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In cardiac rhythm disorders, atrial fibrillation (AF) is among the most deadly. So, ECG signals play a crucial role in preventing
CVD by promptly detecting atrial fibrillation in a patient. Unfortunately, locating trustworthy automatic AF in clinical settings
remains difficult. Today, deep learning is a potent tool for complex data analysis since it requires little pre and postprocessing.
As a result, several machine learning and deep learning approaches have recently been applied to ECG data to diagnose AF
automatically. This study analyses electrocardiogram (ECG) data from the PhysioNet/Computing in Cardiology (CinC)
Challenge 2017 to differentiate between atrial fibrillation (AF) and three other rhythms: normal, other, and too noisy for
assessment. The ECG data, including AF rhythm, was classified using a novel model based on a combination of traditional
machine learning techniques and deep neural networks. To categorize AF rhythms from ECG data, this hybrid model
combined a convolutional neural network (Residual Network (ResNet)) with a Bidirectional Long Short Term Memory
(BLSTM) network and a Radial Basis Function (RBF) neural network. Both the F1-score and the accuracy of the final hybrid
model are relatively high, coming in at 0.80% and 0.85%, respectively.

1. Introduction

A common arrhythmia known as atrial fibrillation (AF) has
been linked to serious heart-related diseases such stroke and
heart failure [1, 2]. It increases the risk of cardiovascular dis-
appointment and, as a result, significantly impacts depres-
sion and mortality [3, 4]. Furthermore, AF affects many
people worldwide, and the risk increases with age [5]. The
capacity of Artificial Intelligence (AI) and AI techniques to
enhance the early detection of cardiovascular diseases with
little effort in ECG testing is still mostly unknown. The
2017 Physionet/Computing in Cardiology competition dis-
courages mainstream academics from proposing solutions
for programmed AF detection from brief single-lead ECG
data [1]. The test is presented as a traditional machine learn-
ing issue, with a marked preparation set and suggestions

evaluated against a cloaked test set of records. Regardless
of whether the primary assessment for the final placement
is the precision of the proposed model, various distinct fea-
tures should be evaluated for the prior appropriation of each
proposition in clinical practice. Because it perfectly captures
the electrical movement of the cardiac activity [1] ECG
determination can provide competent AF detection in clini-
cal practice [3]. Because symptoms occur in episodes, it is
challenging to examine AF during normal in-office visits
[2]. Recent techniques consider the high fatality rate and
inadequacy in detecting AF [6]. ECG signal examinations
for AF localization are conducted in the time or recurrence
area. The current AF recurrence is commonly assessed over
a sign with deleted QRS complex and T peak edifice [7, 8].
This study aims to provide a characterization model and
evaluate its ability to separate brief single-lead ECG signals
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classified as AF, Normal (N), noisy, and Other Rhythms (O)
using the 2017 PhysioNet/Computing in Cardiology Chal-
lenge database [9].

The most common symptomatic tool for identifying car-
diac arrhythmias is the ECG. AF is the most prevalent car-
diac musicality problem characterized by disorganized
chamber compression [4]. The prevalence of AF increases
with each succeeding decade of age, from 0.5% at 50-59
years to approximately 9% at 80-90 years [10]. It is estimated
that 2.3 million adults in the United States suffer from AF,
which is expected to rise to 5.6 million by 2050 as the popu-
lation ages [11]. AF is considered a substantial cause of death
and misery as it increases the risk of heart failure and stroke.

For this reason, an assortment of programmed calcula-
tions managing the surface of ECG signals has been pro-
posed in recent years. Many misuse the two changes
incited by the arrhythmia on the ECG. From one perspec-
tive, AF is portrayed by a quick atrial movement, whose rate
can change between 240 and 540 actuation/min [12]. Since
everyone shells the atrioventricular (AV) hub, a quick and
sporadic ventricular reaction can be seen on the ECG.
Unmistakably, this conduct diverges from the ordinary
example of the R-R interim arrangement amid typical sinus
mood (NSR). However, during NSR, the homogeneous P-
wave associated with atrial depolarization is replaced by a
series of low-fullness fibrillatory waves with varied morphol-
ogy (f-waves) [12, 13]. AF is underanalyzed and ordinarily
distinguished after a patient presents serious complications
such as stroke or heart failure.

