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With the development of the power internet of things (IOT), load forecasting will play an important role the power system. It can
optimize the power generation planning and improve the economical operation of power IOT. In this paper, a new loading
forecasting algorithm for power IOT is proposed using training data dimension expansion and ensemble learning. In the
offline phase, the obtained meteorological data and time information is normalized to remove the unit effect at first. Then, the
Hampel filter is used to cope with the outliers of the meteorological data from sensors. Through the preprocessing, the
fingerprint of the training data is constructed. Next, the matrix multiplication method is proposed to expand the dimension of
training data fingerprint information. Finally, the ensemble learning combining multiple long short-term memory (LSTM)
networks are proposed to obtain multiple power load forecasting models and corresponding weight coefficients. In the online
phase, the obtained meteorological data and time information are preprocessed to form the input of and power load
forecasting models. The final power load forecasting is obtained by linear weighted sum method with intermediate forecasting
result. In the proposed algorithm, more features of training data can be obtained by the data dimension expansion. Moreover,
the ensemble learning using LSTM can make fully use of the timing sequence of training and improve the generalization
performance of offline training. Experiment results illustrate that the proposed algorithm has better forecasting performance
than existing methods.

1. Introduction

With the increasing requirement of energy consumption, a
clean, low-carbon, safe, and shared power system has received
many attentions for both academic and industry [1, 2]. The
new energy revolution called “energy + Internet” becomes a
research hotspot [3]. In China, the State Grid Corporation
began to develop the ubiquitous power internet of things
(IOT) for smart grid in 2019 [3]. The power IOT connects
people and devices that are related to the power grid. By col-
lecting device-related data using sensor, the data is sent to
the server which is processed by big data analysis, cloud com-
puting, and artificial intelligence technologies. It effectively
integrates communication infrastructure resources and power

system infrastructure resources which can realize the intercon-
nection of all things in the power system. Now, the power IOT
can promote the efficiency of energy services and new energy
consumption dramatically. In [4], an architecture for ubiqui-
tous power IOT is proposed which brings great convenience
to the collection, transmission, processing, and storage of data.
In [5], the characteristics of power IOT, its application, and
the needs of smart grid for communication coverage and data
acquisition are proposed.

For the requirement of power IOT construction, power
load forecasting plays an important role in the operation
planning of power system. The authors of [6] proposed a
load forecasting method by two groups of features. The
half-hour electrical load variables obtained from the smart
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meters through the IOT technology together with the lagged
load and calendar variables are used for short-term load
forecasting by multilayer perceptron neural networks. In
[7], an ultrashort term load forecasting method for the
power IOT is proposed by federated learning. It learns the
model parameters from the data distributed in multiple edge
nodes. Since rapid and accurate power load forecasting can
optimize the power generation planning and improve the
economical operation of power IOT, it is urgent to study
the load forecasting technique for power IOT [8].

Recently, the load forecasting is performed with different
kinds of techniques in the literature which can be broadly

divided into two groups: traditional and artificial
intelligence-based techniques.

For traditional technique, the statistical method is
mostly used for load forecasting. In [9], considering the load
forecast is a conditional expectation of load given the time,
weather conditions, and other explanatory variables; load
forecasting can be calculated directly from given parameters.
In [10], the general exponential smoothing is used to
develop an adaptive load forecasting system using observed
values of integrated hourly demand. In [11], a modified
autoregressive moving average- (ARMA-) based method
with non-Gaussian process is used to improve the
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Figure 1: The block diagram of the proposed algorithm.
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Figure 2: The description of temperature information process by Hampel filter.
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forecasting performance. Note that due to characteristics of
nonlinear features of time series univariate load data, this
kind of technique does not always perform well.

In order to cope with the limits of traditional technique,
artificial intelligence-based technique is developed. First, some
machine learning-based methods are proposed. In [12], a
kernel-based support vector regression (SVR) method is used
for load forecasting by choosing kernel function. In [13], the
artificial neural network (ANN) is used to obtain the load fore-
casting model for weekdays and weekends, respectively. Now,
with the development of machine learning theory, some deep
learning methods are used for load forecasting, because it has
greater number of hidden layers to deal with the complicated
nonlinear patterns. In [14], a multiscale convolutional neural
network with time cognition is proposed for load forecasting.
Since the recurrent neural network (RNN) is effective to cap-
ture non-stationary training data, a pooling-based deep RNN
in [15] is proposed to solve the overfitting problem in load
forecasting. Note that vanishing gradient and exploding gradi-
ent problem arise in RNN can reduce the prediction accuracy.
Thus, the long short-term memory (LSTM) network has been
taken into account to solve these problems. In [16], an effective
methodology using the LSTM network is developed to make a
precise forecasting under more complex time series load data
condition.

