then processed by the decoder
layers with the attending of the object queries. The object
queries are learned positional encodings as an embedding
layer to project the position information of the objects into
a higher dimension and are trained altogether with the
model. The decoder aggregates the output of encoder layers
and the object queries to learn the local defect information
given the baseline of the separated area. Visualizing the
weights of the last encoder layer is shown in Figure 4. Visu-
alizing the weights of the last decoder layer for different
queries is shown in Figure 5. The output of the decoder layer
is then sent separately to two feed-forward networks to pro-
duce the final predictions: box coordinates and class labels.

The overall pre-training and fine-tuning process of the
proposed method is shown in Figure 6. The data set contain-
ing images of insulator defects is annotated with the defect
class labels and bounding box positions. Then, the data set
is divided into the training set and validation set. The model
is pre-trained on the COCO [27] data set which is a public
large-scale data set for object detection. The weights of the
pre-trained model are saved and prepared to load into the
next learning phase of the method. Different layers of the
pre-trained weights including the classification layer and
bounding box layers are clipped. Focal loss is transplanted
to the model during the fine-tuning phase, and the weights
are adjusted and updated through more like a full fine-
tuning process, which means that all the pre-trained weights
but the clipped layers are involved in the training process on
the insulator defect data set. The weights of the clipped
layers are discarded and relearned during fine-tuning. After
fine-tuning, the optimized model is tested on the validation
set to verify the performance. Finally, the optimal model
aligned and compared among the different clipping strate-
gies is used to detect the insulator defects.

The key point that makes the model competitive is the
multi-head self-attention (MSA). MSAs are basic components

(a) (b)

Figure 7: Samples of the images from data set B and bounding box predictions with confidence score.

(a) (b)

Figure 8: Box predictions for the 20 epoch on CPLID. (a) and (b) are two samples to illustrate the prediction results of the early learning
process.
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of Transformer models. Some research helps us to explore fur-
ther the intrinsic properties of the Transformer. Tuli et al. [30]
show that vision models based on Transformer-like structures
have a lower level of inductive bias but a higher gain in shape
bias, which can contribute to stronger stability. Naseer et al.
[31] analyze the intriguing properties of Transformers in
vision tasks by tests on fifteen data sets and conclude that
the Transformer models have higher robustness to occlusion,
distributional shifts, and patch permutations thus can help
to focus and separate the defect target in the images. However,
along with the advantages come the disadvantages: the higher
algorithm complexity of Oðn2 · dÞ where n is the sequence
length and d is the representation dimension and the model
becomes harder to converge when training on small data sets,
which is a common scene in the defect detection area. The
complexity problem gets relieved by the early processing of
CNN which generates smaller-sized feature maps and transfer
learning plays the role to resolve the learning problem. The
defect detection task comes with an imbalance of defect types
and the bounding box mechanism of DETR exacerbates the
imbalance. Focal loss with the elaborate balance factor helps

to relieve this problem. The experiments are analyzed and
shown in the next section.

4. Experiments and Analysis

The platform for the experiments is an Ubuntu 16.04
machine equipped with a GeForce RTX 2080 SUPER and
an Intel Core i5-8500 CPU @ 4.1GHz (32G RAM). The pro-
gram runs on Python 3.9.7 and the framework used for deep
learning is PyTorch 1.9.1.