Drugs can ease side effects and help forestall genuine dif-
ficulties, for example, stroke. Electrophysiological medical
procedures and radiofrequency removal have effectively
restored an ordinary mood [14]. Late progress in versatile
innovation (arrange and computational power network)
makes it conceivable to grow minimal effort, broadly acces-
sible, and exact medicinal gadgets. These gadgets can be
utilized to address the lack of medicinal services assets in
the creating scene and lower the expense of social insurance
in developed countries. AF finders consider preliminary
screening and recognizable proof of AF contrasted with
manual strategies. Most current calculations are found in
ventricular reaction and atrial movement investigations.
Garcia et al. [15, 16] describe AF, including pulse variability,
wavelet entropy, and P-wave recognition. However, current
AF identification strategies in clinical settings are restricted
[17]. In past examinations, an order was performed just to
clean information. Be that as it may, clamor is unavoidable
in nonstop observing settings because of lead separation,
breath, or movement.

Furthermore, such a setup distinguishes AF signals from
common indications [17]. Since AF is regularly misdiag-
nosed as other arrhythmia types, the characterization of
AF against an elective cadence would help make the finder
more robust. AF is a brilliant possibility for which the effect
of such all-around designed versatile innovation would be
high. In any case, despite the availability of low-effort
therapeutic equipment, the ability to legitimately process
information over the phone, and the availability of vast data-
bases of biosignals, almost nothing has been done to make

insightful calculations that could naturally translate this
therapeutic information. The Physionet/Computing in Car-
diology Challenge 2017 [18] subject addresses this theme.
It energizes analysts worldwide to create methods for
arranging AF from a short single-lead electrocardiogram
(ECG) recording acquired utilizing a cell phone.

Much work has gone into ECG categorization, and more
is being done in the process. In [19], Garcia et al. propose a
new strategy that takes advantage of ventricular and atrial
activity variability, as shown on the surface electrocardio-
gram (ECG). First, the time series generated from RR inter-
vals and fibrillatory wave morphology derived from TQ
intervals are developed. The Coefficient of Sample Entropy
is then used to measure their regularity (COSEn). The gath-
ered data is at long last consolidated through a multiclass
Support Vector Machine way to deal with perceiving among
short episodes of AF, Normal Sinus Rhythm (NSR), and
Other Rhythms (OR).

Rajpurkar et al. [20] propose using the ResNet model to
categorize the ECG data into four different groups. Rajpur-
kar et al. also incorporate a number of other advanced fea-
tures, such as statistical modeling of atrial activity, study of
heart rate variability in both the frequency and temporal
domains, spectral power analysis, and so on. They devised
a hierarchical classification model by employing oversampling
techniques across categories to determine if an electrocardio-
gram signal is normal, noisy, exhibiting atrial fibrillation
(AF), or displaying an alternative rhythm. Maknickas V and
Maknickas A [21] suggest using a LSTM network for the clas-
sification of ECG data. This network leverages directly learnt
patterns from precomputed QRS complex characteristics.
The procedure for extracting information from each pulse of
ECG data is outlined in reference [22].

Jiménez-Serrano et al. [9] devised a method for automat-
ically extracting 72 ventricular activity parameters from
8528 ECG recordings that were submitted to the 2017 Phy-
sioNet/Computing in Cardiology Challenge. Following that,
a grid search was performed using a set of Feed Forward
Neural Network (FFNN) training parameters to carry out a
Feature Selection (FS) and training/validation method [3].
The authors use templates that are responsive to a certain
heart rate variability, waveform, and AdaBoost classifier.
The classification of multiparametric atrial fibrillation is
described in [23]. This classification is based on HRV analy-
sis, noise detection, the discovery of atrial activity by the
presence of a P-wave in the average beat and f-waves during
TQ intervals, and beat morphology analysis following robust
synthesis of an average beat and delineation of P, QRS, and
T waves. [23] is cited as an example. A linear discriminant
classifier was used to categorize the ECG data, which was
then separated into four categories. Furthermore, Ojha
et al. [24] constructed a deep autoencoder-based SVM clas-
sifier to categorize the ECG signal into five categories using
the arrhythmia database and previously published research,
with better results. This resulted in a more accurate classifi-
cation of the ECG signal.

This classification task is performed using various pat-
tern recognition algorithms. Therefore, this research work
aims to develop a new model based on deep learning
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techniques for the early diagnosis of arrhythmias from ECG
signals. That is, it focuses on arrhythmia and ECG signal
processing and classification models to propose new models
that can help the cardiologist for the early diagnosis of
arrhythmia.