According to the above discussion, we continue to study
deep learning-based load forecasting algorithm. Since the time
andmeteorological data, such as wind speed, temperature, and
pressure, are critical affect the power consumption [17], in this

paper, a deep learning technique is used to training the rela-
tionship between the above factors and power load. The con-
tributions of this paper can be summarized as follows:

(1) A deep learning-based load forecasting algorithm is
proposed by LSTM. It can effectively avoid the
insensitivity of training data time series in the pre-
diction process

(2) For data preprocessing, the Hampel filter can elimi-
nate the outlier caused by sensor noise. Moreover,
the feature extraction network using random matrix
multiplication can obtain better feature representa-
tion which can improve the offline training
performance

(3) For regression learning, the ensemble learning
framework which combines multiple LSTM net-
works is used to train the relationship between the
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Load value

LabelFingerprint

Training data

Month Hour Wind 
speed

Tempe
rature Pressure

Figure 4: The description of the training data.

3Journal of Sensors



measurements and load. It can reduce the risk of fall-
ing into local optimal solutions and improve the
generalization performance

(4) Feature extraction network (random matrix) and
regression learning network (LSTM network) are
combined for joint learning and optimization. Thus,
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Figure 5: The schematic diagram of the proposed dimension expansion.
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the optimal parameters in the global sense can be
obtained, and the final load forecasting performance
can be improved

The remainder of this paper is organized as follows. Sec-
tion 2 gives the algorithm framework. The offline phase
description and the online phase description of the proposed
algorithm are explained in Sections 3 and 4, respectively.
Field test and performance analysis are illustrated in Section
5, and conclusions are drawn in Section 6.

2. Algorithm Framework

According the block diagram shown in Figure 1, the proposed
algorithm contains two main phases: offline training phase

and online forecasting phase. For offline training phase, it con-
tains three important steps: (1) training data preprocessing,
(2) feature extraction using dimension expansion, and (3)
regression learning using ensemble learning. For another, in
the online forecasting phase, after the similar preprocessing
of the obtained data, the trained feature extraction network
and forecasting model are used to estimate the final load fore-
casting result. In the following, each step of the proposed algo-
rithm will be described in detail.

3. Offline Phase Description

3.1. Training Data Preprocessing. In this step, data normali-
zation and outlier detection are used for data preprocessing.
First, as we know, some measurement environments and the
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sensor noise may lead some measurements become outlier in
the data collection. In the paper, the Hampel filter is used to
remove these outliers [18]. For a given vector x = fx1, x2,
⋯, xng, the observation window of each measurement is
defined at first. Assume the half-length of the window is k;
the total length of the defined window is calculated as 2k +
1 (including the given measurement). Then, the median of
all measurement data in the window is calculated as

xi =median xi−k, xi−k+1,⋯, xi,⋯, xi+k−1, xi+kð Þ: ð1Þ

The standard deviation of each measurement for the
absolute value of the median is written as

ei = 1:4286median xi−k − �xij j,⋯, xi+k − �xij jð Þ, ð2Þ

After filter, the measurement can be described as

bi =
xi xi − �xij jð ≤ 3 ei,
�xi xi − �xij jð ≥ 3 ei:

(
ð3Þ

If the measurements exceed three times of the obtained
standard deviation, the median is used to substitute the mea-
surement data.

Taking the temperature and pressure information as an
example, Figures 2 and 3 describe the measurement data
preprocessing results. It can be seen that after Hampel filter
process, some outliers are removed. Thus, Hampel filter has
effects on outlier deletion.

Next, the collected meteorological data and time informa-
tion are scaled in order to lead them fall into a special range. In
this paper, the min-max method is used to make the obtained
data information into [0 1] range which can be given by [19]

xn′ =
xn − xmin
xmax − xmin

, ð4Þ

where xn, xn′ describe the original and normalized data, respec-
tively, and xmax and xmin are the maximum and minimum
values of this kind of given data.
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Figure 11: The load forecasting description of the proposed algorithm.
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The purpose of data normalization is to remove the
unit effects for the following training. Through this pro-
cess, different kinds of data are at the same level. And
the comprehensive evaluation and analysis can be carried
out.

