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Numerous studies and monitoring data indicate that fine particle (PM2:5) pollution in China is still comparatively severe. Given
the sparse and uneven distribution of air quality monitoring base stations established in China and the limitation of geographical
conditions, inversion of aerosol optical depth by satellite remote sensing can achieve low-cost air quality monitoring in global
areas. In this study, we use the machine learning algorithm XGBoost to build a prediction model to achieve nationwide
average PM2:5 concentration prediction. Meanwhile, we used aerosol data from Moderate Resolution Imaging
Spectroradiometer (MODIS) in a specific band, combined with a land use regression (LUR) model as predictors of surface
PM2:5 concentrations in China, for the period Dec. 2019-Nov. 2021. In order to provide more accurate PM2:5 concentration
prediction, the correspondence between PM2:5 and aerosol optical depth (AOD) under different seasons was studied. The
coefficients of determination (R2) for different seasons are 0.86 (spring), 0.80 (summer), 0.90 (autumn), and 0.88 (winter),
indicating that the fit is best for autumn and worse for summer. The study shows the potential usefulness of using the LUR
model with the XGBoost algorithm for predictive assessment of PM2:5 spatial distribution.

1. Introduction

With the accelerated development of domestic industrializa-
tion, air pollution has progressively escalated, and relevant
studies have confirmed that the increase in the concentra-
tion of fine particulate pollutants in the atmosphere is
closely related to the increase of mortality. The exposure
response model indicated that when PM2:5 concentration
increased by 100μg/m3, respiratory diseases, cardiovascular
diseases, coronary heart disease, stroke, and chronic obstruc-
tive pulmonary disease were 8.32%, 6.18%, 8.32%, 5.13%,
and 7.25%, respectively. Air pollution has a long-term and
short-term impact on disease death. [1, 2]. PM2:5, an impor-
tant component of haze, can induce or aggravate diseases of
various systems [3]. Compared with larger particles, fine
particles less than 2.5 microns are more likely to enter the
human body’s gas exchange and blood circulation system,
which not only destroys the ventilation function of regional
bronchi and alveoli but also causes inflammation, leading to

dysfunction of blood vessels and cells [4, 5]. In order to
monitor changes in particulate matter concentrations
(PM2:5) nationwide, China has established air quality moni-
toring stations covering major cities and regions since Janu-
ary 2013. However, the monitoring stations are sparsely
distributed, and most of them are located in urban areas.
Further, current monitoring site data are not suitable for
regional PM2:5 concentration change studies and studies
focusing on rural areas, etc.

Air quality monitoring stations are sparsely distributed,
and there is a lack of monitoring means in some regions with
harsh geographical conditions. Nevertheless, the method of
predicting the concentration of air pollutants by inversion
of aerosol by satellite remote sensing has the advantage of
high efficiency and low cost [6–12]. Because remote sensing
satellite coverage is prevalent, large area synchronized obser-
vation can be done in a short period of time, handy and quick
access to real-time global range of all kinds of natural phe-
nomenon is the latest information, so using the satellite
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remote sensing data information inference method is con-
venient, and efficiency of the PM2:5 is artificial measure-
ment, and ground base station monitoring is unable to
compare [13, 14]. The high spatial resolution of air pollut-
ant concentration anticipated by remote sensing satellite
inversion is beneficial to evaluate the air pollution index
and to carry out epidemiological research on air pollutant
exposure. Although satellite images can provide AOD data
covering the Earth’s surface, these remotely sensed images
are susceptible to cloudy weather and water/snow glow
reflections [15, 16].

There are a number of statistical models that link pollut-
ant concentrations to AOD [17–22], among which the land
use regression (LUR) model can accurately quantify spatial
and temporal trends of pollutants at small scales [23]. The
LUR model is an efficient method to evaluate the spatial var-
iation of pollutants. It utilizes monitoring station data com-
bined with multiple parameters such as land use, traffic
information, and population density distribution to forecast
and evaluate the pollutant concentration in areas not cov-
ered by monitoring station distribution through a statistical
regression method. The pollutant concentration prediction
model was constructed by selecting the source of fine parti-
cle sample data and the characteristic variables of land use
data [24–26]. A variety of LUR models with different tempo-
ral resolutions are currently being developed in China using
various technologies. The LUR model employs statistical
pollutant source data after correlation analysis as the fore-
cast dependent variable and accurate multivariate data sets
of natural geographical conditions such as land use type, ter-
rain distribution, and natural climate type as the prediction
independent variable and selects data from 20-100 monitor-
ing stations to establish multiple linear regression mapping
[27, 28]. Now, some research for different environment
LUR model made a lot of extensibility of development, for
example, according to the different characteristics of sea-
sonal change to develop and adapt to climate change caused
by a seasonal temperature LUR model [29, 30]; other studies
focusing on the time change tendency of air pollutant con-
centration change trend prediction question have carried
on the research and development. The change trend and
evaluation value of pollutants in the next few weeks are pre-
dicted through historical measurement data [31].

