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To improve the fusion performance of infrared and visible images and effectively retain the edge structure information of the
image, a fusion algorithm based on iterative control of anisotropic diffusion and regional gradient structure is proposed. First,
the iterative control operator is introduced into the anisotropic diffusion model to effectively control the number of iterations.
Then, the image is decomposed into a structure layer containing detail information and a base layer containing residual energy
information. According to the characteristics of different layers, different fusion schemes are utilized. The structure layer is
fused by combining the regional structure operator and the structure tensor matrix, and the base layer is fused through the
Visual Saliency Map. Finally, the fusion image is obtained by reconstructing the structure layer and the energy layer.
Experimental results show that the proposed algorithm can not only effectively deal with the fusion of infrared and visible
images but also has high efficiency in calculation.

1. Introduction

In recent years, UAVs have played an increasingly important
role in many fields due to their high flexibility, low cost, and
easy operation, which are often used for battlefield reconnais-
sance, battle situation assessment, target recognition, and
tracking in the military. Now, image sensors in UAVS can
acquire multiple types of images such as multispectral images,
visible images, and infrared images [1]. However, due to the
limitation of environmental conditions such as light, imaging
with only one sensor will be affected by certain factors and
cannot meet the requirements of practical applications. The
combination of multiple imaging sensors can overcome the
shortcomings of a single sensor and obtain more reliable and
comprehensive information. The imaging sensors commonly
used in UAVs are infrared sensors and visible sensors. The
infrared sensors use the principle of thermal radiation to
obtain images with larger infrared targets, but the targets are
not clear and the edges are blurred [2]. The visible sensors
use the principle of light reflection to obtain clear images with

clear details, but under low-visibility conditions, the images
have limitations. Research has found that the effective combi-
nation of infrared images and visible images can result in a
more comprehensive and accurate scene or target, which pro-
vides strong support for subsequent task processing [3].

The more widely used methods in the field of infrared and
visible image fusion can be roughly classified into MST-based
methods [4], sparse representation-based methods [5], spatial
domain-based methods [6], and deep learning-based methods
[7]. At present, the most researched and applied methods are
MST-based methods, including wavelet transform [8], Lapla-
cian pyramid transform [9], nonsubsampled shear wave trans-
form [10], and nonsubsampled contourlet transform [11].
These methods decompose the source images in multiple
scales, then fuse them separately according to certain fusion
rules, and finally get the fusion result through inverse transfor-
mation, which can extract the salient information in the images
and get better performance. For example, nonsubsampled con-
tourlet transform is utilized by Huang et al. [11] to decompose
the source images to obtain precise decomposition. However,
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due to the lack of spatial consistency in the traditional MST
methods, structural or brightness distortion may appear in
the result.

In addition, image fusion methods with edge preserving
filtering [12] are also receiving attention. Edge-preserving
filtering can effectively reduce the halo artifacts around the
edges in the fusion results while retaining the edge information
of the image contour and has a good visual performance. Pop-
ular methods are mean filtering [13], bilateral filtering [14],
joint bilateral filtering [15], and guided filtering [16]. These
methods complete decomposition according to the spatial
structure of the images to achieve spatial consistency, so as to
achieve the purpose of smoothing the texture and preserving
edge detail information. For example, Zhu et al. [16] proposed
a novel fast single-image dehazing algorithm by using guided
filtering to decomposition the images, and it obtained good
performance. The edge-preserving fusion algorithms maintain
spatial consistency and effectively improve the phenomenon of
fusion image distortion or artifacts, but there are certain limita-
tions: (1) it will introduce detail “halos” at the edges; (2) when
the input images and the guide images are inconsistent, the fil-
tering will be insensitive or even fail; and (3) it is difficult to
meet the requirements of fusion performance, time efficiency,
and noise robustness simultaneously.

