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In recent years, intelligent vehicles with cutting-edge vehicular applications have grown in popularity, enabling the growth of
Vehicular Ad hoc Networks (VANETs). Vehicular Ad hoc Networks (VANETs) are a network of vehicles that share and analyze
real-time data and require a well-organized and efficient data delivery method. The stability of clusters and dynamic topology
change in VANETs are the major issues in finding an optimal route amongst the vehicles. The cooperative approach and surprise
pounce chasing technique of Harris Hawks in nature serve as the main sources of inspiration for Harris Hawks Optimization. In
this technique, several hawks work together to attack a victim from various angles to surprise it. Due to the unpredictable nature of
situations and the prey’s fleeing movements, Harris Hawks can exhibit a variety of intelligent strategies. This study proposes a
novel route clustering optimization technique that takes into account communication range, the number of nodes, velocity,
orientations, and grid size. To create and evaluate ideal cluster head (CH), the proposed method is based on Harris Hawks
Intelligent Optimization Algorithm for route Clustering (iCHHO) which finds optimal and reliable routes amongst the vehicles.
Other state-of-the-art methods, such as the Grasshopper Optimization Algorithm (GOA), Gray Wolf Optimization (GWO), and
Whale Optimization Algorithm (WOACNET), are utilized to evaluate and validate the proposed method. Our findings show that
the developed method outperforms other current methods in terms of number of clusters, variable communication ranges,
network size, and the number of vehicles. Furthermore, the statistical analysis concludes that the proposed method improves
cluster optimization by 79% and increases cluster stability by an adjusted R-squared of 91.22.

1. Introduction

The world’s population is increasing rapidly, with a high
reliance on vehicles for traveling, increasing the demand
for efficient transportation systems. A recent survey verified
this, indicating that the number of passenger and commer-
cial vehicles worldwide has crossed the 1 billion mark [1]
and would probably cross 2 billion by 2035 [2]. This increase
in the number of vehicles demands that the technology

involved in the process also be modified and made flexible
according to the vehicle’s needs. Certificate distribution
and a revocation procedure based on trust thresholds are
proposed in [3]. The authors created a trust-based solution
by integrating public key certificates with an effective mech-
anism for certificate revocation and validation. Intelligence
needs to be incorporated into the vehicular industry for
improving the driving experience, thus increasing passenger
safety and accident prevention. This requirement led to the
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introduction of the concept of Vehicular Ad hoc Networks
(VANETs), which is a concept that originated from the
Internet of Things (IoT) and has introduced the idea of
smart cities and smart transportation. The VANET network
assists the drivers by offering road information, current traf-
fic situation, available parking, and better navigation
employing route optimization. All this information could
be utilized to organize traffic in cities and help minimize
life-threatening risks involved in driving and security. The
suggested method implements a simple security methodol-
ogy for completely distributed trust-based public key man-
agement for VANETs. By employing a trust-based strategy
rather than strict security restrictions to close security flaws,
this work intends to maximise efficiency [4].

VANETs involve real-time processing data that might be
critical, so the VANET networks must be practical and
robust enough to meet these requirements. This critical
and real-time nature of the data also demands data security
and low latency requirements to deliver the data in time to
the users securely [5]. Different routing protocols and mech-
anisms have been proposed by various researchers for the
VANET networks. These research efforts further be
improved, and existing issues of the VANET networks can
be optimized by introducing machine learning reinforce-
ment learning and nature-inspired algorithms [6]. Bioin-
spired methods focus on different optimization problems
at the elementary stage for realistic applications, including
routing in VANETs [7]. Various bioinspired methods exist
in the literature inspired by fishes, ants, birds, dolphins, etc.

IoV derives by merging two main concepts, IoT, and
VANETs (as shown in Figure 1), with a vision to provide
an intelligent vehicular system that tackles various issues,
such as effective accident avoidance, road congestion, driver
assistance, routing, and safety. In the following, briefly
explain the IoV concept for novice readers.

1.1. Vehicular Ad Hoc Networks. Vehicular Ad hoc Networks
(VANETs) are an emerging idea in the transportation indus-
try that intends to add intelligence to the current vehicular
networks [8]. It evolved from VANETs to address the present
limitations of VANETs, such as incompatible personal
devices, unreliable wireless internet, and a lack of commercial-
ization [9, 10]. In VANETs, there are various communications
links such as intervehicular, intravehicular, vehicle-to-
infrastructure (V2I), vehicle-to-roadside units (V2R), vehi-
cle-to-sensors, (V2S), and vehicle-to-person (V2P) [11–13].