The significant contributions of this paper are the
following:

(i) this paper’s data set is taken from a PhysioNet chal-
lenge (Computing in Cardiology Challenge) 2017

(ii) firstly, we performed a data preprocessing task
using bandpass Butterworth filters to remove the
noise from the ECG signals

(iii) after that, the Z-Score normalization is performed
on the amplitude values of the filtered ECG signals

(iv) the dataset used in this paper is highly imbalanced.
Therefore, we have used SMOTE (Synthetic Minor-
ity Sampling Technique) technique to balance the
dataset, and then the dataset is divided into testing
and training datasets for modeling

(v) we have trained three different combinations of
deep learning models for the training of the dataset,
namely, ResNet, a mixture of BLSTM and ResNet,
and a combination of ResNet with RBF techniques
for the detection of atrial fibrillation heartbeats in
the ECG signals

(vi) then, validation is performed on test datasets that
classify ECG signals into four classes: normal, AF,
noisy, and others

(vii) finally, this study introduces a new hybrid model
based on deep learning techniques that classify
ECG signals into four classes: normal, AF, noisy,
and others. These models also enhance the effec-

tiveness and efficiency of the heartbeat classification
compared to other machine learning and deep
learning models using the same ECG signal chal-
lenge dataset

The rest of the paper is structured as follows: the meth-
odology and materials are described in Section 2. Section 3
presents the outcome results and a discussion of the pro-
posed methods. Finally, Section 4 states the conclusion of
this paper.

2. Materials and Methods

Deep learning techniques are most commonly used in
healthcare nowadays. Two deep learning methods have been
proposed in this study, which are Convolutional Neural Net-
works (CNN) and LSTM. Parameter sharing, translation
invariance, and sparse connectivity make CNN training
computationally efficient and well-liked in computer vision
[25, 26]. The downside of CNNs is that they rely on grid-
like structures to function (e.g., images or fixed segment
windows).They are shown in Figure 1.

One recent finding that has helped with the training and
improved accuracy of deeper CNNs is the Residual Network
(ResNet) [27]. By utilizing shortcut identity connections
similar to a feedforward LSTM (a subtype of RNNs) [18,
28], ResNet makes feature mappings from lower layers
accessible at higher stages.

AF

Classification

Other Noisy
Validation

Testing
ResNet + RBFResNet + BLSTM

Deep learning models

ResNet

Data normalization Over sampling TrainingECG CinC 17
database

Data pre-processing
using band pass filter

Normal

Figure 1: Workflow for classification of short ECG signals into four classes.

Table 1: Distribution of recordings with different rhythms.

Rhythm No. of recordings

N 5,050

A 738

O 2,456

~ 284
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Figure 2: ECG signals for each category: (i) normal, (ii) atrial fibrillation, (iii) other, (iv) noisy rhythms.
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2.1. Dataset Collection. ECG readings were taken during the
challenge using the AliveCor gadget and made public. The
Physionet Challenge server was used for training with an
open database of 8528 single-lead ECGs and accompanying
annotations and testing using a closed database of 3658
ECG recordings (dataset). Normal Sinus Rhythm (N), Atrial
Fibrillation (A), Other Rhythms (O), and Noisy Recordings
were the four categories of ECGs found in the database.
These range from 9 to 61 seconds in length and are single-
lead 300Hz ECG recordings. The information repository is
offered as a downloadable zip file. Table 1 and Figure 2 show
the sum of heartbeats for various categories.

2.2. Signal Preprocessing and Normalization. Each ECG seg-
ment was preprocessed using 10th-order bandpass Butter-
worth filters [29]. These filters had a cut-off frequency of
either 5Hz or 45Hz (narrowband) or 1Hz or 100Hz (wide-
band). The frequency response of the Butterworth filter is
perfectly flat (i.e., has no ripples) in the passband and goes
to zero in the stopband. The filter has the flattest magnitude
curve possible. For this analysis, we have chosen to segment
the ECG data into 20-second samples, each representing a
single heartbeat.