Inspired by the previous research, this article focuses on
reducing “halos” at the edges to retain the edge structure infor-
mation and obtaining better decomposition performance in
both noise-free and noise-perturbed images. In this paper, a
new infrared and visible image fusion method based on itera-
tive control of anisotropic diffusion and regional gradient
structure operator is proposed. Anisotropic diffusion is uti-
lized to deconstruct the source image into a structure layer
and a base layer. Then, the structure layer is processed by
using the gradient-based structure tensor matrix and the
regional structure operator. Due to the weak detail and high
energy of the base layer, the Visual Saliency Map (VSM) is uti-
lized to fuse the base layer. By reconstructing the two prefu-
sion components, the final fusion image can be obtained.

The main contributions of the proposed method can be
summarized as follows:

(1) A novel method of infrared and visible image fusion is
proposed. The anisotropic diffusion model with a
control iteration operator is proposed to adaptively
control the number of iterations, so the image is
decomposed adaptively into a structure layer with rich
edges and detail information and a base layer with pure
energy information. Especially, the computational
efficiency is greatly improved

(2) The regional structure operator is proposed into the
structure tensor matrix, which can effectively extract
information such as image details, contrast, and struc-
ture. It can also greatly improve the detection ability of
weak structures and obtain structure images with good
prefusion performance

(3) Since anisotropic diffusion can effectively deal with
noise, the proposed method also has a good perfor-

mance on noisy image fusion. In addition, the algo-
rithm is widely used and it is also suitable for other
types of image fusion

The paper is organized as follows. Section 2 briefly
reviews the anisotropic diffusion and structure tensor theory
and introduces new operators. Section 3 describes the pro-
posed infrared and visible image fusion algorithm in detail.
Section 4 introduces related experiments and compares with
several current advanced algorithms. Finally, the conclusion
is discussed in Section 5.

2. Related Theories

2.1. Anisotropic Diffusion Based on Iterative Control. Aniso-
tropic diffusion [17] can be utilized to smooth the image and
maintain the image details and edge information. Compared
with other filtering methods, it is more suitable for image
decomposition processing. The anisotropic diffusion equa-
tion is expressed as

It = div v x, y, tð Þ∇Ið Þ = v x, y, tð ÞΔI+∇v · ∇I, ð1Þ

where vðx, y, tÞ is the flux function or diffusion rate of diffu-
sion, ∇ is the Laplacian operator, Δ is the gradient operator,
and t is the time or scale or iteration. Equation (1) can be
regarded as a discrete square matrix, and the four nearest
neighbor discretizations of Laplacian can be used:

It+1i,j = Iti,j + μ vN ·DNI
t
i,j + vS ·DSI

t
i,j + vW ·DWIti,j + vE ·DEI

t
i,j

h i
,

ð2Þ

where It+1i,j is the coarser resolution image at t + 1 scale,
which is influenced by Iti,j. μ is a constant with 0 ≤ μ ≤ 1/4.
DN , DS, DW , and DE are the nearest difference values in
the four directions of North, South, West, and East, respec-
tively, which can be defined by

DNIi,j ≡ Ii−1,j − Ii,j,
DSIi,j ≡ Ii+1,j − Ii,j,
DWIi,j ≡ Ii,j−1 − Ii,j,
DEIi,j ≡ Ii,j+1 − Ii,j,

ð3Þ

and vN , vS, vW , and vE are the conduction coefficients or flux
functions in the four directions of North, South, West, and
East.

vtNi, j
= g ∇Ið Þtⅈ+1/2,j

��� ���� �
= g DNI

t
i,j

��� ���� �
,

vtSi, j = g ∇Ið Þtⅈ−1/2,j
��� ���� �

= g DSI
t
i,j

��� ���� �
,

vtWi, j
= g ∇Ið Þtⅈ,j−1/2

��� ���� �
= g DWIti,j

��� ���� �
,

vtEi, j
= g ∇Ið Þtⅈ,j+1/2

��� ���� �
= g DEI

t
i,j

��� ���� �
,

ð4Þ
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where gðj∙jÞ is a monotonically decreasing function with g
ð0Þ = 1 and gð∙Þ is the “edge stop” function or the differen-
tial coefficient, which has a very important influence on
the noise suppression and edge retention ability of aniso-
tropic diffusion. The image format in this paper is obtained
by image processing technology.