In this study, we used the ML-based LUR model to esti-
mate the daily ground-level PM2:5 concentrations in China
for the period December 2019 to November 2021. We used
the MODIS remote sensing satellite data product, which
carries the Moderate Resolution Imaging Spectroradiometer
(MODIS) on Terra and Aqua, an important instrument for
observing biological and physical processes around the
globe. MCD19A2 V6 is an AOD raster data product that
can achieve multiangle correction. It is a level 2 data product
that is generally used after calibration and positioning pro-
cessing, and the raster resolution is 1 km. We used a new fea-
ture engineering approach to construct a high-resolution
grid mapping by combining air pollutant concentrations,
land use, meteorological factors, and AOD data as predictors
of the model with the advanced machine learning algorithm
XGBoost to characterize the spatial and temporal evolution

of PM2:5 concentrations at the national scale. To ensure
the accuracy of the data, the experiment uses observations
from over 2400 national weather stations, a sample of nearly
1600 ambient air quality monitoring sites, and satellite-
based AOD retrieval data to train the model. The results of
the study will help to enhance the analysis of the near-
ground PM2:5 pollution situation and the understanding of
the spatial and temporal evolution of PM2:5 pollution in
China by policy-makers.

2. Materials and Measurements

2.1. Ground-Level AQ Measurements. Daily hourly PM2:5
measurements near the ground in China were obtained from
the China National Environmental Monitoring Station
(CNEMC, http://www.cnemc.cn, December 1, 2021). The
data provided by the website are hourly, corresponding to
different detection points in each city, and contain six refer-
ence indicators: O2, NO2, PM10, PM2:5, O3, and CO, of
which we obtain PM2:5 data samples; meanwhile, to ensure
the accuracy of the data, only monitoring data from govern-
ment environmental monitoring stations are used in this
paper. The data from monitoring stations may have extreme
values and missing values due to machine failure, bad
weather, etc. Therefore, we need to screen the abnormal
values and make up the sliding window for the vacant values
before using them to ensure the continuity and validity of
the model input monitoring data.

2.2. Satellite AOD Data. Aerosol data are derived from
MODIS remote sensing satellite products, among which
the MCD19A2 scientific data set provides products includ-
ing MAIAC atmospheric correction multidimensional
reflectivity band data. The orbit with the largest coverage is
selected for processing according to the number of satellite
transits. Access is to 1 km resolution secondary data prod-
ucts from Terra and Aqua satellites. The raw data included
in this product are mainly AOD at 0.47μm and 0.55μm,
AOD uncertainty at 0.47μm range 0 to range 4, fine mode
fraction for ocean, column water vapor in cm liquid water,
regional background model used, cosine of solar zenith
angle, relative azimuth angle, etc. The purpose of atmo-
spheric correction (MAIAC) [32] is to eliminate the influ-
ence of atmosphere, light, and other factors on ground
object reflection, so as to retrieve real physical model param-
eters such as reflectance, radiation rate, and surface temper-
ature. Incorporating multiple wavelengths of the sun and
zenith angle and azimuth angle parameters of the satellite
information, through the radiative transfer model inversion
algorithm band operation, remove reflecting solar, sensor,
and the target value for atmospheric path length difference
between the impact of different regions of elimination, dif-
ferent objects, and different light and shade as yuan after
the grey value influence of the aerosol optical thickness
parameter. This study focuses on the analysis of AOD data
measured at 0.47μm wavelength between December 2019
and November 2021, with the improved MAIAC product
(MCD19A2) having a better spatial resolution, and the data
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set is a daily product, and the data processing is still tedious
when the study area is national and the time series is long.

As shown in Figure 1, the AOD data from the
MCD19A2 version 6 aerosol product can reflect the spatial
distribution of aerosol levels well. The data are selected from
the blue-band AOD at 0:47 μm wavelength, but the directly
obtained orbital aerosol data are not enough to cover the
whole country, so the HDF4 data of 22 orbits need to be
converted to TIF format by the MRT (MODIS Reprojection
Tool) provided by NASA and then stitched; meanwhile, this
study takes 1 km × 1 km. The AOD value at the center of
spatial resolution is used as a representative estimate for
each 25 km × 25 km meteorological grid center for subse-
quent model analysis.

2.3. Meteorological Information. The data set used in this
paper is from the National Weather Administration of
the United States Weather Service. The Climate Prediction
Center is responsible for providing short-term weather
fluctuation monitoring and forecasting and long-term cli-
mate change impact studies. The data sets using the
advanced global data assimilation system will interpolate
observation data and instrument monitoring data to a
three-dimensional grid. The grid provides the forecast of
output data, combined with the improvement of the global
telecommunications system database and other monitoring
station sources of statistical data collection, analysis, quality
control, and assimilation process after finishing to obtain a
complete set of data. The data set is selected for the time
range from December 2019 to November 2021, and the
gridded meteorological parameters mainly include temper-
ature, relative humidity, pressure, and wind speed. The grid
size is selected to be 25 km × 25 km. meteorological infor-
mation is obtained every six hours, and the daily data aver-
ages of 0, 6, 12, and 18 o’clock are selected as the daily
meteorological information in this study to achieve a day-
based meteorological data set produced in days.