Given that there is a 300Hz sampling rate.
Consequently, each training segment is 20 seconds in

length, matching the requirements of the CinC 2017 data-
base. Before segmenting an ECG recording, the recording
is normalized to have a mean value of zero and a standard
deviation of one. This is because the ECG was already band-
pass filtered [22] by the recording device, so there was no
need for any additional filters. Then, using the Z-score nor-
malization technique, the amplitude values are transformed
into the range of 0-1 to make them more comparable.

Z − score = X −mean
SD

, ð1Þ

where X represents each sample of heartbeats, and the mean
is calculated by taking the mean of the 20 second ECG signal
values. Here SD represents the standard deviation.

2.3. Oversampling. Predictive accuracy is commonly used to
evaluate the performance of deep learning algorithms.
Although, this is not acceptable when the data is unbalanced,
and the costs of different errors vary significantly. The pres-
ent work uses Synthetic Minority Oversampling Technique
(SMOTE) [30]. It is based on an oversampling strategy
where the minority class is over inspected by making “man-
ufactured” models instead of overtesting for replacements.
SMOTE method generates new synthesized sample data
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Table 2: ResNet model accuracy and F1 score variation across five-
fold cross-validation.

Validation number No. of epochs Accuracy (%) F1 score (%)

1

5 66.39

75.61
10 69.62

15 76.60

20 81.23

2

5 60.70

77.87
10 68.04

15 75.60

20 81.17

3

5 62.64

80.23
10 69.43

15 77.81

20 82.80

4

5 68.21

83.54
10 72.42

15 78.03

20 83.11

5

5 64.52

85.67
10 77.77

15 82.84

20 84.40

Overall F1 score (%) 80.58
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for minority classes without duplicity. It calculates the k-
nearest neighbors for each minority class observation.
Then, the synthetic data samples are created using one or
more k-nearest neighbors, depending on the degree of over-
sampling required.

2.4. Proposed Deep Learning Model. In the present work, we
take two different approaches. One is similar to [20], in
which the ResNet model is used to classify the ECG record-
ings into four classes, and the other approach uses more
than one model, including the ResNet model. This ResNet
model has 36 layers, combining a convolutional layer,
max-pooling layer, and fully connected layer. This approach
uses the Bidirectional Long Short Term Memory (BLSTM)
and Radial Basis Function (RBF) model. It is an intuitive
hybrid approach to gain an insight into how different com-
binations of neural network models can be combined to
form a singular hybrid model that can perform the classifica-
tion task with improved efficiency.

2.4.1. Bidirectional LSTM (BLSTM). Bidirectional LSTMs
enhance the model performance on grouping characteriza-
tion tasks by augmenting traditional LSTM [31, 32].
BLSTM trains two LSTMs rather than one with info suc-
cession. The first is based on the information sequence,
while the second is based on a duplicate of the informa-
tion sequence turned around [33]. It includes copying
the intermittent main layer in the system such that there
are presently two layers adjacent to each other, giving
the information grouping as a contribution to the top
layer and a switched duplicate of the second information
arrangement (https://machinelearningmastery.com/develop-
bidirectional-lstm-sequence-classification-python-keras/). The
associations between LSTM units enable the data to push
through a circle over the nearby time steps that makes an
inside the condition of criticism, allowing the system to com-
prehend the idea of time and discover the transient elements
inside the introduced data. LSTM units can recall or overlook
data by keeping up a memory state. The most critical data is
kept and back-engineered, while the less critical data is

ignored and discarded [34]. The architecture of the BLSTM
network is shown in Figure 3.

htf = Hf Wxxt +Whhht−1 + bhð Þ,
htb = Hb Wxxt +Whhht+1 + bhð Þ,
yt =Wyhtf +Whhtb + by

�
:

ð2Þ
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Figure 6: Variation of ResNet model accuracy.

Table 3: Performance of hybrid model (ResNet and bidirectional
LSTM) using five-fold cross-validation.