There are mainly three different types of mobile technol-
ogies listed below to establish these links [14]:

(1) Dedicated short-range communications (DSRC) and
communication access for land mobiles (CALM)
technologies

(2) Satellite technologies, 4G/LTE, and WiMax

(3) Zigbee, Wi-Fi, and Bluetooth technologies for short-
range

Figure 2 depicts the overall structure of a VANET
network, consisting of vehicles, roadside units, sensors, and

network infrastructure. The communication links between
these elements are also shown, particularly V2V, V2R,
V2P, V2S, and V2I. Every node is integrated with an On-
Board unit (OBU), equipped with sensors that collect data
from the environment. Because the VANET network gener-
ates data for essential information, it uses a variety of
intelligent technologies to process it.

Next, we present the basic concept of bioinspired
algorithms and their applications in VANET networks.

1.2. Bioinspired Algorithms in VANET Networks. Various
features and applications of VANETs have enhanced the
performance and further strengthened the existing ITS.
However, different challenges and issues have also been raised
to implement the VANETs technology. In this context, multi-
ple studies focus on various essential features of vehicular
networks such as routing, safety, and space administration.
Recently, bioinspired methods have been introduced to
improve existing frameworks of ITS. The inspiration of this
paper is to seek the opportunity of using and deploying evolu-
tionary methods to find optimized solutions to some of the
following problems in VANET networks:

(1) Nature-inspired algorithms are more efficient and
effective in networks like VANETs because species’
actions to search for food or fulfill other natural
needs are similar to finding the best route in the
VANET networks [15]. Nature-inspired algorithms
also help to achieve route optimization with zero to
minimal human intervention [16]. Also, nature-
inspired algorithms ensure optimal routing in differ-
ent network scenarios and improve the robustness of
the VANET networks

(2) Nature-inspired algorithms are self-organized and
adaptable to various situations, and hence, they
effectively deal with different types of topological
structures of the VANET networks

(3) Nature-inspired algorithms have better accuracy in
sensing the network’s damage nodes as they inte-
grate a maximum degree of exploration and exploi-
tation. This provides an effective way of reducing
security attacks on the network and hence enhances
the network’s security [17]

(4) Another advantage of employing bioinspired
methods is their low complexity in solving computa-
tional problems of the VANET networks

VANETs

IoT

IoV
(Internet of
Vehicles)

Figure 1: Composition of IoV [8].
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1.3. Contributions. Based on the above advantages of bioin-
spired algorithms, this study proposes an intelligent Harris
Hawks Optimization to optimize clusters in VANET net-
works. The first phase of the proposed algorithms performs
the searching of vehicles, creating a topology by incorporat-
ing self-adjusted weights to minimize the error. In the next
phase, based on the individual fitness function of hawks,
the selection of cluster heads is accomplished for the
management of the network to enhance accuracy. The main
contributions of the paper are summarized as follows:

(1) This research presents a novel intelligent Harris
Hawks Optimization for cluster optimization in
VANET networks

(2) An objective clustering is introduced in which each
objective is given a weight based on the fitness func-
tion of each vehicle

(3) Self-adopted weights have been deployed to
minimize randomness amongst the vehicles, thus
minimizing error

(4) The performance of the developed Harris Hawks
clustering optimization algorithm has been evaluated
by performing statistical tests such as ANOVA, p
-test, and regression coefficients by deploying
FMOLS statistical test

(5) For the developed method, comparative analysis for
various network parameters, such as transmission
range, grid size, node density, and load balance fac-
tor was conducted for evaluation by incorporating
dynamic network nodes

1.4. Organization. The organization of the remaining article
is as follows: In Section 2, recent trends in VANETs and
different nature-inspired clustering optimization methods
are reviewed. Section 3 presents the proposed method,
including mathematical modeling followed by experimenta-
tion and results in Section 4. Section 5 presents the statistical
analysis for the evaluation of the developed method. Section
6 presents the conclusion and future work.

2. Related Work

Bioinspired algorithms are used in many applications such
as the Internet of Things [18], image processing [19], agri-
culture [20], healthcare [21], and security [22]. Recently,
these algorithms have provided effective solutions regarding
routing, safety, and efficient parking for vehicular networks.

The major role of routing in the VANET networks is the
broadcast of messages across the vehicles regarding emer-
gencies, accidents on the roads, or current road situations
[16]. Hence, routing needs to be performed effectively in
the VANET networks so that the real-time critical data
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Figure 2: General structure of VANET network [9].

