
Research Article
Node Localization Algorithm Based on Modified Archimedes
Optimization Algorithm in Wireless Sensor Networks

Mangmang Cheng ,1 Tao Qin,1 and Jing Yang 1,2

1Electrical Engineering College, Guizhou University, Guiyang 550025, China
2Guizhou Provincial Key Laboratory of Internet + Intelligent Manufacturing, Guiyang 550025, China

Correspondence should be addressed to Jing Yang; jyang7@gzu.edu.cn

Received 19 November 2021; Accepted 11 May 2022; Published 7 June 2022

Academic Editor: Christos Riziotis

Copyright © 2022 Mangmang Cheng et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Node localization information plays an important role in wireless sensor networks (WSNs). To solve the problem of low
localization accuracy of distance vector hop (DV-Hop) localization algorithm in wireless sensor networks, an improved
localization algorithm called MAOADV-Hop based on the modified Archimedes optimization algorithm (MAOA) and DV-
Hop is proposed, which can achieve the balance between the localization speed and the localization precision. Firstly, tent
chaotic mapping and particle swarm optimization (PSO) algorithm are introduced into Archimedes optimization algorithm to
improve the initial population diversity and change the update rules of density and volume, which improve the global
convergence ability and convergence speed of the algorithm. Secondly, the MAOA is used to replace the least square part of
the DV-Hop localization algorithm to improve the localization accuracy of the algorithm. Finally, MAOADV-Hop is verified
through four different network environments and compared with DE_DV-Hop, BOA_DV-Hop, and DV-Hop. The simulation
results show that the localization speed of the proposed approach is faster than that of DE_DV-Hop and BOA_DV-Hop, and
the localization error is less than that of DV-Hop, DE_DV-Hop, and BOA_DV-Hop.

1. Introduction

Wireless sensor networks (WSNs) consist of a number of
static or mobile sensors in self-organizing and multihop man-
ner, aimed at sending the information detected and processed
by the sensor nodes in the coverage area of the network to the
users [1, 2]. WSNs integrates MEMS, sensor technology with
network communication technology [3] and is widely used
in agriculture [4], military [5], environmental protection [6],
intelligent transportation [7, 8], and other fields. It has been
the focus and highlight of international competition because
of the focuses of Industry and Academia [9, 10].

Because the location information of nodes plays an
important role in the working process of WSNs [11], local-
ization is an indispensable basic technology [12]. Although
the current GPS localization system can accurately locate
the target, it is difficult to use satellite positioning informa-

tion for accurately locating the target in some special places
[13, 14]. Therefore, it is very meaningful and challenging
work to study the accurate localization algorithm for WSNs.

The rest of this paper is organized as follows: In Section 2,
we describe the localization algorithms inWSNs and the main
contributions of our work. In Section 3, we improve the Archi-
medes optimization algorithm (AOA) and compared with the
other algorithms. In Section 4, the MAOADV-Hop localiza-
tion algorithm is proposed and the the experimental simula-
tion comparison is carried out to verify the performance of
the localization algorithm. Finally, we summarize the work
of this paper and describe the future work in Section 5.

2. Literature Review

Node localization algorithms inWSNs are mainly divided into
range-based localization algorithm and range-free localization

Hindawi
Journal of Sensors
Volume 2022, Article ID 7026728, 18 pages
https://doi.org/10.1155/2022/7026728

https://orcid.org/0000-0003-1116-277X
https://orcid.org/0000-0002-6407-1276
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7026728

algorithm [15]. The range-based localization algorithmmainly
included RSSI [16], TOA [17], TDOA [18], and angle of
arrival (AOA) [19]. The range-free localization algorithm
included centroid [20], weighted centroid, DV-Hop, amor-
phous [21], and APIT localization algorithm [22]. The posi-
tion accuracy of range-free localization algorithm can satisfy
most of the needs, which is popular among users [23].

The DV-Hop localization algorithm is one of the most
famous range-free localization algorithms in WSNs
[24–26] due to its high robustness and simplicity. But, the
DV-Hop algorithm has a lower localization accuracy in
complex environment. Thus, many improved DV-Hop algo-
rithms have been proposed in recent years.

Messous et al. proposed an improved recursive DV-
Hop localization algorithm for randomly deployed wireless
sensor networks, which uses an optimization formula to
calculate the average hop count of anchor nodes to obtain
better localization accuracy [27]. Shi et al. proposed an
improved DV-Hop scheme based on path matching and
particle swarm optimization algorithm, which uses an
improved particle swarm optimization algorithm to opti-
mize the location of unknown nodes [28]. Han et al. pro-
posed an improved localization algorithm based on the
improved DV-Hop and differential evolution (DE) algo-
rithm in 2020 [29]. Huang and Zhang proposed a
weighted DV-Hop localization algorithm for wireless sen-
sor networks based on DE algorithm [30]. Lei et al. pro-
posed DV-Hop localization based on the improved
sparrow search algorithm (SSA) in wireless sensor net-
works in 2020, using the double communication radius
method to improve DV-Hop and the improved sparrow
search algorithm to estimate the location of nodes [31].
Huang et al. proposed a three-dimensional localization
algorithm for WSNs based on improved A∗ and DV-
Hop algorithms [32]. Han et al. proposed a multitarget
vector hopping localization algorithm based on differential
evolution quantum particle swarm optimization [33].

AOA is an algorithm with fast convergence speed and
good global convergence ability [34], but its performance
of the global convergence speed can be improved. Thus, a
modified AOA (MAOA) with better global convergence
ability is proposed. And the MAOA is used to improve the
performance of the DV-Hop algorithm, that is, the
MAOADV-Hop algorithm.

The main contributions of our work in this paper can be
summarized as follows.

The Archimedes algorithm is optimized. Firstly, tent cha-
otic map is introduced into AOA to increase the diversity of
the initial population of the algorithm. Secondly, the concepts
of social learning and individual cognition in PSO are intro-
duced to update the iterative equations of density and volume
in AOA. It accelerates the convergence of density and volume
to enhance the convergence speed of the algorithm.

MAOA is tested on several test functions and compared
with AOA, DE, butterfly optimization algorithm (BOA)
[35], PSO, and marine predator algorithm (MPA). The per-
formance of the improved MAOA is verified.

The paper proposed a WSN localization algorithm based
on MAOA and the DV-Hop algorithm (MAOADV-Hop).

Compared with DV-Hop, DE_DV-Hop, and BOA_DV-
Hop, the MAOADV-Hop has better convergence rate than
that of DE_DV-Hop and BOA_DV-Hop and has better
localization accuracy than that of the DV-Hop and BOA_
DV-Hop.

