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In the foggy environment, the images collected outdoors are prone to problems, such as low contrast and loss of details. In order to
solve this problem, this paper proposes an algorithm based on multiscale parallel-depth separable convolutional neural network
(MSP-DSCNN) to remove fog from foggy images and improve image quality. The multiscale feature extraction module extracts
texture feature details from fog images at different scales and extracts high-dimensional and low-dimensional features from fog
images by using parallel depth and shallow channels. In order to further optimize the network model, a split convolution
method is proposed, which can split the feature graph into two categories, one is the main feature and the other is the
secondary feature. The key information is extracted from the main features with high complexity, and the compensation
information is extracted from the minor features with low complexity. Experiments show that compared with other
algorithms, the model constructed in this paper has obvious advantages in defogging effect, natural color of restored images,
good detail retention, and dominant indicators. It effectively solves the problems of incomplete haze, color offset, and poor
visibility of detail maintenance in the current image.

1. Introduction

Intelligent equipment such as video surveillance plays an
important role in the application of computer vision system.
Because of the existence of fog and haze, the quality of
images collected by imaging equipment is seriously
degraded, and the target object cannot be well monitored,
which brings great inconvenience to the visual system
[1–3]. Therefore, image defogging has very important prac-
tical significance, research value, and practical value.

The visibility of fog image decreases evidently, due to the
existence of fog. There are two main reasons to produce
foggy images: first, the reflected light of the object is
absorbed and scattered by suspended particles in the atmo-
sphere, resulting in the attenuation of reflected light energy
and the reduction of image brightness and contrast. Second,
much of the ambient light, such as sunlight, is scattered by
scattering materials in the atmosphere to form a bright back-
ground [4]. In various applications based on computer
vision, input foggy images may lead to system performance
degradation or even errors [5–8].

In recent years, image defogging has attracted extensive
attention. Based on the atmospheric scattering model [9],
many single-image defogging methods have been developed.
The key idea shared by most methods is to adopt various
image priors, such as dark channel priors [10] and color
attenuation priors [11]. Literature [12] estimated the local
aerial components of the image and then used the multiscale
fusion method to restore the fog-free image. In reference
[13], the transmission image is estimated by using per-
pixel alpha mixing method by estimating the light source
region and nonlight source region, respectively; thus, they
are effectively mixed, since the distance between different
things and the camera in foggy images has different trans-
mission coefficients and the assumption of each close cluster
in fog-free images. Literature [14] makes each cluster to
become a line in RGB space in foggy images, and the algo-
rithm can use these lines to recover depth maps and fog-
free images. These methods are not ideal when dealing with
foggy images under complex imaging conditions.

In order to improve the shortcomings of traditional algo-
rithms, deep learn-based defogging methods develop rapidly
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and become the mainstream direction of image defogging.
The method uses convolutional neural network (CNN) to
train the required features by constructing an end-to-end
Network architecture.

Literature [15] built a Dehaze-Net defogging network
based on deep CNN to train the transmittance, and recovered
fog-free images with the help of atmospheric scattering model,
which achieved good results, especially in the sky area. How-
ever, this network is constructed with a priori or assumption
in traditional methods, which has certain limitations. The
end-to-end gated fusion defogging network GFN proposed
in literature [16] realizes the final defogging through a series
of operations such as white balance, contrast enhancement,
and gamma correction, but the network implementation pro-
cess is quite complicated. AOD network proposed in literature
[17] integrates transmittance and atmospheric light into a uni-
fied parameter K, training through the formula of deformed
atmospheric scattering model, changes the previous methods
of training atmospheric light and transmittance separately.
However, due to the small number of network layers and
limited accuracy, good defogging effect cannot always be
achieved. Literature [18] proposed a feature attention net-
work FFA-NET combining channel attention and pixel atten-
tion mechanism since different channel features contain
completely different weighted information and fog concentra-
tion distribution on different image pixels is also different.
Because this network only considers the difference between
images with fog and images without fog, and does not start
from the overall style of the image. Although it has a good
effect on the composite image, there are still serious details
on loss and incomplete removal of fog in the real scene. Liter-
ature [19] found through the statistics of different color chan-
nels of many foggy images that foggy areas are mainly
concentrated in the brightness channel of Ycbcr color space.
Therefore, the atmospheric lighting priori is proposed and
the AIPNet fog removal network is built. The image quality
is improved to a certain extent, but there are still incomplete
feature extraction and residual fog in some restored images.