4.1. Data Set and Evaluation Metrics. The data set we are
using is the one called “CPLID” (Chinese Power Line Insula-
tor Dataset) [12], providing normal insulator images cap-
tured by UAVs and defect insulator images augmented by
synthetic methods. The data set was provided by State Grid
Corporation of China and has been used in several studies
[12, 13, 32, 33] in this area and the data set is currently avail-
able online. The data set contains 600 images of normal
insulators and 248 images of defective insulators. The
images are labeled in VOC [34] format which are XML files
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Figure 9: The training and testing loss and error of training on CPLID are plotted. The x axis represents the number of training epochs and
the y axis denotes the value of loss or class error. Lines colored orange are outputs of the model trained from scratch, and blue lines belong to
the fine-tuned model after pre-training. (a) The total loss. (b) The class error indicating the extent of misclassification. (c) The loss for class
error, bounding boxes, and GIoU. The overall loss is composed of these three losses. Note that the loss curves are only for illustrating
purpose, and the actual precision curves are presented in Figure 11.
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and for the convenience of our proposed method, the anno-
tations are converted to COCO [27] format of JSON file. The
defect images are trained and evaluated in our proposed
method and the images are randomly divided into the train-
ing set and testing set by a ratio of 4 : 1. The size of the
images is adjusted to 739 × 558. The “CPLID” data set is
synthetic and published several years ago and only contains
composite insulator images. To give our proposed method a
better verification, we collected 130 real-world glass insula-
tor images taken by UAVs and tested our method on it.
We call these images “data set B” in our paper. Some of
the images are shown in Figure 7.

Several widely used evaluation metrics are adopted in
our experiments to assess the performance and accuracy of

the proposed method: Precision (P), Recall (R), and Average
precision (AP). The definitions of these metrics are as
follows:

P = TP
TP + FP

, R = TP
TP + FN

, ð11Þ

AP =
ð1
0
P Rð ÞdR, ð12Þ

where TP denotes the number of defects that are correctly
located, FP represents the number of locations reported as
defects, while actually not, and FN represents the number
of defects that have not been detected correctly. The
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Figure 10: The loss of training and testing of models on CPLID with different clipped layers. The x axis represents the number of training
epochs and the y axis denotes the value of overall loss. The green lines are from the model of the classification layer clipped. Orange lines and
red lines are from the models of bounding box layers clipped.

Table 2: Performance of contrastive models on CPLID.

Model Backbone APIoU=:50 APIoU=:75 APIoU=:50::05::95 Speed (ms)

RetinaNet ResNet101 0.992 0.953 0.762 80.6

RetinaNet ResNet50 0.993 0.956 0.777 60.2

YOLOv5x CSPDarknet53 0.995 0.960 0.794 26.6

YOLOv5l CSPDarknet53 0.995 0.969 0.795 14.2

YOLOv5m CSPDarknet53 0.995 0.960 0.795 8.2

TOOD ResNet101 1.000 0.969 0.764 86.2

TOOD ResNet50 1.000 0.964 0.787 65.7

Sparse R-CNN ResNet101 1.000 0.981 0.758 86.9

Sparse R-CNN ResNet50 1.000 0.992 0.785 67.1

DETR ResNet101 1.000 0.965 0.752 63.3

DETR ResNet50 1.000 0.985 0.753 41.3

DETR-Focal ResNet101 1.000 0.974 0.769 63.3

DETR-Focal ResNet50 1.000 1.000 0.797 41.3

11Journal of Sensors



correctness of the located bounding boxes is determined by
the threshold of intersection over union (IoU):

IoU = Area G ∩ Pð Þ
Area G ∪ Pð Þ , ð13Þ

where G denotes the ground truth boxes and P stands for the
predicted boxes. In the previous methods of insulator defect
detection, the most commonly used metric follows the rule
of VOC, that is, a predicted box with an IoU threshold greater
than 0.5 shall be considered a successful detection. Here, we
step one more further to the more detailed and accurate
COCO evaluation metrics. The average precision was calcu-
lated in three different IoU threshold conditions: 0.5, 0.75,
and the average value between 0.5 and 0.95 in steps of 0.05.

4.2. Detection of Insulator Defects. The training was per-
formed with the AdamW [35] optimization method. The
learning rate was set as 10−4 for the transformer, 10−5 for
the backbone, which is an ImageNet pre-trained ResNet

model. A weight decay of 10−4 was used. After training on
COCO data set, the model was fine-tuned on CPLID and the
complete fine-tuning process took 500 epochs. The size of
the mini-batch is set to 2. The γ value of focal loss was set to
2.5. As we observed in the fine-tuning process, the model
has started to converge after merely 20 iterations. As shown
in Figure 8, the bounding boxes predicted with relatively low
confidence scores have started to cluster around the defect
location; meanwhile, the model still needs more iterations to
determine the more exact positions of the defects.