3. AOA and MAOA

In this section, Section 3.1 introduces the entire optimization
process of AOA. Section 3.2 improves AOA by using the
tent chaotic map and the concepts of social learning and
individual cognition in PSO, and MAOA is proposed. Sec-
tion 3.3 verifies the performance of MAOA by comparing
with five swarm intelligence optimization algorithms.

3.1. Archimedes Optimization Algorithm. AOA is a meta-
heuristic algorithm inspired by Archimedes’ principle. Like
other population-based metaheuristic algorithms, AOA
begins its searching process through an initial population
with random volume, density, and acceleration. The steps
of the algorithm are as follows.

Step 1. Initialize population position, volume, density, and
acceleration using

Xi = lbi + rand × ubi − lbið Þ ; i = 1, 2,⋯,N ,

acci = lbi + rand × ubi − lbið Þ ; i = 1, 2,⋯,N ,

deni = rand N ,Dð Þ,
voli = rand N ,Dð Þ,

ð1Þ

where Xi denotes the ith object in N population. N
and D, respectively, denote population number and
dimensions of the search space. ubi and lbi are the lower
and upper bounds of the search space, respectively. voli,
deni, and acci denote volume, density, and acceleration of
the ith object, respectively. rand ðN ,DÞ is a N ×D dimen-
sional matrix, which can be randomly calculated by the
system function. Then, the individual Xbest with the best
fitness value and the corresponding accbest, denbest, and
volbest were selected.

Step 2. Update the density and volume of ðt + 1Þth iteration
of ith object using

dent+1i = denti + rand × denbest − denti
� �

,

volt+1i = volti + rand × volbest − volti
� �

,
ð2Þ

where denbest and volbest, respectively, are the global opti-
mal value of density and volume so far.

Step 3. Calculate the parameter TF and the density decline
factor d, which are used to balance the local convergence
ability and global convergence ability of MAOA.

2 Journal of Sensors

TF = exp
t − tmax
tmax

� �
, ð3Þ

where tmax is max-iterations and t is the current iterations.
TF increases with the number of iterations until TF = 1.

dt+1 = exp tmax − t
tmax

� �
−

t
tmax

� �
, ð4Þ

where d decreases as the number of iterations increases,
and the search is transferred to the bounded region that has
been identified.

Step 4. If TF ≤ 0:5, the phase is exploration phase and colli-
sion between objects occurs. Update acceleration using

acct+1i =
denmr + volmr × accmr

dent+1i + volt+1i

,

mr = rand,
ð5Þ

where acct+1i , dent+1i , and volt+1i denote the acceleration,
density, and volume of the ith individual in the ðt + 1Þth iter-
ation, respectively. accmr, denmr, and volmr denote the accel-
eration, density, and volume of random individuals,
respectively.

If TF > 0:5, the phase is exploitation phase and no colli-
sion between objects. Update acceleration using

acct+1i =
denbest + volbest × accbest

dent+1i + volt+1i

: ð6Þ

Then, normalize the acceleration using

acct+1i,norm = u ×
acct+1i −min accð Þ

max accð Þ −min accð Þ + l, ð7Þ

where u and l are the range of normalization and set to
0.9 and 0.1, respectively. acct+1i,norm denotes the percentage of
steps that each agent will change. If the object i is far away
from global optimum, the acct+1i,norm value will be high which
means that the object is in the exploration phase.

Step 5. If TF ≤ 0:5, update the population X position using

Xt+1
i = Xt

i + C1 × rand × acct+1i,norm × d × Xrand − Xt
i

� �
, ð8Þ

where C1 is a constant equal to 2. Otherwise, if TF > 0:5,
update the population X position using

Xt+1
i = Xt

best + F × C2 × rand × acct+1i,norm × d × T × Xbest − Xt
i

� �
,

ð9Þ

where C1 is a constant equal to 6. T = C3 × TF, T
increases with time. F is a parameter that changes the direc-
tion of motion, calculated using

P = 2 × rand − C4,

F =
+1, if P ≤ 0:5,

−1, if P > 0:5,

(ð10Þ

where C3 andC4 are used to balance the movement
direction of the population to adjust the ability of the algo-
rithm to jump out of the local optimization.

Step 6. Evaluation. Select the individuals with the best fitness
and their acceleration, density, and volume based on the
updated population. Then, the algorithm proceeds to the
next iteration until the iteration reach the max-iterations.

3.2. The Improvement of Archimedes
Optimization Algorithm

3.2.1. Tent Chaotic Mapping. Tent chaotic map can improve
the population diversity to strength the global search ability
of the algorithm [36]. Themathematical expression is shown in

x1 = rand,

xi+1 =

xi
a
, if xi < a,

xi
1 − að Þ , if xi ≥ a,

8>><
>>: i = 1, 2,⋯,D,

ð11Þ

where a is the chaos factor, and a = 0:7 in here. D is the
dimension of population.

3.2.2. The Modified Archimedes Optimization Algorithm
(MAOA). Firstly, the paper introduces tent chaotic map into
the population initialization phase of AOA. Secondly, refer-
ring the concepts of social learning and individual percep-
tion in PSO to optimize the density and volume formula of
AOA, the paper proposed the MAOA. The steps of MAOA
are as follows:

Step 1: initialization. initialize the positions of all objects
using

Xi = Tent Nð Þ:∗ ubi − lbið Þ + lbi i = 1, 2,⋯,D, ð12Þ

where D is the dimension of population and N is the
number of the population. The ubi and lbi are the lower
and upper bounds of the search space, respectively.

3Journal of Sensors

Initialize density (den), volume (vol), and acceleration
(acc) for the ith object using

deni = rand,

voli = rand,

acci = rand N ,Dð Þ × ubi − lbið Þ + lbi:

ð13Þ

Initialize the optimal position (Pi) and corresponding fit-
ness (Pbesti) for the ith object using

Pi = Xi,

Pbesti = fitness Pið Þ:
ð14Þ

Then, Pden and Pvol corresponding to P and Xbest, ac
cbest, denbest, and volbest are selected in the initialized
population.

Step 2: update the density and volume of population using

dent+1i = denti + r1 × rand × Pdeni − denti
� �

+ r2 × rand × denbest − denti
� �

,

volt+1i = volti + r1 × rand × Pvoli − denti
� �

+ r2 × rand × volbest − volti
� �

,
ð15Þ

where t is the current iteration and r1 and r2 represent
individual cognitive coefficients and social learning coefficient,
respectively. If r1 = 0, there is no individual cognition and the
convergence speed of the algorithm is fast but fall into local
optimization easily. Step 3, step 4, and step 5 are all same as
AOA. After the three-step update iteration, a new population
Xnew is obtained.

Step 6: evaluate each object using fitness of objective
function and remember the best solution found so far.
Update the current optimal position P of each object and

Table 1: MAOA sensitivity analysis of parameters.