3Journal of Sensors



could be distributed efficiently on time. Different evolution-
ary algorithms have been proposed to achieve routing in
VANETs; nature-inspired algorithms are the most promis-
ing by optimizing the routes efficiently and effectively. These
bioinspired methods for routing in VANET networks are
described below:

2.1. Particle Swarm Optimization (PSO). PSO is a well-
known nature-inspired algorithm based on the concept of
a group of fishes and birds. This concept is also used in
VANET networks recently to optimize vehicle routes. For
instance, a clustering routing based on PSO (CRBP) is pro-
posed in [23] for finding optimum routes in VANETs. The
CRBP comprises three steps, i.e., the formation of clusters,
the coding of route particles, and optimum routing. In the
first step, nodes with similar directions are identified. Then,
cluster heads are selected, and different constraints such as
node location, speed, and neighbors are used to construct
stable clusters. Once a cluster is constructed, the fitness of
the link is calculated to help in finding the best router
quickly. Another PSO algorithm named FPSO is proposed
in [24] for optimal route discovery in VANETs [24]. The
clustering of the vehicle nodes in the FPSO algorithm is per-
formed using multiple features such as the energy level of the
vehicle, the number of neighbor vehicles, and the distance
from the base station. FPSO is stable and more reliable for
route selection of delivery of packets in the network because
the transmission links are selected based on fuzzy logic,
which helps avoid link failures. Rajawat et al. proposed
another PSO algorithm named CH-PSO with a novel strat-
egy of finding a cluster head in different scenarios of
VANETs [25]. The proposed algorithm splits the road into
two lanes after presuming the size of the network. After
splitting the highway, clusters of vehicles are formed by plac-
ing vehicles and RSU. Now, automobile with the maximum
capacity value is designated as the head of the cluster using
the PSO algorithm, and this cluster head starts forwarding
the data to the RSU.

2.2. ANT Colony Optimization (ACO). As its name suggests,
Ant Colony Optimization (ACO) gets inspiration from the
pattern of ants searching for food and using the shortest
path. For instance, the F-ANT protocol is proposed in [26]
based on the ACO algorithm for VANET networks. This
protocol relies on fuzzy logic to compute the reliability of
the routes. Different fuzzy criteria are defined where the
bandwidth defines the node’s capability to provide packet
transmission services. Since VANET networks have a high
mobility rate, the Received Signal Strength Metric (RSSM)
is used to define the connectivity level of intermediate links,
whereas Congestion Metric (CM) is used to measure the
congestion value of the route’s links. The advantage of the
F-ANT protocol is that road safety is guaranteed, making
it suitable for urban scenarios. The disadvantage is its vul-
nerability to various security threats. However, this protocol
was extended to be used in freeways and added a provision
for data safety. Then, Li et al. proposed Adaptive Quality
of Service-based routing protocol for VANETs (AQRV)
[27], based on the ACO algorithm. The AQRV introduces

the concept of interconnection routing, where data messages
choose self-adjustment connections for data transfer to the
destination. This protocol works in two steps, i.e., electing
a robust connection and creating the best route. The termi-
nal intersection is aimed at minimizing the congestion in
the network and improving the exploration time of routes.
Another protocol named Local QoS Models (LQMs) has also
been proposed based on ACO to reduce network congestion
in one-lane road segments. The advantage of the LQMs
protocol is that it provides better performance than other
existing routing protocols.

Another ACO algorithm-based solution, named QoRA,
has been proposed in [28], which follows the QoS routing
approach and is aimed at improving routing in ad-hoc
networks by avoiding network congestion during the trans-
mission. QoRA protocol consists of two main components:
SNMP unit and QoRA unit, where the QoRA entity is run
on each node to identify suitable paths while SNMP unit
further comprises two components. SNMP manager is used
to providing needed data for QoS, and MIB is the manage-
ment information base. Goudarzi et al. proposed an Efficient
GSR protocol (EGSR), an ACO-based traffic-aware routing
protocol [29] that makes the vehicles evaluate the street con-
nectivity in their neighborhood utilizing small-sized control
data units. These packets are broadcasted using an effective
dissemination procedure in a controlled broadcast storm.
The main advantage of the GSR protocol is that it does not
use any additional hardware such as RSU or traffic sensor at
different junctions. Kazemi et al. proposed an Opposition-
based ACO (OACO) algorithm for routing in the VANETs
[30], which uses the concept of computing opposition in
ACO, and hence, diverse areas of solution space are discovered.

2.3. Genetic Algorithms (GA). Another approach used by
researchers to find the optimal solution for routing based
on natural processes is Genetic Algorithms (GA). Zhang
et al. designed and proposed GABR (GA-based routing
protocol) with QoS perception for VANETs [31]. GABR
comprises GPS and Intersection Based Routing protocol
(IBR). First step in this is another approach used to find
the optimal solution of routing based on natural processes
which is Genetic Algorithms (GA). For instance, Zhang
et al. proposed a GA-based routing protocol (GABR) with
QoS perception for VANETs [31]. GABR comprises GPS
and Intersection Based Routing protocol (IBR), where the
first step involves searching the existing paths using IBR
protocol. The route with optimal QoS is chosen using GA
through five steps from all the available routes. Amongst
the five steps, the first step is to avoid route circulation, then
to initialize the population in which the preliminary popula-
tion is searched as routes. The next step is selection, in which
the individual with a maximum fitness cost is nominated,
followed by a crossover in which subpaths of two individuals
are exchanged. The final step is a mutation in which the
mutation operator is used to select a solution from the
population. The results of this GABR protocol show that it
performs better than other protocols, such as IBR or CAR
protocols. However, it is disadvantageous because it is slower
and more complex. Gupta and Kumar have suggested a
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genetic protocol-based routing and spanning trees for rout-
ing in VANETs [32]. The proposed algorithm works in three
different phases. In phase 1, also known as GA, each node’s
fitness value is computed and used to find the optimal route.
In phase 2, a spanning tree of the fitness value of each node,
calculated in the first phase, is constructed. This tree helps
get rid of the links that make a loop and make the paths with
no loop. In phase 3, the spanning tree is constructed from
the routing tree, making well-organized additions and
removals and storing all the nodes’ required information.