Thus, through the above preprocessing, the fingerprints
of training data are described in Figure 4, where the finger-
print contains time information (month, hour) and meteo-
rological data (wind speed, temperature, and pressure).
The size of fingerprint is five dimensions. The label of train-
ing data is actual load.

3.2. Feature Extraction Using Training Data Dimension
Expansion. After the data preprocessing, in the next, the
training data expansion is used to obtain more features for
training. Traditional data dimension expansion for deep
learning contains random augmenter and lower-bound
cropper [20]. The idea of random augmenter is to randomly
generate a binary mask that can be multiplied by the data
vector. The lower-bound cropper augmentation technique
leverages this observation to increase the training data size.
In particular, for a given collected data vector, any entry
whose value is less than a certain threshold is a candidate
to be removed (set to zero). All combinations of these entries
can then be added to form the new training data. As shown

in Figure 5, in this step, the random matrix is proposed to
expand the dimension of the fingerprint.

Assume the original fingerprint is defined as A with size
1 ×m; in order to expand the dimension of a vector, a ran-
dom matrix B is defined for multiplication operation. In
order to meet the requirement of calculation rule and dimen-
sion expansion, the size should be m × n (where n >m). The
optimal element can be obtained from the training with fol-
lowing regression learning.

At last, the expanded fingerprint can be written as

C = A ∗ B, ð5Þ

where the size of C is n. Each element is obtained by multi-
plying vector with matrix.

Note that since the size of expanded fingerprint is larger
than that of the original fingerprint and the element can be
determined with the offline training, more detailed feature
for training data can be obtained through above dimension
expansion.

3.3. Regression Learning Using Ensemble Learning. In this
section, in order to improve the training performance of
the offline phase, ensemble learning framework is proposed
for regression learning [21]. Moreover, the LSTM network
is chosen as the sublearner which can make fully use of the
time series of the training data.

First, some basic knowledge of LSTM network is
described [22]. According to the LSTM architecture shown
in Figure 6, it contains four basic components: cell, input
gate, output gate, and forget gate. The function of each com-
ponent is described as follows. Cell is the core of the com-
pute node. The information can be transferred over
random time intervals through the cell. The gate traces the
flow of the input and output data from the cell. The input
gate and output gate are used to control the input and out-
put. The forget gate is used to control the retention degree
of historical information. Moreover, the sigmoid activation
function is introduced to make the output between [0, 1].
When the output is 0, it means that all the information in
the previous state is discarded. When the input gate is 1,
all information in the previous state is retained.

A unit of LSTM is defined as

it = σ Wxixt +Whiht−1 + bið Þ,
f t = σ Wxf xt +Whf ht−1 + bf

� �
,

ot = σ Wxoxt +Whoht−1 + boð Þ,
ð6Þ

Input is defined as

gt = tanh Wxcxt +Whcht−1 + bcð Þ ð7Þ

Cell update is defined as

ct = f t ∘ ct−1 + it ∘ gt ,
ht = ot ∘ tanh ctð Þ:

ð8Þ
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Figure 13: MAPE and R2 description of the proposed algorithm.

Table 1: Statistical error analysis of the proposed algorithm with
different numbers of LSTM.

2 4

MAE 94.8697 86.64721

RMSE 146.1882 130.1099

MAPE 0.08238 0.07374

R2 0.8949 0.91678
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where σ is sigmoid activation function; ∘ is the Hadamard prod-
uct; xt and ht are described as the input and output of the cur-
rent node; Wxi,Whi,Wxf , andWhf represent weight matrix;
bi, bf , bo, and bc are the biased values; it , f t , and ot describe

the results of input gate, output gate, and forget gate, respec-
tively; gt is the update condition; and xt is the data input.

Second, the regression learning using ensemble learning
framework is proposed. As we all know, an ensemble with a
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number of sublearners has much stronger generalization abil-
ity than that of sublearners. Sublearners are usually generated
from training data by a basic learning algorithm such as neural
network, SVM, or other machine learning approaches. The
diversity of each sublearner is vital to training performance
of ensemble learning. Therefore, most ensemble methods use
some effective strategies to improve the diversity of sublear-

ners [23, 24]. Three main kinds of ensemble learning contain
Adaboost, bagging, and boosting. As shown in Figure 7, by
the data normalization and Hampel filter preprocessing in
Section 3.1, the obtained fingerprint is used for data dimension
expansion and regression learning. For each sublearner, the
randommatrix is generated at first and then the LSTM is used
for regression learning. The task of learning is to obtain the
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optimal element of random matrix and the parameters of
LSTM network. At last, the feature extraction network with
optimal element-based random matrix and the load forecast-
ing model is given. In the offline phase, more sublearners are
used for regression learning.