Number
Parameters Test function

C3 C4 r1 r2 F5 F12

1 1 1 1 0.5 2:89E − 07 5:62E − 09

2 1 1 1 1 2:89E − 07 1:18E − 08

3 1 1 1.5 0.5 2:90E − 07 7:86E − 09

4 1 1 1.5 1 2:90E − 07 3:70E − 08

5 1 1 1.8 0.5 2:89E − 07 5:84E − 09

6 1 1 1.8 1 2:89E − 07 4:85E − 09

7 1 2 1 0.5 2:89E − 07 9:93E − 09

8 1 2 1 1 2:89E − 07 1:08E − 08

9 1 2 1.5 0.5 2:90E − 07 6:80E − 09

10 1 2 1.5 1 2:90E − 07 2:88E − 08

11 1 2 1.8 0.5 2:89E − 07 3:96E − 09

12 1 2 1.8 1 2:89E − 07 6:78E − 09

13 2 1 1 0.5 1:93E − 03 2:39E − 06

14 2 1 1 1 5:85E − 03 3:20E − 07

15 2 1 1.5 0.5 5:69E − 03 1:25E − 06

16 2 1 1.5 1 1:07E − 02 2:96E − 07

17 2 1 1.8 0.5 4:04E − 03 5:24E − 07

18 2 1 1.8 1 6:66E − 03 2:54E − 07

19 2 2 1 0.5 4:34E − 03 2:37E − 06

20 2 2 1 1 2:18E − 03 6:35E − 07

21 2 2 1.5 0.5 6:78E − 03 1:73E − 06

22 2 2 1.5 1 2:81E − 03 1:40E − 07

23 2 2 1.8 0.5 2:09E − 01 1:81E − 07

24 2 2 1.8 1 3:10E − 03 2:33E − 07

4 Journal of Sensors

T
a
bl
e
2:
T
he

te
st
fu
nc
ti
on

.

T
yp
e

Fu
nc
ti
on

D
im

R
an
ge

f m
in

U
ni
m
od

al
fu
nc
ti
on

F
1
x ð
Þ=

〠
n i=
1x

2 i
30

[-
10
0,
10
0]

0

F
2
x ð
Þ=

〠
n i=
1
x ij
j+

Y n i=
1
x ij
j

30
[-
10
,1
0]

0

F
3
x ð
Þ=

〠
n i=
1
〠

i j−
1x

j

�
� 2

30
[-
10
0,
10
0]

0

F
4
x ð
Þ=

m
ax

i
x ij
j,1

≤
i≤

n
f

g
30

[-
10
0,
10
0]

0

F
5
x ð
Þ=

〠
n−

1
i=
1

10
0
×

x i
+1
−
x2 i

�
� 2 +

x i
−
1

ð
Þ2

h
i

30
[-
30
,3
0]

0

F
6
x ð
Þ=

〠
n i=
1

x i
+
0:
5

½
�

ð
Þ2

30
[-
10
0,
10
0]

0

F
7
x ð
Þ=

ix
4 i
+
ra
nd

m
0,
1

½
�

30
[-
12
8,
12
8]

M
ul
ti
m
od

al
fu
nc
ti
on

F
8
x ð
Þ=

〠
n i=
1
−
x i
sin

ffiffiffiffiffiffiffi x ij
j

p�
�

30
[-
50
0,
50
0]

12
56
9.
48

F
9
x ð
Þ=

〠
n i=
1
x2 i

−
10

co
s
2π

x i
ð

Þ+
10

	

30
[-
5.
12
,5
.1
2]

0

F
10

x ð
Þ=

−2
0
ex
p

−0
:2

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffi
1/
n〠

n i=
1x

2 i

q
�

� −
ex
p

1/
n〠

n i=
1c
os

2π
x i

ð
Þ

�
� +

20
+
e

30
[-
32
,3
2]

0

F
11

x ð
Þ=

1/
40
00
〠

n i=
1x

2 i
−
Y n i=

1
co
s

x i
/

ffiffi ip
�

� +
1

30
[-
60
0,
60
0]

0

F
12

x ð
Þ=

π
/n

ð
Þ

10
sin

π
y 1

ð
Þ+

〠
n−

1
i=
1
y i
−1

ð
Þ2

1
+
sin

2
π
y i
+1

ð
Þ

	

 +

y n
−
1

ð
Þ2�

n
y i
=
1+

x 1
+
1

ð
Þ/4

ð
Þ,

u
=

x i
,a
,k
,m

ð
Þ=

k
x i
−
a

ð
Þm
,

x i
>
a,

0,
−a

<
x i
<
a,

k
−x

i
−
a

ð
Þm
,

x i
<−

a

8 > > < > > :
30

[5
0,
50
]

0

F
13

x ð
Þ=

0:
1

sin
2
3π

x i
ð

Þ+
〠

n i=
1
x i
−
1

ð
Þ2

1+
sin

2
3π

x i
+
1

ð
Þ

	

 +

x i
−
1

ð
Þ2

1
+
sin

2
2π

x i
+
1

ð
Þ

	

 +

〠
n i=
1u

x i
,5
,1
00
,4

ð
Þ

n
30

[5
0,
50
]

0

5Journal of Sensors

Table 4: Test result statistics.

Function Type AOA MAOA BOA PSO DE MPA

F1
Mean 5:639E − 05 5:492E − 09 9:100E − 03 2:073E + 04 9:588E + 03 4:648E + 01

Std 1:143E − 04 3:313E − 08 2:000E − 03 1:990E + 03 1:692E + 03 2:260E + 01

F2
Mean 9:569E − 04 1:016E − 05 3:980E − 02 4:391E + 00 4:021E + 01 2:727E + 00

Std 1:142E − 03 3:098E − 05 1:420E − 02 1:275E + 00 3:951E + 00 5:867E − 01

F3
Mean 2:454E − 02 9:931E − 08 8:300E − 03 7:217E + 04 4:328E + 04 2:205E + 03

Std 4:674E − 02 7:045E − 07 1:900E − 03 1:996E + 04 6:230E + 03 1:122E + 03

F4
Mean 6:146E − 03 1:825E − 05 1:129E − 01 4:762E + 01 6:458E + 01 6:478E + 01

Std 7:079E − 03 3:676E − 05 1:540E − 02 1:112E + 00 4:003E + 00 4:294E + 00

F5
Mean 2:892E + 01 2:891E + 01 2:893E + 01 1:891E + 04 9:356E + 06 8:748E + 02

Std 1:032E − 01 3:498E − 02 3:510E − 02 1:893E + 04 3:099E + 06 4:530E + 02

F6
Mean 5:511E + 00 5:566E + 00 5:743E + 00 2:068E + 04 9:574E + 03 5:444E + 01

Std 4:440E − 01 6:852E − 01 6:237E − 01 1:771E + 03 1:677E + 03 2:251E + 01

F7
Mean 7:405E − 03 6:257E − 03 1:770E − 02 9:554E − 01 4:545E + 00 2:341E − 02

Std 6:505E − 03 6:086E − 03 7:300E − 03 3:586E − 01 1:402E + 00 1:278E − 02

F8
Mean −5:345E + 03 −4:129E + 03 −3:126E + 03 −2:435E + 03 −5:770E + 03 −6:046E + 03