2.4. Firefly Algorithm. As its name suggests, the firefly
algorithm takes its motivation from the patterns of fireflies
for performing different activities. In the context of VANET
networks, Reference [33] proposed FF-L, a levy-distribution-
based firefly algorithm for multicast routing where the FF
algorithm utilizes an arbitrary exploration in case of no
brighter FF at the time of inquiry. The FF-L algorithm com-
bines levy distribution to avoid local minima. The levy flight
is a random move in a specific direction, and this impulsive
change is deployed to improve the span of the exploration
process. To its advantage, FF-L is quick and robust and
works reliably well to solve the problems in multicast rout-
ing when compared to other algorithms. Then, Sabharwal
et al. proposed EFR, a firefly-based efficient and reliable
routing protocol for routing in VANETs [34]. This proposed
algorithm works in two steps: route discovery and the EFR
technique. EFR depends on the firefly next-hop election
method for route discovery. Each request data unit for the
route contains coordinates of the destination and its location
and the transmitter and receiver addresses. EFR technique
starts finding a path to find the best direction, and once the
best path is found, the data units are communicated via an
established path. The key benefits of this protocol are its better
performance over dynamic source routing (DSR) in terms of
end-to-end delay, throughput, and packet delivery ratio.

2.5. Other Nature-Inspired and Clustering Algorithms for
VANETs. Some of the other recent studies proposed similar
optimization techniques for cluster head nomination in
vehicular networks are Whale Optimization [35], Grasshop-
per Optimization [36], Grey wolf Optimization [37],
CLPSO, MOPSO [38], ALO [39], ACO [40], CAMONET
[41], CAVDO [42], and i-WOA [43]. These optimization
techniques for VANETs are derived from biological and
evolutionary computation by taking inspiration from birds,
ants, moth flames, Harris Hawks, dragonflies, etc. Some of
the recent route clustering algorithms for VANETs include
AODV based energy efficient algorithm [44], Q-learning
algorithm-based IoT network for user privacy [45], fuzzy
logic-based routing [46], forward aware energy-based rout-
ing method [47], RFID-based anticollision method [48],
coverage based routing [49], transmission improvement
based on OLSR protocol [50], multihop passive clustering
algorithm [51], delay-tolerant based Vehicles of Interest
algorithm [52], offloading scheduling method based on
energy consumption [53], fuzzy neural network- (FNN-)
based data missing estimation in IoV [54], link lifetime-
based routing [55], and deep reinforcement learning-based

routing [56]. Based on these studies, in the next section, we
propose an intelligent clustering technique that utilizes
Harris Hawks Optimization.

3. Proposed Technique

This section provides clustering and cluster head formation
techniques by deploying Harris Hawks Optimization for
the vehicular environment by taking inspiration from the
chasing pattern of Harris Hawks. The proposed method
starts with the initialization of vehicles on the highway
(exploration phase). Once all the vehicles are registered with
the network containing their speed, direction, acceleration,
and position, the clustering process (exploitation phase) is
initiated based on the fitness function of each vehicle and
the cluster head is selected.

3.1. Intelligent Clustering via Harris Hawks Optimization.
Harris Hawks Optimization is a nature-inspired population-
based innovative problem-solvingmethod that performs intel-
ligent clustering deploying (iCHHO) for VANET networks
[57]. Due to its simplicity and easy implementation process,
it could be utilized for tackling many problems such as
route-finding, cluster-based routing, and route optimization
between vehicles. The flowchart of the developed iCHHO is
given in Figure 3. In the following, we explain the different
steps of the proposed algorithm.