Based on the above traditional methods and the shortcom-
ings of existing networks, in this paper, an image defogging
model based on multiscale parallel-deep split convolution
neural network (MSP-DSCNN) is proposed. This model
draws on the idea of multiscale information extraction [20]
in target detection [21]. In the network training stage, convo-
lution of different sizes is used to check the input image for
convolution operation; then, the extracted features are fused.
And then, the fused feature images are put into deep channel
and shallow channel, respectively, for learning. In order to fur-
ther optimize the network model, a split convolution opera-
tion is proposed, which divides the feature graph into two
categories, namely, primary concern feature and secondary
concern feature, simplifying the process of defogging and
highlighting the importance of features.

In the study of fogging image removal, the main innova-
tions of this paper are as follows.

(1) The multiscale feature extraction module is used to
extract image feature information from different
scales

(2) The parallel deep and shallow channels are proposed
to extract high- and low-dimensional features from
foggy images, respectively

(3) A split convolution operation is proposed to further
reduce the number of network parameters, accelerate
the reasoning speed of the model, and improve the
model’s defogging accuracy

This paper consists of the following four main parts.

(1) The first part is the introduction

(2) The second part is the image defogging model

(3) The third part is the experiment and analysis

(4) The fourth part is the conclusion

Besides, there are also abstract and references.

2. Image Defogging Model

2.1. Problem Description. Assume that the foggy image is I,
the fogged image is J , and the foggy noise image in the foggy
image is Q. Equation (1) can be obtained as follows.

I = J +Q, ð1Þ

F Ið Þ = J: ð2Þ

In the traditional convolutional neural network, the
foggy image I is taken as the network input, and the map-
ping model formula (2) from I to J is directly learned by
training the model. However, it is very difficult to train the
model in such a direct way of learning network mapping,
and the precision of defogging is not high. Therefore, this
paper uses residual learning strategy to reduce the difficulty
of network learning. The outputs and inputs of the network
form a large residual unit.

The actual mapping that the network learns is shown in
Formula (3), that is, the network learns the image Q of fog
noise distribution in the image.

R Ið Þ = I − J: ð3Þ

The residual learning method can transform the haze
removal image mapping obtained by direct learning into
the fog noise distribution in the haze image, which reduces
the difficulty of network learning and improves the model’s
fog removal accuracy.

2.2. Multiscale Feature Extraction Module. In the convolu-
tional neural network, the receptive field is the mapping
region on the input image corresponding to the output
image of each layer in the convolutional neural network.
The larger the receptive field, the larger the area of input
image to focus on. In the image input stage, three convolu-
tion kernels of different scales (1× 1, 3× 3, and 5× 5) were
used for feature extraction. A large convolution check
should have a larger receptive field, which can extract
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features in a large range. Small convolution kernel can
extract small range of detail features.

The feature fusion method of parallel superposition [22]
is used to fuse all feature maps together as the input of depth
channel, see Figure 1. ReLU layer is the activation function
layer. The purpose is to improve the nonlinearity of the
model, as shown in Equation (4).

ReLU ið Þ =Max 0, ið Þ: ð4Þ

In actual model training, a 5× 5 convolution kernel with
a cavity step of 2 is used. The number of model parameters
remained unchanged while expanding the receptive field.

2.3. Deep and Shallow Channel Parallel Method. This paper
uses parallel depth and shallow channels to extract feature
information of different dimensions from foggy images.
The shallow channel is composed of 6 layers of neural net-
work, which is mainly used to extract low-dimensional fea-
ture information.