Std 3:835E + 03 4:679E + 02 3:422E + 02 4:923E + 02 3:927E + 02 5:811E + 02

F9
Mean 2:497E + 01 2:920E − 07 5:846E + 01 1:064E + 02 2:156E + 02 7:705E + 01

Std 6:370E + 01 1:854E − 06 8:200E + 01 2:240E + 01 1:713E + 01 2:900E + 01

F10
Mean 1:637E + 01 4:345E − 06 9:800E − 02 7:056E + 00 1:574E + 01 3:071E + 00

Std 7:670E + 00 1:121E − 05 1:690E − 02 1:086E + 00 6:888E − 01 4:540E − 01

F11
Mean 2:150E − 01 2:812E − 08 1:238E − 01 5:673E + 02 8:788E + 01 1:443E + 00

Std 3:083E − 01 2:632E − 07 3:830E − 02 4:728E + 01 1:376E + 01 1:730E − 01

F12
Mean 7:449E − 01 6:732E − 01 7:435E − 01 1:580E + 01 4:280E + 06 1:069E + 00

Std 1:868E − 01 1:843E − 01 1:464E − 01 1:449E + 01 3:028E + 06 4:527E − 01

F13
Mean 2:958E + 00 2:937E + 00 3:086E + 00 9:261E + 03 2:033E + 07 4:866E + 00

Std 1:048E − 01 1:079E − 01 1:896E − 01 1:508E + 04 8:453E + 06 1:489E + 00

Table 3: Parameter settings of every algorithm.

Index Algorithm Parameter

1 AOA N = 30, C1 = 2, C2 = 6, C3 = 1, C4 = 2, Tmax = 100

2 MAOA N = 30, C1 = 2, C2 = 6, C3 = 1, C4 = 2, r1 = 1:8, r2 = 0:5, Tmax = 100

3 BOA N = 30, conversion probability p = 0:6, initial value of a is 0.1, Tmax = 100

4 PSO N = 30, w decreases linearly in [0.2, 0.9], c1 = 2, c2 = 2, Tmax = 100

5 DE N = 30, CR = 0:1, Tmax = 100

6 MPA N = 30, FADs = 0:2, P = 0:5, Tmax = 100

6 Journal of Sensors

the corresponding Pbest, Pden, and Pvol. Then, update the
global optimal individual Xbest and corresponding accbest,
denbest, and volbest.

3.3. Algorithm Simulation Analysis. In this section, we com-
pared the performance of MAOA with five algorithms,
including AOA, BOA, PSO, DE, and MPA by 13 test func-
tions. The global convergence ability and convergence speed
of the proposed MAOA are analyzed to verify the optimiza-
tion ability.

Simulation platform: Windows 10 system using Intel (R)
Core (TM) i5-10210U CPU @16G RAM, and MATLAB
2018b.

3.3.1. Parameter Setting of MAOA. In the improved algo-
rithm, the parameters including C1, C2, C3, C4, r1, and r2
need to be set. According to the analysis of AOA algorithm
in reference [23], we choose C1 = 2, C2 = 6. The sensitivity
of the other four parameters of MAOA is analyzed by unim-
odal function F5 and multimodal test function F12.

Setting the parameter N = 30 and max − iterations = 200,
the test results are shown in Table 1. It is obvious from the
test results in Table 1 that the performance of MAOA is
the best while C3 = 1, C4 = 2, r1 = 1:8, and r1 = 0:5.

3.3.2. MAOA Convergence Analysis. We compared the pro-
posed algorithm with AOA, BOA, PSO, DE, and MPA
through 13 test functions. The test functions are shown in
Table 2, including seven unimodal functions, F1 − F7, and
six multimodal functions, F8 − F13: The dimensions of the test
function are all set to 30. To avoid the error resulted by acci-
dental factors, the average value of the results of 100 runs of
each algorithm is used to measure the optimization perfor-
mance of each algorithm. The parameters of each algorithm
are shown in Table 3, and the test results are shown in Table 4.

In Table 4, the ‘Mean’ represents the average value of
the optimization results and the ‘Std’ represents the stan-
dard deviation of the optimization results, and the black-
ened one is the minimum value. Compared with other
algorithms, MAOA outperformed other metaheuristic
algorithms for 11 functions including F1, F2, F3, F4, F5,
F7, F9, F10, F11, F12, and F13: In the process of 100 tests,
the standard deviation of the test result of MAOA algo-
rithm is relatively small. This indicates that the stably
global convergence ability of the algorithm, so the
improvement of AOA is effective and MAOA has better
global convergence ability than others.

3.3.3. Complexity Analysis of Algorithm

(1) Complexity analysis of AOA

The time complexity of AOA is given as follows: Assum-
ing that the population size is n, the dimension of search
space is d, and the maximum iteration is T . The population
density, volume, acceleration, and initialization complexity
are all OðndÞ, the fitness value of calculation complexity is
OðndÞ. The exploration and exploitation phases update
complexity are OðTð1 + 2n + 2n log nÞ. To sum up, the time
complexity of the whole algorithm is expressed as

O AOAð Þ = 5 ×O ndð Þ +O T 1 + 2n + 2n log nð Þð Þ: ð16Þ

(2) Complexity analysis of MAOA

The time complexity of MAOA is given as follows: the
population, density, volume, P, and acceleration initialization
complexity are all OðndÞ, and the fitness value of calculation
complexity is OðndÞ. The exploration and exploitation phases

Table 5: Comparison of execution time.

Function
Time of AOA Time of MAOA

Total Average Total Average

F1 0.385 1:283E − 02 0.503 1:677E − 02
F2 0.458 1:527E − 02 0.551 1:837E − 02
F3 0.843 2:810E − 02 0.961 3:203E − 02
F4 0.423 1:410E − 02 0.525 1:750E − 02
F5 0.478 1:593E − 02 0.592 1:973E − 02
F6 0.413 1:377E − 02 0.534 1:780E − 02
F7 0.668 2:227E − 02 0.775 2:583E − 02
F8 0.498 1:660E − 02 0.612 2:040E − 02
F9 0.463 1:543E − 02 0.580 1:933E − 02
F10 0.468 1:560E − 02 0.597 1:990E − 02
F11 0.515 1:717E − 02 0.632 2:107E − 02
F12 1.091 3:637E − 02 1.217 4:057E − 02
F13 1.112 3:707E − 02 1.234 4:113E − 02

7Journal of Sensors

update complexity are OðTð3 + 2n + 2n log nÞ. To sum up,
the time complexity of the whole algorithm is expressed as

O MAOAð Þ = 6 ×O ndð Þ +O T 3 + 2n + 2n log nð Þð Þ: ð17Þ

From Equations (16) and (17), compared with the time
complexity of AOA, the time complexity of MAOA only
increases OðndÞ + OðTð2ÞÞ.