3.1.1. Exploration Phase. In the exploratory phase, the cluster
head (CH) searches for the target (vehicle) in a defined
network size, where CH detects and tracks other vehicles ran-
domly. Sometimes, it takes time to detect and locate other
vehicles due to speed and random movement of vehicles.
Therefore, the vehicle (CH) must have to observe, monitor,
and wait for some time to detect the targeted vehicle on the
highway. In iCHHO, all vehicles are the candidate solution
in a search space, and the CH is the best candidate solution
obtained after evaluating of a fitness function. Two strategies
have been used in iCHHO to detect vehicles on the highway.
First, the position of all vehicles is determined, and in the sec-
ond phase position of the cluster head is obtained by using

Y Ii + 1ð Þ =
Y rand hawk Iið Þ − R1 Y randhawk Iið Þ − 2R2Y Iið Þ�� �� Q ≥ 0:5,

Y rabbit Iið Þ − Yavg Iið ÞÀ Á
− R3 lower + R4 upper − lowerð Þð Þ Q < 0:5,

(

ð1Þ

where YðIi + 1Þ represents the location vector of vehicles in
the subsequent repetition Ii, Y rabbitðIiÞ shows vehicle position,
YavgðIiÞ presents vehicles present location, R1, R2, R3, R4, and
Q are random numbers to switch between exploration and
exploitation phases, respectively, and are set between 0 and
1, upper represents an upper bound of variables and lower
is lower bound of variables, and Y randhawkðIiÞ represents ran-
domly nominated cluster head vehicle from the present
search space.
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Figure 3: Flowchart of the proposed iCHHO algorithm.
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The average location of vehicles is attained as

Yavg Iið Þ = 1
N
〠
N

i=1
Yi Iið Þ, ð2Þ

where Yavg shows the mean location of present vehicles’
search space, Yi shows the vehicle’s current position, I show
the current iteration, and N is the total population size.

3.1.2. Evolution from Exploration to Exploitation. When the
target vehicle energy is low, it could be easily exploited.
The vehicle’s energy decreases while escaping from the clus-
ter head. In the beginning, the vehicle’s energy level is high.
However, when a cluster head is chasing the vehicle to be
part of a cluster, its energy decreases gradually. The energy
level of the vehicle is calculated as

G = 2Go 1 − Ii
T

� �
, ð3Þ

where G shows the losing energy of the vehicle, G0 repre-
sents starting state of its energy inside the interval [-1,1], T
represents iterations (maximum), and I represent the
current iteration.

The cluster head continuously chases other vehicles, due
to which the power of the target continuously decreases.
Energy level G0 decreases from 0 to -1 which shows that
the vehicle energy is low. However, when the value of G0
becomes 1 from 0, showing that the target energy is
strengthening and has the potential to detach itself from a
cluster. Consequently, depending on the value of G, iCHHO
switches between the exploration and exploitation phases.

3.1.3. Exploitation Phase. As discussed above, the exploita-
tion phase happens only when ∣G ∣ <1. In this phase, all vehi-
cles in a network perform the surprise formation to be the
cluster head. However, some vehicles still try to escape from
the formation of the cluster. Therefore, the chosen cluster
head performs different chasing strategies that could happen
in a real situation. Four strategies have been proposed in
iCHHO to represent the cluster head’s attack on all the
vehicles in a given search space depending on the location,
position, speed, and direction of vehicles. It is supposed that
vehicles always try to escape from the cluster head which is
donated by r. However, the CH would try to catch the vehi-
cle by performing a soft or hard besiege. It means that the
CH will form a ring around the vehicles and surround it
with diverse angles gently or hardly relying on the residual
energy of the CH. However, in an actual environment, a
CH becomes nearer in the direction of the projected target
to raise the likelihoods to vehicles cooperatively by the use
of surprise pounce. After some interval of chasing vehicles,
CH would lose its energy rapidly, and a CH could capture
the target by using one of the encircling processes. The soft
besiege will happen when ∣G ∣ ≥0:5, and the hard besiege
takes place when ∣G ∣ <0:5.

(1) Soft Besiege. When r ≥ 0:5 and ∣G∣ ≥ 0:5, it meant the
vehicle has enough remaining energy to disappear from a
CH where r represents the ability of vehicles to escape join-
ing a cluster. In this strategy, the CH surrounds the vehicles
softly from different angles to reduce the escaping energy of
all vehicles to perform a technique (surprise pounce). This
behavior is modeled as

Y Ii + 1ð Þ = ΔY Iið Þ −G Y jumprapid Y rabbit Iið Þ − Y Iið Þ
��� ���, ð4Þ

ΔY Iið Þ = Y rabbit Iið Þ − Y Iið Þ, ð5Þ
where ΔYðtÞ vectors are variance vectors between the loca-
tion route of the target and present position, Y jumprapid is the

CH’s rapid jump strength, and Y rabbit is the CH position. The
value of the Y varies randomly in every step to pretend the
vehicle’s nature.

(2) Hard Besiege. When r ≥ 0:5 and ∣G ∣ <0:5, the target
vehicle’s speed and its remaining energy are low to escape
from the CH. Similarly, the CH uses hard besiege to enclose
the projected target (vehicle) to execute a surprise attack.
Here, the current position is updated as

Y Ii + 1ð Þ = Y rabbit Iið Þ −G ΔY Iið Þj j: ð6Þ

(3) Soft Besiege with Progressive Rapid Dives. When ∣G ∣ ≥
0:5 and r < 0:5, vehicle has enough energy to get away from
the cluster head, and a soft besiege is executed to reduce
the energy of the vehicle. This mechanism is considered
intelligent compared to the preceding one. To model the
technique of escaping of vehicle and leapfrog movement,
the levy flight (LF) [33] concept is employed in the iCHHO
algorithm. The LF concept is utilized to duplicate the mis-
leading movement of the prey for the duration of escaping
stage and asymmetrical, unexpected, and quick dives of the
attacker across the escaping vehicle.