Validation number Epochs Accuracy (%) F1 score (%)

1

5 59.14

71.73
10 66.79

15 72.33

20 79.26

2

5 62.44

77.97
10 69.36

15 73.57

20 80.02

3

5 61.47

79.85
10 70.61

15 76.27

20 81.11

4

5 64.56

84.93
10 71.24

15 78.69

20 82.33

5

5 61.29

85.94
10 69.55

15 76.34

20 82.87

Overall F1 score (%) 80.08
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2.4.2. Hybrid Architecture. General classification applied
directly to LSTM does not produce specific results. There-
fore, it is an excellent strategy to use a hybrid model combin-
ing a ResNet (CNN) with LSTM to have more accurate
results [35, 36]. The ResNet (CNN) LSTM model utilizes
ResNet layers for learning features to join the LSTM layer
to help accurate prediction. Both ResNet (CNN) and LSTM
performed reasonably well on ECG signals. Besides, pro-
found learning models do not require any extraction of hand-
made highlights, and they are generally simple to implement
[34]. Henceforth, this paper uses the blend of these two cal-
culations to determine arrhythmias. The bidirectional LSTM
bolsters the yield of ResNet engineering to order the informa-
tion into four classes, viz. AF, Normal, Noisy, and others.
Figure 4 shows the hybrid structure of the ResNet and
BLSTM model.

Another variant includes feeding the output of the
ResNet model into an RBF [37, 38]. RBF neural network
then has the task of classifying the incoming data from the
ResNet model into the four classes discussed above, as
shown in Figure 5.

3. Results and Discussion

The above models are trained and tested using the publicly
available free cloud notebook (http://colab.research.google
.com). The Google Collab environment provides a free
GPU limit of up to 11GB and a memory of 358.27GB, with
a CPU frequency of 2.3GHz on the Tesla T4 system with a
memory clock rate of 1.59GHz. The dataset is directly
downloaded from the PhysioNet website to avoid the over-
head of uploading data from a local machine. Thus, the
above hardware setup provides an efficient way to train
and test the deep learning neural network without any inter-
ference from the local devices. The learning rate used by the
model is 0.001, and the Adam optimizer is used, which is
present in the Keras library. Cross-validation is a resampling
method for evaluating AI models with a limited information
sample. A five-fold cross-validation strategy is utilized in this
paper. The given methodology includes only one parameter,

k, which refers to the number of meetings in which a specific
information test is included. This methodology is generally
called k-fold cross-validation. The whole dataset is first
divided into k equal parts in this strategy. Then K-1 parts
are used for training the classification models, and the last
Kth part is used for testing the trained models. Therefore,
in this fashion, the model is trained Kth time on the different
parts of the dataset, and every time, we test the model on a
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Figure 7: Variation of accuracy with number of epochs for hybrid model (ResNet + BLSTM).

Table 4: Performance of ResNet and RBF models using five-fold
cross-validation.

Validation number Epochs Accuracy (%) F1 score (%)

1

5 63.11

73.93
10 68.24

15 73.67

20 79.51

2

5 62.04

78.36
10 71.28

15 77.34

20 80.67

3

5 63.86

79.98
10 70.27

15 78.37

20 81.61

4

5 61.99

82.80
10 69.33

15 76.38

20 82.63

5

5 64.79

85.96
10 72.58

15 80.67

20 84.56

Overall F1 score (%) 80.20
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new Kth part of the dataset that the model does not see dur-
ing the training period.

The following table describes our experiment results, and
different models are trained and tested using a five-fold
cross-validation strategy. The training and test datasets are
split into 80-20 for all models used in this paper. Accuracy
and F1 score are used to evaluate the performance of the
models. F1 is a metric that combines precision and recall
to assess a model’s correctness.

Accuracy = True positive + True negative
Total number of instances ,

F1 = 2 × Precision × recall
Precision + recall

:

ð3Þ

Table 2 presents the results for five-fold cross-validation
on the ResNet-36 model and plots the variation of validation
accuracy on validation runs and the computed F1 score,
achieving an overall F1 score of 80.58%.

Figure 6 plots the variation of validation accuracy with
the ResNet 36 model for different epochs like 5, 10, 15,
and 20. It can be inferred that the maximum validation accu-
racy achieved is 84.40% for epoch number 20 with cross-
validation number 5. Validation accuracy has been growing
linearly over the number of epochs.

Table 3 presents the accuracy and computed F1 score
using five-fold cross-validation for the hybrid model of
ResNet and bidirectional LSTM. The overall computed F1
score is 80.08%, with different F1 scores across five-fold
cross-validation as 71.73, 77.97, 79.85, 84.93, and 85.94%,
respectively.Figure 7 shows how the number of epochs
affects the validation accuracy for various cross-validation
methods. It achieved the highest validation accuracy of
82.87% and increased with an increase in epochs.