g ∇Ið Þ = ⅇ− ∇Ik k/kð Þ2 ,

g ∇Ið Þ = 1
1 + ∇Ik k/kð Þ2 :

ð5Þ

The scale space weighed by these two functions is differ-
ent. The first function is for the abrupt areas with large gra-
dients, namely, the edge and detail areas. The second
function is for flat areas with small gradients. Both functions
consist of a free parameter k.

The anisotropic diffusion is a differential iterative pro-
cess, in which the number of iterations is a key issue. If it
is overiterated, it will lead to oversmoothing; but if the num-
ber of iterations is not enough, the detail components cannot
be separated effectively. Moreover, the number of iterations
for noisy images and the number of iterations for noise-
free images are also uncertain. Therefore, an iterative control
operator θ is introduced to control k, thereby adaptively
controlling the number of iterations and reasonably separat-
ing structural information such as gradients and details. And
it can also be improved in computational efficiency.

k =
θ + 1ð ÞK0, if max DN ,DS,DW ,DEð Þ > 0,
1 − θð ÞK0, others,

(
ð6Þ

where K0 is the empirical value for controlling the diffusion
strength, which usually is set by 30. It can be seen from Equa-
tion (6) that the value of k is related to the edge strength of the
region boundary, and the value of k is updated through posi-
tive and negative excitation by θ to obtain the optimal number
of iterations. Get the most effective and accurate separation
results.

The anisotropic diffusion of the image I is simply repre-
sented by anisoðIÞ. After the image is diffused through
anisotropy, since the iterative control operator can precisely
control the number of iterations, almost all the vibration and
repetitive context can be effectively preserved in the struc-
ture layer, while the energy information and weak edges
are preserved in the base layer. Figure 1 shows the base layer
and structure layer images obtained after anisotropic diffu-
sion decomposition. It can be clearly seen that the images
are basically consistent with the theoretical analysis.

2.2. Gradient-Based Structure Tensor Matrix. Gradient is the
rate of change, which is reflected by the difference between a
central pixel and surrounding pixels. It can be used to accu-
rately reflect the texture details, contour features, and struc-
tural components in the image. The structure tensor is an
effective method to analyse the gradient problem, and it
has been applied to a variety of image processing tasks.

The gradient operator [18] is described as follows. For a
local window Θðx, yÞ of any ε⟶ 0+ in the direction β, the
square of the change of the image Iðx, yÞ at the point ðx, yÞ is

ⅆIð Þ2 = I x + ε cos β, y + ε sin βð Þ − I x, yð Þk k22
≈ 〠

Θ x,yð Þ

∂I
∂x

ε cos β + ∂I
∂y

ε sin β

� �
:

ð7Þ

In any direction β at the point ðx, yÞ, the change rate C
ðβÞ of the local features of the image Iðx, yÞ is

C βð Þ = 〠
Θ x,yð Þ

Ix cos β + Iy sin β
� 	2

= cos β, sin βð Þ
〠

Θ x,yð Þ

∂I
∂x

� �2
〠

Θ x,yð Þ

∂I
∂x

∂I
∂y

� �

〠
Θ x,yð Þ

∂I
∂y

∂I
∂x

� �
〠

Θ x,yð Þ

∂I
∂y

� �2

2
666664

3
777775 cos β, sin βð ÞT :

ð8Þ

To make better analysis of gradient features and effec-
tively realize image processing, the structure tensor matrix
S is introduced. And CðβÞ can be expressed as