A collection of vehicles rapidly surrounds other vehicles
to accurate their location and route regarding the misleading
motions of the vehicle. The LF-based scheme is the leading
probing mechanism for the predator in constructive search-
ing environments. Additionally, the LF-based ideas have
been detected in sharks and monkeys within the chasing
activities. According to the actual behavior of the vehicles,
it is considered that vehicles regularly select the optimal
cluster head in the direction of the vehicles once they need
to follow the vehicles. Hence, to implement a soft encircling,
it is assumed that the next move of the cluster head is esti-
mated by employing the following rule.

PinY = Y rabbit Iið Þ −GjY jumprapidY rabbit Iið Þ − Y Iið Þ: ð7Þ

Compare the current location with the previous one, and
take a look at whether its encircling mechanism was good
enough to attach other vehicles with itself. If the current dive
is found not fair, in addition, they begin irregular, sudden,
and speedy dives when an approach the prey. We assume
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that the vehicles would move on the highway depending on
LF-based forms by utilizing the subsequent rule:

PinZ = PinY +V1 Dim ∗ LFF Dimð Þ ð8Þ

where Dim shows the size of the problem and V1 Dim repre-
sents random vector by size 1 × Dim and LFF is the LF
function, obtained as [33]

LFF V1 dimð Þ = 0:01 ∗ u ∗ ∂
vj j1/β

, ð9Þ

where

∂ = τ 1 + βð Þ ∗ sin 1/βð Þ
τ 1 + β/2ð Þ ∗ β ∗ 2 β − 1/2ð Þ

� �1/β
, ð10Þ

where u and v represent random values between [0,1] and β
shows a constant value of 1.5. Consequently, the last
approach for upgrading the locations of all vehicles in the
soft encircle is performed as

Y Ii + 1ð Þ =
PinY if F PinYð Þ < F Y Iið Þð Þ,
PinZ if F PinZð Þ < F Y Iið Þð Þ:

(
ð11Þ

(4) Hard Besiege with Progressive Rapid Dives. When jGj <
0:5 and r < 0:5, the remaining energy of the vehicle is not
enough to skip from the network grid. Consequently, a hard
besiege strategy is set up earlier than the surprise CH to cap-
ture and join other vehicles. Both the steps (soft and hard)
are the same in this situation on the vehicle side. However,
this time the CH will try to decrease the gap of their mean
position with the running vehicle. Hence, the following rules
are accomplished in this situation:

Y Ii + 1ð Þ =
PinY if F PinYð Þ < F Y Iið Þð Þ,
PinZ if F PinZð Þ < F Y Iið Þð Þ,

(
ð12Þ

where PinY and PinZ are calculated as

PinY = Y rabbit Iið Þ −G Y jumprapidY rabbit Iið Þ − Yavg Iið Þ
��� ���,

PinZ = PinY + V1 Dim ∗ LFF Dimð Þ,
ð13Þ

where YavgðIiÞis obtained using (2) and PinY or PinZ
would be the subsequent position for the next repetition.

3.1.4. Complexity Analysis of iCHHO. The initialization of
vehicles, the fitness assessment of each vehicle, and the
updating of cluster heads are the three operations that have
the most impact on the computational complexity of the
Harris Hawks Optimization for cluster optimization in
vehicular networks. The computing complexity of the ini-
tialization step is O for N vehicles (N). The best position is

sought after, and the location vectors of all vehicles are
updated. The computational complexity of the updating
process is OðTNÞ +OðTNDÞ, where T is the maximum
number of iterations and D is the dimension of particular
problems. As a result, iCHHO’s computational complexity
is OðNðT + T D + 1ÞÞ.

4. Results and Discussion

This section provides the simulation results by considering
diverse network parameters, such as transmission range, num-
ber of vehicles, network size, and load balance factor. After
modeling the developed method, simulations and experimen-
tations have been performed, and obtained results are
compared with well-established benchmark methods, i.e.,
WOACNET [35], GWO [37], and GOA [36], respectively.
The proposed method and algorithms mentioned above have
been implemented in MATLAB with GPU settings (Octave
Library) and Google Colab simulation setup. The basic simu-
lation parameters considered are presented in Table 1.