The deep channel is composed of 16 layers neural net-
work, which is used to extract high-dimensional feature infor-
mation. The feature fusion method of parallel superposition is
used to merge the depth and shallow channel information.

2.4. Split Convolution Operation. To further optimize the
network model, a split convolution operation is proposed,
as shown in Figure 2. Feature maps of the same layer pro-
posed from the image often have similar results and feature
redundancy. Therefore, in accordance with the principle of
bisection, the feature graph of each layer is divided into
two parts for independent convolution operation. Group
convolution with a convolution kernel size of 3× 3 and
group number of 2 was used to conduct group convolution
operation on some feature graphs to obtain the main fea-
tures of interest. Meanwhile, for the remaining feature
graphs, point convolution operation with convolution kernel
size of 1× 1 is used to obtain the features of secondary con-
cern. Then, the global average pooling operation is carried
out on the feature graph Pc by using Equation (5) to generate
the initial weight value of each channel [23–25] and obtain
S1 and S2, respectively, where B and M represent the height
and width of the feature map, respectively.

Sc = F Pcð Þ = 1
B ×M

〠
B

x=1
〠
M

y=1
Pc x, yð Þ, c ∈ 1, 2f g: ð5Þ

In order to dynamically adjust the weight of each chan-
nel, the generated S1 and S2 are stacked together and passed
to the full connection layer. Then, Softmax function is used
to regenerate the main and secondary attention features,
and the weight α and β of each channel, as shown in
Equation (6).

α =
eS1

eS1 + eS2
β = 1 − α: ð6Þ

The network output after deconvolution is shown in
Equation (7).

J = α∙P1 + β∙P2: ð7Þ

2.5. Overall Structure of MSP-DSCNN Model. As shown in
Figure 3, the overall framework of model MSP-DSCNN con-
sists of four parts. In the initial stage of the network, a multi-
feature extraction module is used to extract the detail
features of the foggy images at multiple scales by using con-
volution kernels of different sizes. The upper part of the
model is Sconv Block module, whereSconvis separable con-
volution operation andBNis batch regularization. The shal-
low channel module consists of 6 layers of networks. Each
separable convolution operation is followed by a BN and
ReLU. The deep channel module consists of 16 layers of net-
works. In order to reduce the difficulty of network learning,
residual network is first used to directly transfer the features
of the first layer of separable convolution processing to the
fifth, ninth, and thirteenth layers. Then, the feature fusion
module of parallel superposition is used to merge the infor-
mation extracted from depth channel. Finally, a layer of con-
volution operation is used to transform the feature graph
into the output image of the first layer. In order to reduce
the learning difficulty of the whole network, the whole net-
work is composed of a large residual unit. The input and
output form a subtraction operation. In this way, the net-
work can directly learn the fog noise distribution in the fog
image, instead of directly learning the clean image.

This paper uses mean square error as the loss function of
the model, as shown in Equation (8), whereRðIxÞrepresents
the residual image block obtained from network learning
andIx − Jyrepresents the actual residual image block, that
is, the label.

ReLU

Input layer

ReLU ReLU

ReLU ReLU

1×1 1×1

3×3 5×5

1×1

Feature fusion

Figure 1: Multiscale feature extraction diagram.
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Loss−MSE =
1
T
〠
T

x=1
R Ixð Þ − Ix − Jxð Þk k22: ð8Þ

The convolution kernel size and the number of output
channels of each layer of model MSP-DSCNN are shown

in Table 1. The first layer is the multifeature extraction layer,
which consists of 48 1× 1 convolutional kernels, 64 3× 3
convolutional kernels, and 32 5× 5 (cavity step 2) convolu-
tional kernels. In depth channel, separable convolution oper-
ation is used first. The main feature is 2, 38 convolution
operations with a size of 3× 3. Secondary features 26
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Figure 2: Split convolution operation.
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Figure 3: MSP-DSCNN model.
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convolution kernels of 1× 1 size are used for feature comple-
tion operation. Then, 64 feature layers of each depth channel
are superimposed together in parallel. After the convolution
layer of the last layer 1 output channel, the residual image
block is obtained.