Figure 8 shows the proposed framework of LSTM net-
work. It can be seen that it contains two LSTM layers, one
dropout layer, one full connection (FC) layer, and RELU
layer. Both function and parameters of each layer are
described as follows:

(1) LSTM layer: for the first layer, the length of the state
vector unit is 8, the time stride is 1, and the activa-
tion function is tanh. For the second LSTM layer,
the length of the state vector unit is 16 and the time
stride is 1

(2) Dropout layer: the aim of this layer is to reduce the
number of actual training parameters by disconnect-
ing neural network randomly. In this paper, the
parameter is chosen as 0.1

(3) FC layer: in this layer, it can map the feature from
one space to another. The activation function is cho-
sen as RELU

(4) RELU layer: the aim of this layer is to mitigate the
effect of overfitting

At last, the weight parameter is chosen for online forecast-
ing data fusion. In this paper, the weight parameter is deter-
mined with the offline training error. If the offline training
error of the sublearner is small, the corresponding weight
parameter is larger. Otherwise, the weight parameter is small.
For ith sublearner, the weight parameter can be described as

wi =
1/ei
∑i1/ei

, ð9Þ

where ei is the training error of the ith sublearner.
Note that in the proposed offline training, the random

matrix is chosen as the feature extraction network. The fea-
ture extraction network and regression learning network are
combined with each other for offline training. Thus, the per-
formance of offline phase can be improved.

4. Online Phase Description

In this section, when the meteorological data and time infor-
mation are obtained, the load forecasting model is used for
load forecasting. According to the block diagram shown in
Figure 9, the load forecasting process is described as follows:

First, based on the obtained time information and mete-
orological data, the data preprocessing proposed in offline
phase is used to construct the fingerprint by normalization
and Hampel filtering. Then, the fingerprint is chosen as the
input data for each load forecasting model. At last, the final
load is estimated by the linear weighting method which is
given by

ĝ =〠
i

wigi, ð10Þ

where gi is the intermediate load forecasting of the ith load
forecasting model.

5. Experiment Results and
Performance Analysis

5.1. Experiment Parameter and Environment. In the experi-
ment, the training data are chosen for a community of
Suzhou, Jiangsu Province. All the measurement data are col-
lected with the time interval of 15min in 24 hours. The pro-
cedures are based on Windows 10 operating system Python
3.7. The pandas, numpy, and matplotlib library routines in
Anaconda and Keras training framework are chosen for off-
line training.

5.2. Performance Evaluation Index. In this paper, the mean
absolute error (MAE), mean absolute percentage error
(MAPE), root mean square error (RMSE), and determinate
coefficient (R2) are chosen for performance evaluation which
are shown in (11)–(14). The above performance evaluation
indexes describe the forecasting performance from different
aspects. The MAE is defined as the average absolute error
between the predicted value and the observed value. The
MAPE is the percentage value description of the MAE. The
RMSE represents the standard deviation of the difference
between the predicted value and the observed value. The
determination coefficient is used to evaluate the fitting
degree of regression model coefficients. The higher the value
is, the better the model is.

MAE = 1
N
〠
N

n=1
q̂n − qnj j, ð11Þ

MAPE = 100%
N

〠
N

n=1

q̂n − qn
qn

����
����, ð12Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

n=1 q̂n − qnð Þ2
N

s
, ð13Þ

Figure 18: The figure of raspberry pi.
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R2 = ∑N
n=1 q̂n − �qð Þ2

∑N
n=1 qn − �qð Þ2

, ð14Þ

where qn and q̂n describe the true and forecasting of the load,
�q is the mean of the load forecasting, and N is the number of
load to be forecasting.

5.3. Performance Description of the Proposed Algorithm

5.3.1. The Description of Training Performance. In this
experiment, the parameter of the running computer is given
as follows: CPU—AMD R7-5800H, GPU—Nvidia RTX 3050
4G, Memery—16G, and software platform—Pycharm
(Python 3.9.7)+TensorFlow 2.1.0+Keras 2.3.1. There are
18000 measurements for the experiment where the ratio
between training data and testing data is 0.8 : 0.2. Figure 10
shows the training performance of the proposed algorithm,
where the parameter of data dimension expansion is 16.
We can find that when the number of iterations increases,
the MSE of load forecasting will gradually decrease. Taking
the iteration number is 80 as an example, the MSE
approaches the minimum value of 0.032 which means the
loss function converges. Therefore, under this iterative con-
dition, the load forecasting model obtained from offline
learning can be used for online prediction estimation.