(3) Complexity contrast between AOA and MAOA

AOA and MAOA were optimized over 13 test functions
for 30 times, and the total time and the average time per run
were compared, and the results are shown in Table 5.

In Table 5, the unit of all data is seconds. The results are
shown as follows: the total time of MAOA is longer than that
of AOA about 0.115 seconds, and the average time per run
of MAOA is longer than that of AOA about 3:840E − 03 sec-
onds. Therefore, the time complexity of MAOA increased is
not obvious, compared with that of AOA.

4. MAOADV-Hop Algorithm

4.1. The Node Localization Algorithm. In this section, an
improved localization algorithm, MAOADV-Hop, is pro-
posed by introducing MAOA into DV-Hop. The step of
the algorithm is shown as follows.

Step 1. Flooding. All anchor nodes broadcast data packets
from their locations to their neighbors, and those neighbors
of the receiving packet send the new packet to the other
neighbors. Finally, we can gain the minimum hop count
between every anchor node and every unknown node.

Step 2. Distance estimation between nodes. Equation (18) is
used to calculate the average distance per hop:

HopSizei =
∑i≠jdi,j
∑i≠jhi,j

, ð18Þ

where di,j =
ffi
ðxi − xjÞ2 + ðyi − yjÞ2

q
, ðxi, yiÞ and ðxj, yjÞ

are the location of anchor node i and j, respectively. hi,j
denotes the value of minimum hop-count between anchor

1: Procedure MAOADV-Hop;
2: Initialization: total number of nodes N , percentage p of anchor nodes, communication radius R;
3: Network deployment nodes to generate simulated
network topology;
4: Calculate the hop-count value hi,j according to the shortest path algorithm;
5: for k = 1 to N
6: for i = 1 to N
7: for j = 1 to N
8: if short_path(i, k)+short_path(k, j)<short_path(i, j);
9: short_path(i, j)=short_path(i, k)+short_path(k, j);
10: end
11: end
12: end
13: end
14: Calculate the average distance Hop-size of each hop using Equation (18);
15: Calculate the estimated distance from the anchor node to the unknown node using Equation (19);
16: Initialize the parameters at the population level of MAOA algorithm using (12)─(14);
17: for t = 1: Max_iter
18: Calculate TF using Equation (3) and calculate density decline coefficient d using Equation (4);
19: for i = 1 : N
20: Update dent+1i and volt+1i using Equation (15);
21: if TF < 0:5
22: Update acct+1i using Equation (5) and calculate Xt+1

i using Equation (8);
23: else
24: Update acct+1i using Equation (6) and calculate Xt+1

i using Equation (9);
25: end
26: Apply boundary constraints to X and calculate the fitness of X;
27: The optimal position of each object is selected and assigned to P, and the corresponding fitness is assigned toPbest;
28: Select the best fitness minimum value, the corresponding position Xbest;
29: end
30: The best individual is the location of the unknown node.
31: end

Algorithm 1: The pseudocode of MAOADV-Hop.

8 Journal of Sensors

0
0

10

20

30

40

50

60

70

80

90

100
Localization error distribution diagram

x-coordinate (m)

y-
co

or
di

na
te

 (m
)

20 40 60 80 100

(a)

0
0

11

22

33

44

55

66

77

88

99
Localization error distribution diagram

x-coordinate (m)

y-
co

or
di

na
te

 (m
)

11 22 33 44 55 66 77 88 99

(b)

Figure 1: Continued.

9Journal of Sensors

nodes i and j. Then, Equation (19) is used to calculate the
estimated distance between the anchor node i and the
unknown node u.

du,i = HopSizei × hu,i, ð19Þ

where hu,i denotes the value of minimum hop count
between unknown node u and the anchor node i.

Step 3. It uses MAOA to search the optimal solution of fit-

ness f ðxuÞ =∑m
i=1

ffi
ðxu − xiÞ2 + ðyu − yiÞ2

q
− du,i, where ðxu,

yuÞ represents the estimated location of unknown node u

and ðxi, yiÞ represents the actual location of unknown node
u. m is the number of the anchor node. The estimated posi-
tion corresponding to the optimal solution is the localization
of the unknown node.

The pseudocode of MAOADV-Hop is shown in
Algorithm 1.

4.2. Experimental Results. In this section, the simulation is
carried out in the square area and C-shaped area of 100m
× 100m deploying sensor nodes by random or uniform.
The C-shaped area is formed by digging out a rectangular
area of 30m × 70m in the square area. MAOADV-Hop is

0
0

10

20

30

40

50

60

70

80

90

100
Localization error distribution diagram

x-coordinate (m)

y-
co

or
di

na
te

 (m
)

20 40 60 80 100

(c)

0
0

10

20

30

40

50

60

70

80

90

100
Localization error distribution diagram

x-coordinate (m)

y-
co

or
di

na
te

 (m
)

20 3010 40 50 60 70 80 90 100

(d)

Figure 1: Localization error diagram for (a) random deployment of square area, (b) uniform deployment of square area, (c) random
deployment of C-shaped area, and (d) uniform deployment of C-shaped area.

10 Journal of Sensors

used to estimate the location of the unknown node. The sim-
ulation results are shown in Figure 1.

In Figure 1, the red ‘∗’ represents the anchor node.
The blue ‘○’ represents the estimated location of the
unknown nodes. The blue line connects the estimated
location and the actual location of the same unknown
node and its length is the localization error size. Only con-
sidered 2D coordinate planes, all experimental results were
run independently for 100 times to calculate the average
value. It uses the average localization error (ALE) to mea-
sure the localization accuracy.

ALE =

ffi
xextu − xactuð Þ2 + yextu − yactuð Þ2

q
n × R

, ð20Þ

where ðxextu , yextu Þ and ðxactu , yactu Þ represent the estimate
location and the actual location of the unknown node u,
n is the number of unknown nodes, and R is the commu-
nication radius between nodes.

4.3. Localization Algorithm Analysis

4.3.1. Compared with Different Algorithms. We compared
the localization error with DV-Hop, DE_DV-Hop, BOA_
DV-Hop, and MAOADV-Hop in order to measure the per-
formance of the proposed localization algorithm. The
parameter settings of MAOADV-Hop, DE_DV-Hop, and
BOA_DV-Hop are shown in Tables 6–8.