Table 4 shows the variation in F1 score and validation
accuracy for ResNet and RBF networks using five-fold
cross-validation. It has achieved an overall F1 score of
80.20%. Figures 8 and 9 show the accuracy variation and
F1 score of the different epochs achieving the highest valida-
tion accuracy of 84.56%.
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Figure 8: Variation of accuracy with number of epochs for the hybrid of ResNet and RBF model.
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In the present work, we have classified the short ECG
recordings into four classes using deep learning neural net-
works such as ResNet, hybrid model (ResNet and bidirec-
tional LSTM), and ResNet +RBF neural network. We have
compared the results across different models and concluded
that the presented models achieved a significant outcome
compared to related works discussed in [29]. The model
used in [29] is limited to expanding the model up to only a
specific value due to computational leverage, but our present
work does not consider that factor. Our results have
improved significantly. However, the limitation of distorted
and noisy signals presents a setback that leads to having a
bottom hand in overall accuracy and computes the F1 score.

The work demonstrated by Garcia et al. [19] used a mul-
ticlass SVM approach for classification and achieved an F1
score of 73%. In comparison, Rajpurkar et al. [20] used the
approach of ResNet (34 layers) that converts the sequence
of ECG samples into a sequence of rhythm classes. They
achieved an overall F1 score of 79.9%. On the other hand,
Coppola et al. [1] used a hierarchical classification model
for ECG classification into different rhythm classes with an
F1 score of 78.55%. Maknickas V and Maknickas A [21]
used the LSTM network to learn patterns directly from pre-

computed QRS complex features that classify ECG signals
and achieved an F1 score of 78%. Schwab et al. [22] used
ensemble RNN with the LSTM attention model and
achieved an F1 score of 79%. Andreotti et al. [29] used a
ResNet model and achieved an accuracy of 79%. Jiménez-
Serrano et al. [9] used a Feedforward Neural Network
(FFNN) with an F1 score of 77%. Our present work has
two different approaches, one is similar to the [20, 29] with
a ResNet model, and the other is a variation of a hybrid
model of ResNet with BLSTM and ResNet with RBF achiev-
ing an F1 score of 80.58%, 80.08%, and 80.20%, respectively.
Table 5 and Figure 10 describe the performance compari-
sons of the proposed model with the existing works.

4. Conclusion

Overall, many studies have been done on ECG rhythm clas-
sification, and the present work adds another variation of the
ResNet model and two new hybrid architectures involving
BLSTM and RBF networks. The results shown are promising
and can be increased in various ways with the accessibility of
more publicly accessible and open data, which has been a
continuous obstacle to the current study. New biomedical
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Figure 10: Comparison with related works.

Table 5: Performance comparison of the proposed model with the existing works.

S. No. Year Author Methodology F1 score (%)

A 1 2017 Manuel et al. [10] Multiclass SVM 73

B 2 2017 Rajpurkar et al. [11]
The deep CNN model has 34 layers that map ECG signal samples into

arrhythmia heartbeat classes.
79.9

C 3 2017 Coppola et al. [12] Hierarchical classification model 78.55

D 4 2017 Neha et al. [13]
A LSTM network, which learns patterns directly from precomputed QRS

complex features that classify ECG signals
78

E 5 2017 Schwab et al. [14] Ensemble RNN with the LSTM attention model 79

F 6 2017 Andreotti et al. [15] ResNet CNN 79

G 7 2017 Jiménez-Serrano et al. [16] Feedforward neural network (FFNN) 77

H∗ 8 2022 ∗(present work)

CNN-ResNet model 80.58

Hybrid-ResNet and LSTM (bidirectional) 80.08

ResNet and RBF 80.20
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technologies allow researchers to deal with an unprece-
dented amount of precise data. However, given the nature
of this work and different deep neural networks, we can rest
assured that there is a broad scope of improvement that can
be done in this field. Many researchers are constantly work-
ing on this problem domain, and many R&D institutes have
taken interest in it. Thus, it led us to assume that this
domain is going to flourish and outshine shortly.

Although we tried our best to incorporate a maximum of
models in this domain, given the limited time and computa-
tional resources, a vast plethora of techniques and models
like Multilayer Perceptron (MLP), etc., can be applied to
the given problem domain. As the work involves a lot of
computational and physical data resources, with the advent
of new and better technologies, we can try to reduce the
complexity to infer results in more optimized time.

Data Availability

Data will be made available on demand.
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