The loss charts are shown in Figure 9. The training results
are plotted in solid lines and the validation results are depicted
in dashed lines. The class error is the 100’s complement of the
accuracy for the classification of the defects. The overall loss is
the weighted sum of losses for class error, bounding boxes, and
generalized IoU (GIoU) [36] scores. The class error loss is the
standard cross-entropy loss calculated between the predicted
class and the ground truth. The loss of the bounding box is
the L1 loss for the coordinates. The GIoU loss is an improved
IoU loss that can performwell in different cases of overlapping
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Figure 11: The average precision curves of IoU50, 75, and 50 : 95. (a) is the results of data set “CPLID,” a synthetic composite insulator data
set, and (b) is from data set “B,” which is a data set containing real-world glass insulator images collected by us. As we can see from the
curves, the AP75 and AP50:95 of real-world data dropped a lot compared to the synthetic, and the AP50 curve converges to a
competitive level.
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or even no overlap at all. To make a graphical comparison
between the losses of the fine-tune and train-from-scratch
models, the outputs are depicted together. We can find that
the overall fine-tune loss experiences a sharp drop at the
beginning of training, then descends in a more gentle way
while the losses of the bounding box and GIoU oscillating
around, finally converges to a flatland that hardly changes as
the training progresses further. The validation loss corre-
spondingly decreases with the training loss and converges
to a level similar to the training loss. Class error also drops
to a level slightly above zero, which means that most
defects are correctly classified. However, the orange lines
appear to proceed differently. The training losses also drop
significantly at the beginning but quickly stop at a relatively
high level without any further changes. Meanwhile, the vali-
dation losses are shocking ineffectively and then stay stable
at a level slightly below the starting point. The class error does
not drop at all, indicating that the model trained from scratch
completely failed at classifying the defects. The training-from-
scratch model just overfits the limited training data and
behaves incomprehensibly on the testing data. It can be known
that the model without pre-training and directly trains on the
insulator defect data failed to learn and converge. On the con-
trary, the fine-tune model successfully went through the learn-
ing process and converges to an acceptable level.

4.3. Case Study of Failure. Not all the clipping choices bring
improvement on the target domain task. To find and verify
the feasible and suitable method of clipping layers, some
explorations are carried out to a limited extent of how the last
layers affect the model’s accuracy in this task. There are two
separate stacks of feed-forward layers on the top of the model:
one layer for classification and three layers for bounding box
regression. We name these layers c, b0, b1, and b2 for conve-
nience. The experiments are conducted under these condi-
tions: First, only the classification layer is clipped. Second,
the last bounding box is clipped and thirdly, the last two
bounding box layers are clipped. The losses are shown in
Figure 10. For models with bounding box layers clipped, the
training losses stick to a high level near the starting position
and just drop very slightly throughout the whole process.
The testing losses explode to a very high level and remain sta-
ble after a period of shock. The orange lines lay just slightly
below the red lines, indicating that one more clipped layer
caused a slight drop in performance, but these two losses do
not make any significant difference. Models with clipped
bounding box layers failed to learn and converge on the target
task. It can be found that the weights of the transferred bound-
ing box layers are important and useful in the fine-tuning pro-
cess and should not be abandoned. It can be inferred that a
feasible way to get a well-fine-tuned model is to only clip
and reconstruct the classification layer with full model weights
adjusting in the learning process on the target domain.

4.4. Results in Comparison. To compare the performance of
different methods and models, contrastive experiments are
conducted on CPLID. Several models are tested following
the same way of pre-training and fine-tuning in our pro-
posed method, including RetinaNet [28], YOLOv5 [37],

TOOD [38], Spase R-CNN [39], and their variants with dif-
ferent network sizes. The results of the comparison are pre-
sented in Table 2.