Experimental analysis is carried out under four different
simulation conditions: square random deployment, square
uniform deployment, C-shaped random steps, and C-
shaped uniform deployment to prove the localization accu-
racy and convergence speed of the proposed algorithm.
The experimental results are shown in Figures 2 and 3.

From Figures 2 and 3, the average localization error of
MAOADV-Hop is 35% to 71% lower than DV-Hop and is
3% to 7% lower than BOA_DV-Hop. The convergence
rate of MAOADV-Hop is faster than both DE-DV-Hop
and BOA_DV-Hop. The localization error curve of
MAOADV-Hop in the four scenarios is relatively smooth,
tends to be horizontal after just several iterations, and has
a good capability of global optimization. DE_DV-Hop fell
into the local optimal value in a short period of time after
25 iterations. Therefore, the localization performance of
MAOADV-Hop is better than the other three localization
algorithms.

4.3.2. Effect of Node Density, Anchor Rate, and Communication
Radius on ALE

(1) The effect of node density on ALE

In this section, the experimental area is a 100m × 100m
square area and the percentage of anchor nodes is 20%. The
number of square topology deployment nodes is 80 to 200
and the communication radius is 20m. Experimental results
are shown in Figure 4.

From Figure 4, with the increasing in the number of
deployed nodes, the ALES of four localization algorithms are
all decreased. Because of the increase in the number of nodes,
the connectivity of the network is enhanced, and the estima-
tion distance error between unknown nodes and anchor nodes
is reduced. Therefore, the localization accuracy is stronger.

(2) The effect of anchor rate on ALE

In this section, the experimental area is a 100m × 100m
square area and the percentage of anchor nodes is 15% to
35%. The number of square topology deployment nodes is
100, and the communication radius is 20m. Experimental
results are shown in Figure 5.

From Figure 5, with the increasing ratio of anchor nodes,
the ALE of four localization algorithms is all decreased.
Because of the increasing ratio of anchor nodes, the accuracy
of the average distance per hop of the anchor nodes is
higher. The estimated distances between the anchor nodes
and the unknown nodes are closer to the real distance.
And the increase of the number of anchors provides more
conditions for the metaheuristic algorithm, so it can estimate
the location of unknown nodes more accurately.

(3) The effect of communication radius on ALE

In this section, the experimental area is a 100m × 100m
square area and the percentage of anchor nodes is 20%. The
number of the square topology deployment nodes is 100,
and the communication radius is 15m to 45m. Experimen-
tal results are shown in Figure 6.

Table 7: Parameter settings of BOA_DV-Hop.

Parameters Value

NP 30

Max-iteration 200

Probability(p) 0.6

Initial value of a, c 0.1, 0.01

Table 8: Parameter settings of MAOA_DV-Hop.

Parameters Value

NP 30

Max-iteration 200

C1, C2, C3, C4 2, 6, 1, 2

r1, r2 1.8, 0.5

Table 6: Parameter settings of DE_DV-Hop.

Parameters Value

NP 30

Max-iteration 200

F0 0.5

CR 0.2

11Journal of Sensors

0 20 40 60 80 100
The number of iterations

Square random deployment

Av
er

ag
e l

oc
al

iz
at

io
n

er
ro

r

120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

DE_DV-Hop

BOA_DV-Hop
DV-Hop
MAOADV-Hop

×

(a)

0 20 40 60 80 100
The number of iterations

Square regular deployment

Av
er

ag
e l

oc
al

iz
at

io
n

er
ro

r

120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

DE_DV-Hop

BOA_DV-Hop
DV-Hop
MAOADV-Hop

×

(b)

Figure 2: Continued.

12 Journal of Sensors

0 20 40 60 80 100
The number of iterations

C random deployment

Av
er

ag
e l

oc
al

iz
at

io
n

er
ro

r

120 140 160 180 200
0.5

1

1.5

2

2.5

3

3.5

DE_DV-Hop

BOA_DV-Hop
DV-Hop
MAOADV-Hop

×

(c)

0 20 40 60 80 100
The number of iterations

C regular deployment

Av
er

ag
e l

oc
al

iz
at

io
n

er
ro

r

120 140 160 180 200
0.5

1

1.5

2

2.5

3

3.5

DE_DV-Hop

BOA_DV-Hop
DV-Hop
MAOADV-Hop

×

(d)

Figure 2: (a) Random deployment in square area. (b) Uniform deployment in square area. (c) Random deployment in C-shaped area. (d)
Uniform deployment in C-shaped area.

13Journal of Sensors

0.0
A B C D

0.2

0.4

0.6

Lo
ca

liz
at

io
n

er
ro

r

0.8

1.0

1.2
1.083

0.468
0.3820.374 0.380

0.657 0.635

1.770

1.394

0.562 0.5850.549
0.599

0.2540.2610.248

1.4

1.6

1.8

2.0

DV-Hop
DE_DV-Hop

BOA_DV-Hop
MAOADV-Hop

Figure 3: The average value of ALE for the four topologies and algorithms.

80
0.25

0.3

Av
er

ag
e l

oc
al

iz
at

io
n

er
ro

r

0.35

0.4

0.45

0.5

0.55

100 120 140 160
The number of nodes

180 200

DE_DV-Hop
BOA_DV-Hop

DV-Hop
MAOADV-Hop

Figure 4: The effect of node density on ALE.

14 Journal of Sensors

In Figure 6, with the increase of communication radius,
the ALE of the four localization algorithms decreased. More
nodes can communicate in a single-hop way, which reduces
the hop value between unknown nodes and anchor points
because of the bigger communication radius. The distance
between the unknown node and the anchor point is estimated
more accurately. And the estimated location of unknown
nodes is more close real location. In addition, the localization

20 25 30 35
Communication radius (m)

Av
er

ag
e l

oc
al

iz
at

io
n

er
ro

r

40 4515
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

DE_DV-Hop
BOA_DV-Hop

DV-Hop
MAOADV-Hop

Figure 6: The effect of communication radius on ALE.

0.05 0.1 0.15 0.2
Anchor rate (%)

Av
er

ag
e l

oc
al

iz
at

io
n

er
ro

r

0.25 0.3 0.35
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

DE_DV-Hop
BOA_DV-Hop

DV-Hop
MAOADV-Hop

Figure 5: The effect of anchor rate on ALE.

Table 9: The parameter settings of WSNs.

Parameter Value

Manner of deployment Random deployment

The number of nodes 100

Anchor rate 0.2

Communication radius 20

15Journal of Sensors

error of MAOADV-Hop is the smallest in the four algorithms
although communication radius is different.