3. Experiment and Analysis

In order to verify the effectiveness and rationality of the pro-
posed network, quantitative evaluation of its defogging effect
on synthetic images and real images is made in this paper,
and the results are more convincing by comparing with the
current advanced algorithms from two aspects of visual
effect and objective data.

3.1. Experimental Settings and Data Sets. The network
implementation in this paper is based on Pytorch frame-
work. UseM2000GPU inUbuntu environment to train defog-
ging network. Set the initial learning rate to experience value
0.0001 and batch size to 32. The momentum decay exponents
of Adam optimizer are, respectively, beta 1=0.899 and beta
2=0.999. The number of iterations is 40, and the training time
for one iteration is 32 minutes. Finally, the size of the trained
network model is 1608KB.

The training network of RESIDE (Realistic Single Image
Dehazing) [26] is used in this paper. RE⁃SIDE Images are
selected from NYU2 [27] depth data set. By randomly select-
ing atmospheric light A (A∈(0.8, 1.0)) and scattering coeffi-
cient β (β∈(0.5, 1.5)), different foggy images are synthesized.
It includes Indoor Training Set (ITS), Outdoor Training Set
(OTS), and Synthetic Objective Testing Set (SOTS), the ITS
data set in RESIDE as the training set and SOTS as the test
set. The training set (ITS) includes 1399 clear images and
13990 foggy images with different fog concentrations. The test
set SOTS includes 500 indoor foggy images and 500 outdoor
foggy images. In addition, in order to better verify the effec-
tiveness and practicability of the proposed network, fog
images with rich colors in the real environment are selected
for testing.

In terms of quantitative evaluation of network perfor-
mance, this paper selects some representative algorithms in
the field of defogging for comparison, including traditional
algorithm [28] based on physical model and algorithm [29]
based on literature. Literature [28] algorithm, and literature
[30] algorithm based on deep learning.

3.2. Quantitative Evaluation of Synthetic Image Data Sets

3.2.1. Subjective Evaluation. The network was evaluated
from both subjective and objective aspects on the synthetic
image data set SOTS, and one indoor image and one outdoor
image were randomly selected for effect evaluation. The
defogging effect of each algorithm is shown in Figures 4
and 5. The image obtained by the method in reference [28]
is completely defogged, but the overall image is darker than
the renderings of other algorithms, and the sky region is
seriously distorted due to the limitations of dark channels,
as shown in Figure 5. In addition, the estimation of transmit-
tance at the edge mutation is inaccurate, leading to the
occurrence of halo and block effect at the edge of the

restored image. As shown in Figure 5, there is halation
around the roof. The image obtained by the method of liter-
ature [29] has natural color, especially the sky area, but there
are problems of incomplete defogging and serious loss of
details. In Figure 4, there is obvious residual fog in the back-
ground wall area. And in Figure 5, the details of the lawn are
blurred. Compared with the algorithm in reference [28], the
algorithm in reference [28] has improved color bias in sky
region, but some images have problems of incomplete defog-
ging and color oversaturation. The fourth image in Figure 4
and the fog removal effect in Figure 5 are poor. The image
obtained by the method in reference [30] has good color
fidelity and thorough defogging. However, due to the shal-
low network structure, the feature extraction is not very rich,
and the detail recovery of the remote area is poor, as shown
in Figure 5. For the fog-free image obtained by the algorithm
in literature [28], the indoor image has a good defogging
effect and the restored image has a natural color, while the
outdoor image is not completely defogged, but the sky area
has a natural color and no obvious color deviation, as shown
in Figure 4. Comparing with the previous classical algo-
rithms, the algorithm presented in this paper has a signifi-
cant effect on defogging, with good details and no obvious
distortion, color deviation, and other problems. The color
of defogging images is natural and has good performance
in both indoor and outdoor images.