C βð Þ = cos β, sin βð ÞS cos β, sin βð ÞT , ð9Þ

where

S =
M N

N O

" #
,

M = 〠
Θ x,yð Þ

∂I
∂x

� �2
,

N = 〠
Θ x,yð Þ

∂I
∂x

∂I
∂y

� �
,

O = 〠
Θ x,yð Þ

∂I
∂y

� �2
:

ð10Þ

Input Base Structure

Figure 1: The results of anisotropic diffusion decomposition.
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The two extreme values of the structure tensor S can be
expressed as

λ1,2 =
1
2 M +Oð Þ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M −Oð Þ2 + 2Nð Þ2

q� �
: ð11Þ

The structural characteristics of the local area of the
image are related to the extreme value of the matrix. Gener-
ally, if the two extreme values are relatively small, it indicates
that the region does not have gradient characteristics; that is,
the region is located in the isotropic part. Otherwise, it
means that the local area of the area has obvious changes
and contains certain structural information, because in the
image area saliency measurement, a wide range of structure
types are involved. Finally, the structural saliency operator
SSO is defined according to [19] as

SSO =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1 + λ2ð Þ2 + 0:5 λ1 − λ2ð Þ2

q
: ð12Þ

3. Fusion Framework

Based on the above theories, a new image fusion framework
is constructed, as shown in Figure 2. Different from the tra-

ditional decomposition scheme, in order to make better use
of the useful information in the original image, first, the iter-
ative control anisotropic diffusion is utilized to decompose
the source image into base and structure components. At
this time, most of the gradients and edges can be effectively
preserved in the structure layer, and the base layer contains
the remaining energy information. Then, according to the
characteristics of each layer, different fusion rules are intro-
duced to acquire the prefusion of each layer. Among them,
for the fusion of the structure layer, the prefusion is effec-
tively realized through the regional gradient structure; for
the base layer, the prefusion is performed through the
VSM. Finally, the fusion result is obtained by reconstructing
the two prefusion layers.

3.1. Anisotropic Decomposition. Let the source
imagesfInðx, yÞgNn=1be all coregistered. The base layer is
obtained through the anisotropic diffusion model in the pre-
vious section with smooth edges:

IBn x, yð Þ = aniso In x, yð Þð Þ, ð13Þ

where IBnðx, yÞ is the nth base layer and anisoðInðx, yÞÞ repre-
sents the anisotropic diffusion process on the nth source

Decomposition Fusion rules Reconstruction

Infrared image

Visible image

Anisotropic
diffusion

Anisotropic
diffusion

Base layer

Base layer

Structure layer

Structure layer

Subtraction

Subtraction

Fused base
layer

Fused structure
layer

VSM

LGS

Fusion image

Figure 2: Schematic diagram of the proposed algorithm.
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Figure 3: Six pairs of source images.
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image. The structure layer is obtained by subtracting the
base layer from the source image.

ISn x, yð Þ = In x, yð Þ − IBn x, yð Þ: ð14Þ

After anisotropic decomposition, a structure layer with
rich outline and texture details and a base layer with inten-
sity information can be obtained.

3.2. Fusion of Structure Layers. Since the structure saliency
operator (SSO) in the previous section can effectively detect
the gradient structure information of the images, SSO can be
used to prefuse the structure layers. However, due to the lack
of intensity variables, SSO cannot accurately detect the weak
feature information in the images. In order to improve the
structure detection ability, the regional structure operator
(RSO) is introduced to improve the performance of SSO.
RSO is the regional structural component with ðx, yÞ as the
center position; then, the regional gradient structure (RGS)
can be expressed as

RGSI x, yð Þ = RSI x, yð Þ∙SSI x, yð Þ, ð15Þ

where SSIðx, yÞ is the salient image produced by SSO, and
RSIðx, yÞ represents the regional structure feature at position
ðx, yÞ, which can be expressed as

RSI x, yð Þ = 〠
N

−N
〠
N

−N
I x −N , y −Nð Þ, ð16Þ

where N controls the size of the region and influences the effi-
ciency and effect of fusion. Through comparing the RGS of the
input image, the structure saliency mapM1ðx, yÞ of the image
IS1ðx, yÞ is calculated:

M1 x, yð Þ =
1, if RGS1 x, yð Þ > RGS2 x, yð Þ,
0, otherwise:

(
ð17Þ

M2ðx, yÞ can be obtained in the same way. In addition,
Mnðx, yÞ can be future refined by

(A1) Car_IR (A2) Car_VI (A3) ResNet (A4) CNN

(A5) GTF (A6) IFEVIP (A7) FPDE (A8) Proposed

(B1) House_IR (B2) House_VI (B3) ResNet (B4) CNN

(B5) GTF (B6) IFEVIP (B7) FPDE (B8) Proposed

(C1) Shop_IR (C2) Shop_VI (C3) ResNet (C4) CNN

(C5) GTF (C6) IFEVIP (C7) FPDE (C8) Proposed

Figure 4: Fused results of infrared/visible images.
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~MI x, yð Þ =
1, if 〠

a,bð Þ∈Θ
MI x + a, y + bð Þ > 0:5 × size Θð Þ,

0, otherwise,

8><
>:

ð18Þ

where Θ is a central local area in ðx, yÞ whose size is T × T.
Therefore, the prefusion structure layer image FS

I ðx, yÞ can
be expressed by

FS
I x, yð Þ = ~M1 x, yð Þ∙IS1 x, yð Þ + ~M2 x, yð ÞIS2 x, yð Þ: ð19Þ

3.3. Fusion of Base Layers. Since the base layers contain less
details, the weighted average technology based on VSM [20]
is used to fuse the base layer FB

I .
First, VSM is constructed; let IP represent the intensity

value of a pixel p in the image I. The saliency value VðpÞ
of pixel p is defined as

V pð Þ = 〠
L−1

j=0
Mj IP − I j

�� ��, ð20Þ

where j represents the pixel intensity, Mj represents the
number of pixels whose intensity is equal to j, and L repre-
sents the number of gray levels (in this case, 256). If two
pixels have the same intensity value, their saliency values
are equal. Then, normalize VðpÞ to [0,1].

Let V1 and V2 denote the VSM of different source
images, and IB1 ðx, yÞ and IB2 ðx, yÞ denote the base layer
images of different source images, and the final prefusion
base layer image is obtained by weighted average

FB
I x, yð Þ = 0:5 + V1 −V2

2

� �
IB1 x, yð Þ + 0:5 − V1 − V2

2

� �
IB2 x, yð Þ:

ð21Þ

After obtaining these two prefusion components, the
final fusion image FI is

(A1) Snow_IR (A2) Snow_VI (A3) ResNet (A4) CNN

(A5) GTF (A6) IFEVIP (A7) FPDE (A8) Proposed

(B1) Tree_IR (B2) Tree_VI (B3) ResNet (B4) CNN

(B5) GTF (B6) IFEVIP (B7) FPDE (B8) Proposed

(C1) Walking night_IR(C2) Walking night_VI (C3) ResNet (C4) CNN

(C5) GTF (C6) IFEVIP (C7) FPDE (C8) Proposed

Figure 5: Fused results of infrared/visible images.
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FI = FS
I x, yð Þ + FB

I x, yð Þ: ð22Þ

4. Experimental Analysis and Results

In order to verify the effectiveness and reliability of the algo-
rithm in this paper, multiple pairs of images are utilized for
experimental verification, and the results are analysed
through subjective vision and objective quantitative evalua-
tion. After setting the algorithm parameters, the experimen-
tal results are displayed and discussed.

4.1. Experimental Setting. As shown in Figure 3, six pairs of
source images are employed in the experiment, which can be
obtained from the public websitehttp://imagefusion.org/. All
the experiments are implemented using MATLAB 2018a on
a notebook PC. And five recent methods are compared in
the same experimental environment for verification, such as
image fusion with ResNet and zero-phase component analysis
(ResNet) proposed by Li et al. [21], image fusion with the con-
volutional neural network (CNN) proposed by Liu et al. [22],
gradient transfer and total variation minimization-based
image fusion method (GTF) proposed by Ma et al. [23], image

Table 1: Quantitative index of image fusion results.