4.3.3. Timing of Localization. In this section, we analyze the
CPU time required of the four localization algorithms. The
WSN parameter settings are shown in Table 9. DE_DV-
Hop, BOA_DV-Hop, DV-Hop, and MAOADV-Hop are
used to locate the unknown nodes. The CPU time required
of each algorithm is shown in Figure 7.

From Figure 7, it is obvious that the time by DV-Hop is
the shortest with 0.4793 seconds, followed by the time used
by MAOADV-Hop, which is 0.9609 seconds. The time
required by DE_DV-Hop and BOA_DV-Hop is longer,
which is about 4 times of DV-Hop and twice of
MAOADV-Hop. Although the time of DV-Hop is shorter
than MAOADV-Hop, the localization accuracy of
MAOADV-Hop is much higher than that of DV-Hop.
Therefore, MAOADV-Hop is the best way to locate
unknown nodes in the four localization algorithms.

5. Conclusions and Future Work

5.1. Conclusions

(1) In this paper, a modified Archimedes optimization
algorithm (MAOA) is proposed, and seven unimodal
functions and six multimodal functions are used to
test the convergence speed and the optimization abil-
ity of the algorithm. The test results show that the con-
vergence and optimization ability of the MAOA is
better than AOA, DE, BOA, PSO, and MPA

(2) The paper proposes a localization algorithm based
on MAOA and DV-Hop, called MAOADV-Hop.
The simulation results show that the localization
effect of MAOADV-Hop is better than that of DE_
DV-Hop, BOA_DV-Hop, and DV-Hop, such as bet-
ter localization accuracy and faster speed

5.2. Future Work. This paper only discusses the application
of node localization based on the two-dimensional plane in
WSNs. These factors associated with WSNs that need futur-
istic attention are listed as follows.

(1) More complex spaces: the future work will focus on
the study of localization in the three-dimensional
WSNs

(2) Energy consumption: the future work should inte-
grate the routing algorithm with localization in order
to reduce the energy consumption, which is helpful
of extending the lifetime of WSNs

Data Availability

The simulation program used to support the findings of this
study have been deposited in the GitHub repository (https://
chengmang1.github.io/data2/).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors are grateful for the support provided by the
Guizhou Provincial Key Laboratory of Internet+Intelligent
Manufacturing, Guiyang 550025, China. This work is sup-
ported by the National Natural Science Foundation of China
(under Grant Nos. 61640014 and 61963009), Innovation
group of Guizhou Education Department (No. Qianjiaohe
KY[2021]012), Industrial Project of Guizhou province
(Grant No. Qiankehe Zhicheng [2022]Yiban017, [2019]
2152), Science and Technology Fund of Guizhou Province
(No. Qiankehejichu [2020]1Y266), Plan of Guizhou prov-
ince Qiankehe-Pingtai (No. (2017) 5788), and the platform
of IOT personnel from Guiyang high technology industry
development zone under Grant 2015, postgraduate case
library (under Grant No. KCALK201708).

0 0.5

DE_DV-Hop

BOA_DV-Hop

DV-Hop

0.9609

0.4793

1.8928

1.7099

MAOADV-Hop

Time (s)
1.51 2

Figure 7: The CPU time required of different algorithms.

16 Journal of Sensors

https://chengmang1.github.io/data2/
https://chengmang1.github.io/data2/

References

[1] G. Bhatti, “Machine learning based localization in large-scale
wireless sensor networks,” Sensors, vol. 18, no. 12, pp. 4179–
4199, 2018.

[2] Z. Li and A. Zhong, “Resource allocation in wireless powered
virtualized sensor networks,” IEEE Access, vol. 8, pp. 40327–
40336, 2020.

[3] W. Liang, M. Tang, J. Long, X. Peng, J. Xu, and K. C. Li, “A
secure FaBric blockchain-based data transmission technique
for industrial Internet-of-Things,” IEEE Transactions on
Industrial Informatics, vol. 15, no. 6, pp. 3582–3592, 2019.

[4] M. S. Perumal, B. Manimozhi, H. Dandamudi, V. B. Durairaj,
and A. Jawaharlalnehru, “Ultra-reliable low latency communi-
cation technique for agriculture wireless sensor networks,”
Arabian Journal of Geosciences, vol. 14, no. 13, pp. 1246–
1255, 2021.

[5] S. Singh, A. Malik, and P. K. Singh, “A threshold-based energy
efficient military surveillance system using heterogeneous
wireless sensor networks,” Soft Computing, vol. 26, no. 7, 2021.

[6] V. Kavitha and S. Mohanraj, “Green engineering principles for
global water quality monitoring using IoT,” International
Journal of Environment and Sustainable Development,
vol. 18, no. 1, pp. 120–129, 2019.

[7] A. Hilmani, A. Maizate, and L. Hassouni, “Automated real-
time intelligent traffic control system for smart cities using
wireless sensor networks,” Wireless Communications and
Mobile Computing, vol. 2020, 28 pages, 2020.

[8] M. Cui, D. Han, and J. Wang, “An efficient and safe road con-
dition monitoring authentication scheme based on fog com-
puting,” IEEE Internet of Things Journal, vol. 6, no. 5,
pp. 9076–9084, 2019.

[9] W. Liang, K. Li, J. Long, X. Kui, and A. Y. Zomaya, “An indus-
trial network intrusion detection algorithm based on multifea-
ture data clustering optimization model,” IEEE Transactions
on Industrial Informatics, vol. 16, no. 3, pp. 2063–2071, 2020.

[10] X. Su, Z. Cai, X. Jia, L. Guo, and Z. Ding, “A self-adaptive
approach for mobile wireless sensors to achieve energy effi-
cient information transmission,” IEEE Access, vol. 8,
pp. 86296–86304, 2020.

[11] M. Li, F. Jiang, and C. Pei, “Review on positioning technology
of wireless sensor networks,” Wireless Personal Communica-
tions, vol. 115, no. 3, pp. 2023–2046, 2020.

[12] J. Luo, Y. Yang, Z.Wang, and Y. Chen, “Localization algorithm
for underwater sensor network: a review,” IEEE Internet of
Things Journal, vol. 8, no. 17, pp. 13126–13144, 2021.

[13] S. Kumar, N. Batra, and S. Kumar, “Range-independent local-
ization for GPS dead zone in MWSN,” Wireless Networks,
vol. 27, no. 7, pp. 4807–4823, 2021.

[14] J. Kumari, P. Kumar, and S. K. Singh, “Localization in three-
dimensional wireless sensor networks: a survey,” The Journal
of Supercomputing, vol. 75, no. 8, pp. 5040–5083, 2019.