3.2.2. Objective Evaluation. Objective evaluation indexes
adopt Structural Similarity Index Measurement (SSIM) and
Peak Signalto Noise Ratio (PSNR), which are uniformly used
in deep learning. Among them, the structural similarity
SSIM is used to measure the similarity degree of two images,
and the value range is [0,1]. The peak signal to noise ratio
(PSNR) is used to represent the ratio of useful signal to noise
in an image, and the larger the better. The corresponding
mathematical expressions of the two indicators are shown
in Formula (9) and Formula (10), respectively.

SSIM x, yð Þ =
2μxμy + c0

� �
σxy + c1
� �

μ2x + μ2y + c0
� �

σ2
x + σ2

y + c1
� � , ð9Þ

Table 1: Network structure parameters of model MSP-DSCNN.

Convolution layer Convolution kernel
Output
channel

Level 1 l× 1, 3× 3, 5× 5 48, 64, 32

Shallow channel
Grouping convolution:

3× 3 38

2~5 layers Point convolution: 1× 1 26

Deep channel
Grouping convolution:

3× 3 38

Layer 2~13 Point convolution: 1× 1 26

Feature fusion
layer

None 64× 2

The 15th floor 3x3 1
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where μx and μy are the mean values of images x and y, σx and
σy are the standard deviations of the two images, σxy is the
covariance of the two images, and c0 and c1 are constants.

PSNR = 101a
MAX2

MSE
, ð10Þ

where MSE is the minimum mean square error of the image
after defogging and the clear image and MAX is generally
255. Objective indicators on SOTS are shown in Table 2 (data
are mean values). The pictures obtained by the network pro-
cessing proposed in this paper. SSIM index is ahead of other
algorithms, PSNR index is better than most algorithms, and
good results are obtained. The validity of the proposed net-
work is verified.

3.3. Quantitative Evaluation of Real Image Data Sets

3.3.1. Subjective Evaluation. In order to further confirm the
practical value of the proposed network, this paper conducts
an experimental evaluation on its effect images in real

scenes, and the defogging effect of each algorithm is shown
in Figure 6. You can see that the algorithm in literature
[28] has a good defogging effect on images with rich close-
range, but due to the misestimation of transmittance caused
using the minimum filter, the recovered image is prone to
halo at the edge, and the inaccurate estimation of atmo-
spheric light leads to serious distortion of the defogging
image in the distant area with the sky. Compared with other
algorithms, both the algorithm in literature [29] and the
algorithm in literature [28] have problems such as incom-
plete defogging and serious detail loss. The algorithm in lit-
erature [30] has a remarkable effect of defogging, especially
in the sky area, where the color is restored to nature. How-
ever, the degree of defogging in some images is too large,
resulting in the loss of some pixels and darkening of images.
Compared with other algorithms, the effect picture of the
algorithm in this paper is completely defogged, the details
are maintained well, and the scene is clear and natural.

3.3.2. Objective Evaluation. Objective evaluation adopts the
unreferenced image quality evaluation method often used

(a) Hazy image (b) Literature [28]

(c) Literature [29] (d) Literature [28]

(e) Literature [30] (f) Proposed

Figure 4: Comparison of fogging effect of various algorithms in indoor synthetic hazy image.
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in the field of real scene defogging [31], whose evaluation
indexes include the number of saturated pixels m, the
number of visible edge sets E, the average gradient R,
and the running time T (unit is second). The smaller the
number of saturated pixels and the running time, the bet-
ter the performance of the algorithm. The larger the value
of visible edge set e and mean gradient R, the better the
algorithm is.

Each index in each algorithm is shown in Table 3 (the
data in the table is the mean value).

As it can be seen from Table 3, the network proposed in
this paper performs well in the number of saturated pixels
and the running time, and has a leading advantage in the
number of visible edge sets and the mean gradient. Compar-
ing with other algorithms, the proposed network improves
the number of visible edge sets by 20.6% and the average
gradient by 20.9%.