Source images Index ResNet CNN GTF TIF FPDE Proposed

Car

EN 6.798 6.519 7.119 7.090 6.569 7.564

QABF 0.313 0.349 0.246 0.398 0.299 0.401

QCB 0.401 0.395 0.337 0.367 0.395 0.439

MI 1.735 1.082 1.243 1.638 1.432 2.866

SSIM 1.543 1.372 1.310 1.330 1.435 1.988

PSNR 58.253 58.430 58.127 57.280 58.349 59.124

House

EN 6.592 6.618 6.952 6.960 6.870 6.998

QABF 0.375 0.345 0.253 0.402 0.387 0.418

QCB 0.463 0.471 0.338 0.468 0.477 0.490

MI 1.301 1.251 1.080 1.417 1.222 1.456

SSIM 1.534 1.436 1.374 1.418 1.305 1.991

PSNR 58.143 59.462 59.066 58.225 58.356 59.184

Shop

EN 6.275 6.062 6.627 6.266 6.403 6.703

QABF 0.461 0.205 0.481 0.589 0.328 0.598

QCB 0.478 0.451 0.434 0.481 0.445 0.497

MI 1.723 0.812 1.746 1.682 1.308 1.896

SSIM 1.334 1.031 1.221 1.325 1.299 1.993

PSNR 59.012 59.885 59.466 59.308 59.345 59.936

Snow

EN 7.012 6.818 5.919 6.911 6.918 7.723

QABF 0.543 0.551 0.498 0.577 0.565 0.579

QCB 0.554 0.483 0.478 0.517 0.612 0.661

MI 2.045 1.914 1.598 2.368 1.999 2.657

SSIM 1.367 1.238 1.164 1.222 1.029 1.989

PSNR 55.034 56.630 56.122 55.237 56.856 57.083

Tree

EN 6.744 6.696 6.696 6.229 6.801 6.962

QABF 0.301 0.311 0.348 0.341 0.333 0.379

QCB 0.423 0.424 0.417 0.430 0.415 0.469

MI 1.354 1.109 1.452 1.090 1.027 1.635

SSIM 1.578 1.512 1.469 1.483 1.496 1.995

PSNR 58.013 57.641 57.242 57.325 57.934 58.823

Walking Night

EN 6.348 5.734 6.059 6.281 6.786 7.011

QABF 0.405 0.346 0.309 0.471 0.418 0.474

QCB 0.313 0.353 0.291 0.344 0.350 0.386

MI 2.019 2.130 2.189 2.139 2.005 2.335

SSIM 1.346 1.153 1.232 1.208 1.206 1.989

PSNR 55.999 56.047 55.843 54.825 55.470 56.943
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fusion through infrared feature extraction and visual informa-
tion preservation (IFEVIP) proposed by Zhang et al. [24], and
multisensor image fusion based on fourth-order partial differ-
ential equations (FPDE) proposed by Bavirisetti et al. [25]. In
addition, the fusion performance is quantitatively evaluated by
six indicators, including entropy (EN) [26], edge information
retention (QAB/F) [27], Chen-Blum’s index (QCB) [28], mutual
information (MI) [29], structural similarity (SSIM) [30], and
peak signal-to-noise ratio (PSNR) [31].

4.2. Image Fusion and Evaluation. Figures 4 and 5 are six pairs
of infrared and visible image fusion examples. Figures 4(a1),
4(b1), and 4(c1) and Figures 5(a1), 5(b1), and 5(c1) are infrared
images, and Figures 5(a2), 5(b2), and 5(c2) and Figures 4(a1),
4(b1), and 4(c1) are infrared images. Figures 5(a2), 5(b2), and
5(c2) are visible images; Figures 4(a3)–4(a8), 4(b3)–4(b8), and
4(c3)–4(c8) and Figures 5(a3)–5(a8), 5(b3)–5(b8), and 5(c3)–

5(c8) are the fusion results obtained by different methods. The
content in the red box in the figure is the part to be emphasized.