[15] P. Xie, K. You, S. Song, and C. Wu, “Distributed range-free
localization via hierarchical nonconvex constrained optimiza-
tion,” Signal Processing, vol. 164, no. 11, pp. 136–145, 2019.

[16] I. Dimitriou and N. Pappas, “Performance analysis of a coop-
erative wireless network with adaptive relays,” Ad Hoc Net-
works, vol. 87, pp. 157–173, 2019.

[17] A. Kargar-Barzi and A. Mahani, “H–V scan and diagonal tra-
jectory: accurate and low power localization algorithms in

WSNs,” Journal of Ambient Intelligence and Humanized Com-
puting, vol. 11, no. 7, pp. 2871–2882, 2020.

[18] G. Qiang, Z. Guohui, and L.Wanchen, “TDOA/FDOA localiza-
tion based on chaotic sparrow search algorithm,” Journal of Jilin
University (Engineering Edition), vol. 23, no. 6, pp. 1–9, 2021.

[19] S. Kang, T. Kim, and W. Chung, “Multi-target localization
based on unidentified multiple RSS/AOA measurements in
wireless sensor networks,” Sensors, vol. 21, no. 13, pp. 4455–
4470, 2021.

[20] Z. Huansheng, C. Bingde, and F. Tao, “Node localization algo-
rithm based on hop vector in mobile WSNs,” Firepower and
command and control, vol. 46, no. 5, pp. 142–146, 2021.

[21] E. Shakshuki, A. A. Elkhail, I. Nemer, M. Adam, and
T. Sheltami, “Comparative study on range free localization
algorithms,” Procedia Computer Science, vol. 151, pp. 501–
510, 2019.

[22] I. Nemer, T. Sheltami, E. Shakshuki, A. A. Elkhail, and
M. Adam, “Performance evaluation of range-free localization
algorithms for wireless sensor networks,” Personal and Ubiq-
uitous Computing, vol. 25, no. 1, pp. 177–203, 2021.

[23] R. T. Moorthi and R. Thiagarajan, “Energy consumption and
network connectivity based on Novel-LEACH-POS protocol
networks,” Computer Communications, vol. 149, no. 1,
pp. 90–98, 2020.

[24] A. Ouyang, Y. Lu, Y. Liu, M. Wu, and X. Peng, “An improved
adaptive genetic algorithm based on DV-Hop for locating
nodes in wireless sensor networks,” Neurocomputing,
vol. 458, no. 1, pp. 500–510, 2021.

[25] J. Cota-Ruiz, R. Gonzalez-Landaeta, J. D. Diaz-Roman,
B. Mederos-Madrazo, and E. Sifuentes, “A weighted and dis-
tributed algorithm for multi-hop localization,” International
Journal of Distributed Sensor Networks, vol. 15, no. 7, Article
ID 155014771986041, 2019.

[26] D. Zhang, X. Zhang, and F. Xie, “Research on location algo-
rithm based on beacon filtering combining DV-hop and mul-
tidimensional support vector regression,” Sensors, vol. 21,
no. 16, pp. 5335–5346, 2021.

[27] S. Messous, H. Liouane, and N. Liouane, “Improvement of
DV-Hop localization algorithm for randomly deployed wire-
less sensor networks,” Telecommunication Systems, vol. 73,
no. 1, pp. 75–86, 2020.

[28] Q. Shi, Q. Xu, and J. Zhang, “An improved DV-Hop scheme
based on path matching and particle swarm optimization algo-
rithm,” Wireless Personal Communications, vol. 104, no. 4,
pp. 1301–1320, 2019.

[29] D. Han, Y. Yu, K. Li, and R. F. de Mello, “Enhancing the sensor
node localization algorithm based on improved DV-hop and
DE algorithms in wireless sensor networks,” Sensors, vol. 20,
no. 2, pp. 343–367, 2020.

[30] Y. Huang and L. Zhang, “Weighted DV-Hop localization algo-
rithm for wireless sensor network based on differential evolu-
tion algorithm,” in 2019 IEEE 2nd International Conference
on Information and Computer Technologies (ICICT), Kahului,
HI, USA, 2019.

[31] Y. Lei, G. De, and L. Fei, “Improved sparrow search algorithm
based DV-Hop localization in WSN,” in 2020 Chinese Auto-
mation Congress (CAC), Shanghai, China, 2020.

[32] X. Huang, D. Han, M. Cui, G. Lin, and X. Yin, “Three-dimen-
sional localization algorithm based on improved A∗ and DV-
hop algorithms in wireless sensor network,” Sensors, vol. 21,
no. 2, pp. 448–470, 2021.

17Journal of Sensors

[33] D. Han, J. Wang, C. Tang, T. H. Weng, K. C. Li, and C. Dobre,
“A multi-objective distance vector-hop localization algorithm
based on differential evolution quantum particle swarm opti-
mization,” International Journal of Communication Systems,
vol. 34, no. 14, pp. 1–17, 2021.

[34] F. A. Hashim, K. Hussain, E. H. Houssein, M. S. Mabrouk, and
W. al-Atabany, “Archimedes optimization algorithm: a new
metaheuristic algorithm for solving optimization problems,”
Applied Intelligence, vol. 51, no. 3, pp. 1531–1551, 2021.

[35] S. Arora and S. Singh, “Butterfly optimization algorithm: a
novel approach for global optimization,” Soft Computing,
vol. 23, no. 3, pp. 715–734, 2019.

[36] Y. Li, M. Han, and Q. Guo, “Modified whale optimization
algorithm based on tent chaotic mapping and its application
in structural optimization,” KSCE Journal of Civil Engineering,
vol. 24, no. 12, pp. 3703–3713, 2020.

18 Journal of Sensors

	Node Localization Algorithm Based on Modified Archimedes Optimization Algorithm in Wireless Sensor Networks
	1. Introduction
	2. Literature Review
	3. AOA and MAOA
	3.1. Archimedes Optimization Algorithm
	3.2. The Improvement of Archimedes Optimization Algorithm
	3.2.1. Tent Chaotic Mapping
	3.2.2. The Modified Archimedes Optimization Algorithm (MAOA)

	3.3. Algorithm Simulation Analysis
	3.3.1. Parameter Setting of MAOA
	3.3.2. MAOA Convergence Analysis
	3.3.3. Complexity Analysis of Algorithm

	4. MAOADV-Hop Algorithm
	4.1. The Node Localization Algorithm
	4.2. Experimental Results
	4.3. Localization Algorithm Analysis
	4.3.1. Compared with Different Algorithms
	4.3.2. Effect of Node Density, Anchor Rate, and Communication Radius on ALE
	4.3.3. Timing of Localization

	5. Conclusions and Future Work
	5.1. Conclusions
	5.2. Future Work

	Data Availability
	Conflicts of Interest
	Acknowledgments