4.1. Transmission Ranges vs. Number of Clusters. The next
step is to evaluate the proposedmethod to generate an optimal
number of clusters for a dynamic number of nodes 30, 40, 50,
and 60 by taking a 1 km ∗ 1 km network size and communica-
tion range from 100m to 600m. As clear from the theoretical
analysis, the lesser the communication range, the greater the
number of clusters will be. Figure 4 shows that the number
of cluster heads decreases by increasing the communication
range. For all vehicle classes, the iCHHO performs effectively
by generating a small number of clusters at a low cost. When
the number of nodes is set to 30, iCHHO produces the mini-
mum number of clusters. However, when the number of
nodes is increased from 40 to 60, iCHHO performs consider-
ably better; the results of iCHHO at some point overlap with
other methods due to the algorithms’ random nature. The
results in Figure 4 present the dominance of developed
iCHHO over other well-established methods GWO [37],
WOACNET [35], and GOA [36] in terms of optimized clus-
ters for different communication ranges.

4.2. Network Nodes vs. Number of Clusters. In Figure 5, for a
better understanding, the results are presented from a differ-
ent angle, with a number of nodes linked to a number of
clusters, transmission range raised from 300m to 600m,
and network size kept at 1 km ∗ 1 km. It is observed that
when the transmission range is set at 300, the number of
clusters generated is considerably higher for all the estab-
lished methods. However, iCHHO is still producing a mini-
mal number of clusters as compared to other methods. The
trend could be observed for transmission range = 400, 500,
and 600m. An interesting phenomenon was observed; the
number of clusters decreases as the transmission range
increases from 300 to 600m. Also, the iCHHO is performing
better and producing an optimal number of clusters com-
pared to other methods.

4.2.1. Grid Size vs. Number of Clusters for 30 and 60 Nodes.
The results shown in Figures 6 and 7 are from a different
perspective where the network nodes in Figure 6 are kept
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constant, i.e., 30 for dynamic transmission range, and the
results are equated by plotting network size on the X and
the cluster heads on the y-axis. According to the proposed
algorithm, the number of cluster heads grows as well, and
the two have a direct relationship when the grid size grows.
iCHHO outperforms other state-of-the-art algorithms, as
evidenced by the findings. Similarly, the same experiment
is carried out with the number of nodes set to 60, as shown
in Figure 7, and it is clear that iCHHO outperforms the
other methods [35–37] from this perspective as well.

4.3. The Load Balance Factor (LBF). Load balance factor
(LBF) is deployed as an evaluation technique to compute

cluster head load [37]. The cluster head should ideally be
responsible for an equal number of cluster nodes; however,
maintaining a consistently load-adjusted architecture is
exceedingly difficult due to the rapid changes in the topology
of the VANETs environment. In terms of modifying the load
in the network, iCHHO outperforms GWO,WOACNET, and
GOA as the number of neighboring nodes approaches its
maximum value by taking 30 nodes for a 1 km ∗ 1 km grid size
could be seen in Figure 8. The result illustrates that the pro-
posed method manages an optimized number of nodes in a
single cluster compared to other well-established methods.

The same experimentations have been performed in
Figure 9. However, this time number of nodes is increased to
60 to check the efficacy of the proposed method. It is evident
from Figure 9 that iCHHO outperforms other benchmark
methods by balancing the network load more efficiently.

According to the findings in Figure 4, iCHHO initially pro-
duces 26 clusters for 30 nodes with a network size of 1 km ∗ 1
km and 45 clusters when the number of nodes is increased to
60, with a transmission range of 100 to 600meters. The thor-
ough analysis demonstrates that the newly developed method
outperforms other methods mentioned in [43–56]. Addition-
ally, an interesting correlation between the communication
range and the cluster number has been found; as the communi-
cation range grows, iCHHO creates more optimal clusters. In
Figure 5, experiments were carried out by comparing the
number of clusters to the number of network nodes while
maintaining a 1 km by 1km grid and varying the communica-
tion range from 300 to 600m. The findings demonstrate that
the method developed generates the ideal number of clusters
as compared to WOACNET, GOA, and GWO.

Algorithm 1: Algorithm of the proposed iCHHO
1. Initialization of each vehicle position, direction, and speed on the highway randomly
2. Creation of mesh topology among vehicles and assigning a vehicle id
3. Calculation of distance of vehicle with others, normalization, and association of these distances in a

mesh topology.
4. Initialize the random Vehicles population YiðIiÞ (i=1, 2, . . ., N)
5. While (present repetition< maximum number of repetitions) do
6. Calculate the fitness values of vehicles
7. Set Yrabbit as the location of the vehicle (cluster head)
8. for (each vehicle (YiðIiÞ)) do

Update the initial energy G0 and energy strength Y jump rapid

G0=2 random ()-1, Y jump rapid=2(1-random ())
Update the G using G = 2Goð1 − ðIi/TÞ Þ
if ( |G|≥1) then

Update the vehicle's present location by using eq.(3)
if ( |G| < 1) then

if (r≥0.5 and |G|≥0.5) then Soft encircle
Update the vehicle's present location by eq. (4)

else if (r≥0.5 and |G| <0.5) then Hard encircle
Update the vehicle's present location by eq. (6)

else if (r <0.5 and |G|≥0.5) then Soft encircle with advanced quick dives
Update the vehicle's present location by eq.(11)

else if (r <0.5 and |G| <0.5) then Hard encircle with advanced quick dives
Update the vehicle's present location by eq. (12)
9. Return Yrabbit

Algorithm 1: Presenting the algorithm of the developed mathematical model.