4.2.1. Subjective Evaluation. It can be seen from Figures 4 and
5 that the fusion images obtained by the ResNet and GTF
methods have lower contrast than the results obtained by the
proposed method. Although the structure is better preserved,
the details are relatively weakened and lost. The IFEVIP
method maintains a good contrast, but the visual effect is too
enhanced, especially in the partially enlarged areas, resulting
in obvious error in the result. The FPDE method has the phe-
nomenon of blurred internal features. The CNN method has
obtained a relatively good fusion result, but its image is some-
what unnatural, and the colour of the result in Figure 5(c4)
contains errors. Therefore, the proposed method can effec-
tively separate the component information of different images,
preserve the useful information of the source images into the
fusion images, and obtain the best visual performance in the
aspect of edge and detail preservation.

4.2.2. Objective Evaluation. Except for subjective evaluation, the
fusion results are quantitatively evaluated, and the results are
shown in Table 1, in which the best results are labelled in bold.
According to the data in the table, it can be seen that the objec-
tive evaluation of the proposed method is significantly higher
than other methods. In all quantitative evaluations, only a few
places are not optimal, but they do not affect the advantages
of the method in this paper. In addition, Figure 6 shows the
bar chart comparison of EN, QAB/F, QCB, MI, SSIM, and PSNR
values of various fusion methods for the car example.

In summary, for infrared and visible fusion, the method
in this paper has a good performance both subjectively and
objectively.
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Figure 6: The bar chart comparison of EN, QAB/F, QCB, MI, SSIM, and PSNR values of various fusion methods for the car example.
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Figure 7: Fused results of multispectral/panchromatic images.
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4.3. Extended Experiment. After experimental verification,
the proposed fusion algorithm is equally effective for remote
sensing images. To illustrate the effectiveness of this algo-
rithm, two different sets of panchromatic and multispectral
satellite remote sensing images are shown in Figure 7.

Figures 7(a1) and 7(b1) are multispectral images with high
spectral resolution and low spatial resolution. Figures 7(a2)
and 7(b2) are panchromatic images with high spatial resolu-
tion and low spectral resolution. The corresponding fusion
results are shown in Figures 7(a3) and 7(b3). As can be seen
from the content in the red box in Figure 7, the fusion results
have both high spatial resolution and high spectral resolution,
and the fused images have a strong ability to express structure
and details. The objective evaluation results are shown in
Figure 8. It can be seen from the visual and objective results
that this algorithm can effectively retain high-spatial and
hyperspectral information and can improve the accuracy of
subsequent processing of remote sensing images.

4.4. Computational Efficiency. The methods tested in this
paper are all carried out in the same experimental environ-
ment. The average implementation time of six pairs of images
is compared as shown in Table 2. It can be seen that the calcu-
lation efficiency of the proposed algorithm has a considerable
advantage over the comparison algorithms.

5. Conclusions

In this paper, an infrared and visible image fusion algorithm
based on iterative control of anisotropic diffusion and regional
gradient structure is proposed. The algorithm makes full use
of the advantages of anisotropic diffusion and improves the
decomposition efficiency and effect through iterative control
operators. The regional gradient structure operator is intro-

duced to fully extract the detailed information in the structure
layer to obtain a better fusion performance. Many experimental
results show that this algorithm is significantly better than exist-
ing methods in terms of subjective and objective evaluation. In
addition, higher calculation efficiency and stronger antinoise
performance can be obtained, and the algorithm can be effec-
tively applied to other types of image fusion situations.

Data Availability

The data used to support the findings of this paper are avail-
able from http://imagefusion.org/.
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