For the IoU threshold of 0.5, DETR models reached AP
performance of 1.000 and for the IoU threshold of 0.75 and
APIoU=:50::05::95, the DETR-Focal model with a backbone of
ResNet50 achieved the best performance of 1.000 and
0.797 which outperforms the others. Notably with a back-
bone of ResNet50, the DETR-Focal model received 1.5%
and 4.4% boosts on APIoU=:75 and APIoU=:50::05::95 compared
to the corresponding DETR model and with a backbone of
ResNet101, the DETR-Focal model received 0.9% and 1.7%
boosts. However, the YOLOv5m model has a faster inference
speed of 8.2ms compared to the others. Our proposed
method performed well at the common and stricter metric
levels, but there is still room for improvement at the infer-
ence speed. We noticed that for each kind of model, the best
performance was not achieved by the model with the largest
backbone or network size. That is partly because for tasks
with a few classes and objects to detect, a larger backbone
can contribute to the result of overfitting, and choosing a
proper network size will help to improve the performance
in practical applications.

Note that the data above is from data set CPLID, a syn-
thetic composite insulator defect data set, which only offers a
reference to the defect detection performance on composite
insulators. To verify the validity of our method, we trained
and tested the model on 130 real-world glass insulator
images taken by UAVs. The accuracy of the model reaches
96.3%ðAPIoU=:50Þ for bunch-drop defects on this part of data.
Since in this area APIoU=:50 is normally enough for applica-
tions, this performance is a competitive result. The precision
curves which illustrate more detail are in Figure 11. Com-
pared to the results on CPLID, the APIoU=:75 and A
PIoU=:50::05::95 dropped to level of 23.4% and 39.6% which
shows us that the real-world defects are harder to be
detected in more granular metrics. Although the results of
these two metrics are not very satisfying, we provide these
results to offer other researchers a reference and we will con-
tinue to improve our work in the future.

5. Conclusion

In this article, an insulator defect detection method based on
DETR is presented that combines transfer learning
techniques and an improved loss function. Compared to
conventional multistage methods, the proposed method
shows the convenience and conciseness of end-to-end
detection with comparable performance and the possibility
of training an insulator defect detector with limited defect
data. So far, the method has provided competitive results
of detecting bunch-drop defects in composite insulators
and glass insulators. It comes with new challenges of
detecting smaller faults and more types of defects. The
inference speed of our method is still slow compared to the
models characterized by fast speed. In future studies, we
will gather more insulator defect data with higher diversity
and improve the generalization performance and inference
speed of the method.
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Appendix

Structure of DETR

DETR(
(transformer): Transformer(
(encoder): TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(

in_features=256, out_features=256, bias=True)
)
(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)

)
(1): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(

in_features=256, out_features=256, bias=True)
)
(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)

)
(2): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(

in_features=256, out_features=256, bias=True)
)
(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
(3): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(

in_features=256, out_features=256, bias=True)
)
(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
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)
(4): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(

in_features=256, out_features=256, bias=True)
)
(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)

)
(5): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(

in_features=256, out_features=256, bias=True)
)
(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)

)
)

(decoder): TransformerDecoder(
(layers): ModuleList(
(0): TransformerDecoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(

in_features=256, out_features=256, bias=True)
)
(multihead_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(

in_features=256, out_features=256, bias=True)
)
(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)

)
(1): TransformerDecoderLayer(

(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(

in_features=256, out_features=256, bias=True)
)
(multihead_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(

in_features=256, out_features=256, bias=True)
)
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(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)
)
(2): TransformerDecoderLayer(

(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(

in_features=256, out_features=256, bias=True)
)
(multihead_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(

in_features=256, out_features=256, bias=True)
)

(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)

)
(3): TransformerDecoderLayer(

(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(

in_features=256, out_features=256, bias=True)
)
(multihead_attn): MultiheadAttention(

(out_proj): NonDynamicallyQuantizableLinear(
in_features=256, out_features=256, bias=True)