3.4. Ablation Experiment. In order to further verify the con-
tribution of the proposed modules to the result of fog

(a) Hazy image (b) Literature [28]

(c) Literature [29] (d) Literature [28]

(e) Literature [30] (f) Proposed

Figure 5: Comparison of restoration effects of various algorithms in outdoor synthetic hazy image.

Table 2: SOTS data set evaluation indicators.

Items Literature [28] Literature [29] Literature [28] Literature [30] Proposed

Indoor
SSIM 0.804 0.817 0.796 0.821 0.898

PSNR 16.887 26.331 24.647 24.269 26.967

Outdoor
SSIM 0.791 0. 840 0.796 0.859 0. 954

PSNR 16.175 22.302 19.429 20.208 26.863
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removal, an image in the SOTS data set was randomly
selected for the ablation experiment as follows.

It mainly includes the following steps.

(1) Only the features (LF) in a wide range of foggy images
are extracted to reconstruct the original image

(2) Only a small range of detail features (DF) of foggy
images are extracted to reconstruct the original image

(3) Large range of features and small range of detail fea-
tures work together

It can be seen from the comparison diagram in Figure 7.

The large range feature image only retains some global
features and loses a lot of details. The detail information
of small range detail feature image increases obviously,
but there are problems of incomplete defogging and color
deviation. In contrast, the image under the joint action of
the two features not only retains the color of the original
image but also has obvious details, and which is more
thoroughly defogged. Each image index is shown in
Table 4.

As it can be seen from Table 4, the SSIM and PSNR of
the image obtained under the combined action of the two
features were significantly improved.

(a) Hazy image (b) Literature [28]

(c) Literature [29] (d) Literature [28]

(e) Literature [30] (f) Proposed

Figure 6: Comparison of fog removal effects of various algorithms in real scenes.

Table 3: Evaluation indicators of real scenes.

Items Literature [28] Literature [29] Literature [28] Literature [30] Proposed

m 0.0008 0.03 0.0189 0.0022 0.001

e 5. 5273 6. 8498 5.9726 6.4361 7.4745

r 1.259 1.3359 1.394 1.6454 1.6989

t/s 1.6562 2.843 2.1151 1.0774 l.1270
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4. Conclusion

In order to keep details as much as possible while defogging
the image, a multiscale parallel-depth separable convolu-
tional neural network (MSP-DSCNN) was designed in this
paper. By comparing the experimental results, compared
with other comparison algorithms, model MSP-DSCNN
has better performance in both subjective visual effect and
objective evaluation indicators. At the same time, the net-
work ablation experiment proves that the proposed multi-
scale feature extraction module and the parallel strategy of

shallow and deep channels have a good effect of haze
removal and high image fidelity. Comparing with other
algorithms, the algorithm has distinct advantages and effec-
tively solves the problems such as incomplete defogging of
the current image, poor color offset, detail retention, and
reduced visibility. The accuracy and accuracy of fog
removal have also been further improved. The split convo-
lution operation further reduces the number of parameters
in the network model, improves the feature redundancy of
traditional convolutional neural network, and accelerates
the training and convergence speed of the network. The
overall experiment shows that the model MSP-DSCNN
can finish the image defogging task faster and better. How-
ever, since the restoration module of the network essentially
relies on the atmospheric scattering model, some restored
images still have shortcomings in detail preservation and
color fidelity of sky area. Therefore, improving the accuracy
of the defogging model will be the focus of further research
in the future.

(a) Synthesis of hazy image (b) Only LF

(c) Only DF (d) LF+DF

(e) Clear image

Figure 7: Comparison of ablation results.

Table 4: Comparison of evaluation indexes in SOTS data set.

Items Only LF Only DF LF+DF

SSIM 0.8028 0.8735 0.9574

PSNR 16.9104 17.9054 24.7789
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