Table 1: Simulation parameters.

Parameters Values

Population size (Hawks) 100

Maximum iterations 350

Vehicle velocity 22m/s-30m/s

Network size 1 km ∗ 1 km
Search plane 2D

Communication range 200m-600m

Mobility model Freeway mobility model

Simulation runs 10

Weight 1 & weight 2 0.5

Convergence factor 0.001

Nodes 30-60
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Figure 4: Transmission range vs. number of clusters for 30-60 nodes and network size of 1 km × 1 km.
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Figure 5: Number of nodes vs. CHs for transmission range 300m-600m and grid 1 km × 1 km.
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The findings are shown in figures 6 and 7 which were
obtained by altering the communication range from 200m
to 500m while taking into account 30 and 60 nodes and

dynamic grid size. The results clearly show that iCHHO out-
performs other well-known methods as cited in literature
from [35–56].
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Figure 6: Network size vs. number of clusters for 30 nodes.
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The load balancing factor is employed to validate the
results by comparing them to an established method and
evaluating the generated method against it. The number of
vehicles (load) against each cluster head is efficiently and
effectively balanced by iCHHO, which surpasses other
benchmark algorithms in Figures 8 and 9.

5. Statistical Analysis for Evaluation

In this section, we perform various statistical tests, such as
Fully Modified Least Square (FMOLS), which includes a p
-test, regression analysis, and ANOVA to investigate the
capabilities of the proposed method. Also, we compare
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Figure 8: Load balance factor for 30 nodes at the grid size of 1 km × 1 km.
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Figure 9: Load balance factor for 60 nodes at the grid size of 1 km × 1 km.

Table 2: Regression coefficients vs no. of clusters under Fully Modified Least Square (FMOLS) methods.

Dependent variables Variable Coefficient Prob. R-squared Adjusted R-squared ANOVA

NO_CLUSTERS_GWO [37]
TR -0.042088 0.0097

0.775376 0.749798 F 1, 9ð Þ = 40:18∗∗∗
C 27.73294 0.0005

NO_CLUSTERS_GOA [36]
TR -0.040038 0.0124

0.816213 0.794190 F 1, 9ð Þ = 54:31∗∗∗
C 27.15528 0.0006

NO_CLUSTERS_WOACNET [35]
TR -0.040015 0.0095

0.879748 0.835216 F 1, 9ð Þ = 67:85∗∗∗
C 27.34703 0.0004

NO_CLUSTERS_iCHHO developed method
TR -0.039256 0.0092

0.943748 0.912216 F 1, 9ð Þ = 79:29∗∗∗
C 27.00485 0.0003

TR: transmission range; C: no of clusters.
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the results with other state-of-the-art methods, as shown
in Table 2.

In the cases of iCHHO, WOACNET, GWO, and GOA,
Table 2 illustrates the effect of transmission range on the
number of clusters. According to the theory, the smaller
the communication range, the fewer clusters there will be.
In the case of iCHHO, we found that increasing the trans-
mission range by 1% reduces the number of clusters
by.039%. In comparison, the change in TR for the other
three state-of-the-art approaches, WOACNET, GWO, and
GOA, is less than 0.040, 0.042, and 0.040, respectively. The
R2 value shows the predictor variable explained 0.94%,
0.87%, 0.77%, and 0.81% variance, respectively, in the out-
come variable, i.e., no. of clusters with Fð1, 9Þ = 79:29∗∗∗, F
ð1, 9Þ = 67:85∗∗∗, Fð1, 9Þ = 40:18∗∗∗, and Fð1, 9Þ = 54:31∗∗∗.

6. Conclusion

This paper proposed a novel clustering strategy for the opti-
mization of resources. This study implements a nature-
inspired clustering optimization technique that is influenced
by Harris Hawks behavior. This method’s performance is
evaluated and analyzed using both modern and advanced
approaches. In terms of the number of CHs, the developed
method (iCHHO) outperforms the existing algorithms, such
as GOA, WOACNET, and GWO (by 79%) when communi-
cation ranges, network size, and the number of vehicles are
varied. Moreover, the proposed method lowers the
network’s overall costs by reducing the cluster heads to
near-optimal levels and increasing cluster stability. Also,
the routing scalability and reliability could be improved by
deploying the proposed clustering in VANETs, as it groups
vehicles thus forming a hierarchical network based on
geographical and velocity distribution.
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