)
(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)

)
(4): TransformerDecoderLayer(

(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(

in_features=256, out_features=256, bias=True)
)
(multihead_attn): MultiheadAttention(

(out_proj): NonDynamicallyQuantizableLinear(
in_features=256, out_features=256, bias=True)

)
(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
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(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)
)

(5): TransformerDecoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(

in_features=256, out_features=256, bias=True)
)
(multihead_attn): MultiheadAttention(

(out_proj): NonDynamicallyQuantizableLinear(
in_features=256, out_features=256, bias=True)

)
(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)
)
(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)
)
(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)
)

)
(norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)

)
)
(class_embed): Linear(in_features=256, out_features=2, bias=True)
(bbox_embed): MLP(

(layers): ModuleList(
(0): Linear(in_features=256, out_features=256, bias=True)
(1): Linear(in_features=256, out_features=256, bias=True)
(2): Linear(in_features=256, out_features=4, bias=True)

)
)
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(query_embed): Embedding(100, 256)
(input_proj): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
(backbone): Joiner(

(0): Backbone(
(body): IntermediateLayerGetter(

(conv1): Conv2d(
3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)

(bn1): FrozenBatchNorm2d()
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(

kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): Bottleneck(

(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d()
(conv2): Conv2d(

64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d()
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d()
(relu): ReLU(inplace=True)
(downsample): Sequential(

(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): FrozenBatchNorm2d()

)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d()
(conv2): Conv2d(

64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d()
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d()
(relu): ReLU(inplace=True)

)
(2): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d()
(conv2): Conv2d(

64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d()
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d()
(relu): ReLU(inplace=True)

)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d()
(conv2): Conv2d(

64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d()
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d()
(relu): ReLU(inplace=True)

)
)
(layer2): Sequential(

(0): Bottleneck(
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(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d()
(conv2): Conv2d(

128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d()
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d()
(relu): ReLU(inplace=True)
(downsample): Sequential(

(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): FrozenBatchNorm2d()

)
)
(1): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d()
(conv2): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d()
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d()
(relu): ReLU(inplace=True)

)
(2): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d()
(conv2): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d()
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d()
(relu): ReLU(inplace=True)

)
(3): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d()
(conv2): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d()
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d()
(relu): ReLU(inplace=True)

)
)
(layer3): Sequential(

(0): Bottleneck(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d()
(conv2): Conv2d(

256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d()
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d()
(relu): ReLU(inplace=True)
(downsample): Sequential(

(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): FrozenBatchNorm2d()

)
)
(1): Bottleneck(

(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d()
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(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

(bn2): FrozenBatchNorm2d()
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d()
(relu): ReLU(inplace=True)

)
(2): Bottleneck(

(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d()
(conv2): Conv2d(

256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d()
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d()
(relu): ReLU(inplace=True)

)
(3): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d()
(conv2): Conv2d(

256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d()
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d()
(relu): ReLU(inplace=True)

)
(4): Bottleneck(

(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d()
(conv2): Conv2d(

256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d()
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d()
(relu): ReLU(inplace=True)

)
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d()
(conv2): Conv2d(

256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d()
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d()
(relu): ReLU(inplace=True)

)
)
(layer4): Sequential(

(0): Bottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d()
(conv2): Conv2d(

512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d()
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d()
(relu): ReLU(inplace=True)
(downsample): Sequential(
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(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): FrozenBatchNorm2d()

)
)
(1): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d()
(conv2): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)
(bn2): FrozenBatchNorm2d()
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d()
(relu): ReLU(inplace=True)

)
(2): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d()
(conv2): Conv2d(

512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d()
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d()
(relu): ReLU(inplace=True)

)
)

)
)
(1): PositionEmbeddingSine()

)
)

Data Availability

Previously reported insulator defect data were used to sup-
port this study and are available at https://github.com/
InsulatorData/InsulatorDataSet. These prior studies (and
data sets) are cited at relevant places within the text as refer-
ences [12].
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