5.3.2. Performance Description of the Proposed Algorithm. In
this section, the forecasting performances of the proposed
algorithm with different parameters are described. Taking
the number of training data as 18000 as an example,
Figure 11 illustrates the true and forecasting load under
different times, when the parameter of data dimension

expansion is 16 and the number of LSTM is 2. It can be
seen that under different time and meteorological data
conditions, the load is changed dramatically, but the load
forecasting can be also close to the actual value no matter
how the actual load changes. In order to describe the algo-
rithm performance more clearly, Figures 12 and 13 show
the statistical error of the load forecasting. When the
number of training data increases, the forecasting error
will decrease and the forecasting performance can be
improved. From the figures, when the number of training
data is 18000, the MAE and RMSE are only 94.87 and
146.19, respectively. If the number of training data is more
than 9000, the parameter R2 is close to or larger than 0.8.
Therefore, through the statistical analysis, it can be con-
cluded that the proposed algorithm can fully satisfy for
practical application.

Table 1 describes the statistical error analysis with differ-
ent numbers of LSTM, when the number of training data is
18000. As expected, when the number of LSTM increases,
the load forecasting performance can be improved dramati-
cally. Thus, without considering the training time cost, it is a
better method to increase number of LSTM for performance
improvement.

5.4. Performance Comparison. In this section, there are two
existing load algorithms: (1) the training data is straightly
used for training with LSTM (no data dimension expan-
sion+no ensemble learning), and (2) the training data
dimension is expanded at first, and then the LSTM is used
for training (data dimension expansion+no ensemble learn-
ing) chosen for algorithm comparison. Figures 14–17
describe the statistical error comparison of different

Figure 19: The description of testing data import.
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algorithms, respectively. From the experiment results, it can
be seen that the load forecasting performance of all three
algorithms becomes better, when the number of training
data increases. Taking 15000 training data as an example,
the MAE, RMSE, MAPE, and R2 of the algorithm are
107.76, 162.73, 0.09, and 0.87, respectively. However, the
four error statistical parameters of the data dimension
expansion+no ensemble learning method, which the perfor-

mance is more close to the proposed algorithm, are 161.34,
213.94, 0.13, and 0.78. Thus, according to the statistical error
analysis, the proposed algorithm has the best load forecast-
ing performance among three methods. The reason can be
concluded as follows. The data dimension expansion tech-
nology can describe the feature of training data more clearly.
Moreover, the ensemble learning can improve the efficiency
of offline learning.

Figure 21: The description of load forecasting save.

Figure 20: The description of load forecasting model import.
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5.5. Hardware Transplantation Experiment. In order to show
the performance of the proposed algorithm for practical
application, in this paper, the raspberry pi shown in
Figure 18 is used for hardware transplantation [25]. First,
the deep learning tools, such as Tensorflow and Keras, are
installed, and then, all the libraries for the experiment are
configured. In the following, the transplantation are
described by the trained load forecasting model and testing
data.

According to Figure 19, the testing data set “history_
weather_15min.csv” is imported in raspberry pi. The month,
hour, wind speed, temperature, and pressure in the testing
data are chosen for the load forecasting. Then, the obtained
load forecasting model in the offline phase is loaded in the
hardware platform which is shown in Figure 20. At last,
the actual load and load forecasting are written in files
“W.xlsx.” From the output shown in Figures 21 and 22, col-
umns B and C describe the actual load and load forecasting,
respectively.

6. Conclusions

In this article, a deep learning-based loading forecasting
algorithm for power IOT is proposed. In the proposed algo-
rithm, two data preprocessing, min-max normalization and
hampel filter, are used to construct the fingerprint of the
training data. Then, matrix multiplication method is pro-
posed to extract the fingerprint feature by dimension expan-
sion. Finally, the ensemble learning using multiple LSTM
networks is proposed for offline training and obtain power
load forecasting models. In the proposed algorithm, the data
dimension expansion can obtain more features for training

data. The ensemble learning using LSTM can make fully
use of the timing sequence of training and improve the gen-
eralization performance. The experiment is carried out to
evaluate the forecasting performance. Through the experi-
ment results, it can be seen that the proposed algorithm
has better load forecasting performance than chosen existing
approaches.
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