2.4. Land Use Predictors. The LUR model is used to extract
the relevant factors affecting PM2:5 concentration based on
the GIS platform (ArcGIS 10.8), such as meteorology, topog-
raphy, and land use. The spatial distribution of near-surface
PM2:5 concentration in China is predicted and analyzed by
combining the national PM2:5 concentration ground moni-
toring data, and the reasons affecting the prediction accuracy
are explored in order to provide a database for the study of
air quality and its impact on human health.

The following variables were considered as predictive
factors:

Air pollutants: pollutants that cause harmful effects on
the human living environment selected, such as PM2:5 and
PM10, were at near-ground concentrations. The data set is
based on the pollutant data collected by CNEMC from air
quality monitoring stations.

Meteorological factors: data from the NCEP sites, includ-
ing the United States national weather bureau issuing a
series of weather-related business data, covers the global
meteorological monitoring site detailed record of the daily
and hourly weather data measured records, high-resolution

satellite data, the environmental monitoring data, and other
fields. We extracted meteorological data such as air relative
humidity, climate temperature, and wind levels.

Land use factors: the concentration of air pollutants is
highly related to certain land use types; for example, forest
land and green land can reduce some air pollution, while
urban planning land and industrial land generally have a
higher pollution index. Using remote sensing data, the cumu-
lative area of various land types within different stations is
calculated as the independent variable of land use types.

Compared with satellite AOD data, these predictive fac-
tors can reflect the influence of local sources on PM2:5 con-
centrations at a more accurate spatial resolution.

2.5. Feature Engineering Approach. The feature classification
involved in the air quality model is shown in Table 1, which
is generally divided into dynamic and static categories. Static
features include land use types, AOD data, latitude and lon-
gitude information, time information, and digital elevation;
dynamic features refer to meteorological parameters
obtained from meteorological data sets, three of which are
selected in this study: temperature, relative humidity, and
wind speed. In order to construct an optimal model for
long-term prediction of air pollutants, we adopt a new fea-
ture engineering approach in order to reduce time consump-
tion with guaranteed accuracy. In this study, 1/3 of the
training data from the overall sample data set is taken out,
and the importance of all features is obtained and ranked
from highest to lowest by training the model, and finally,
the top 30 features are used for model fitting, validation,
and analysis.

2.6. Development of ML-LUR Model. XGBoost (eXtreme
Gradient Boosting) [33] is an algorithm model framework
based on the lifting tree, which is very powerful in distrib-
uted parallel computing efficiency, missing value processing,
and prediction performance.

In this study, we compare it with other surrogate models
integrating with LUR, including the standard land use
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Figure 1: Spatial distribution of AOD (average value in time slice
window) for the period of December 2019-November 2021.
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regression (LUR) [34], K-Nearest Neighbors (KNN) [35],
Auto Encoder (AE) [36], Support Vector Regression (SVR)
[37], Deep Air Learning (DAL) [38], and Gaussian Process
Regression (GPR) [39]. We evaluate the model performance
by 10-fold cross-validation (CV) tests in consideration of
their prediction accuracy and robustness.

Compared to others, XGBoost [40] has faster training
and less memory usage, handles category features, greatly
speeds up training, and has better accuracy. Therefore, we
constructed ML-LUR to use XGBoost as a surrogate model
for robust space-time estimation of PM2:5 concentrations.

2.7. Model Validation. We used the LUR model based on
machine learning to explain the impact of characteristic
parameters combined with land use information and meteo-
rological conditions on PM2:5. The research content carried
out daily concentration calibration according to the influ-
ence of seasonal change and yearly change trend of PM2:5,
so as to gain an accurate prediction of PM2:5 daily concen-
tration. First, the top 30 features were selected to build the
feature data set based on the importance ranking of the fea-
tures, according to the solar calendar. The study selected two
years from December 2019 to November 2021 to construct
the pollutant fitting model. In our experimental evaluation,
10-fold cross-validation was used to decrease contingency,
and multiple partitions of the data set were used to ignore
accidental hyperparameters and models with no generaliza-
tion ability caused by extraordinary partitions, so as to
enhance the generalization ability of the model. The data
set was divided into ten subsets, one of which was taken as
the validation set, and the rest was taken as the training
set. During the process, the hyperparameters were kept sta-
ble to measure their advantages and disadvantages, and the
ultimately obtained hyperparameters were used to train the
entire data model in all data.

While keeping the hyperparameters consistent, the aver-
age training loss and the average validation loss of the 10
models were taken to measure the hyperparameters. After
the models were built, the first 30 features were input into
the models to generate air quality predictions and further
analyze air quality changes. The performance evaluation

index of the regression model can measure the deviation
degree of the forecast results of continuous values from the
real data. We compare the predicted values of ten verifica-
tion processes with the actual calculated concentrations.
Methods including Mean Absolute Error (MAE), the coeffi-
cient of determination (R2), and the Root Mean Square
Error (RMSE) were used to represent the difference between
the label and the predicted value. The smaller these values,
the better the performance of the regression model, and
the predicted results are closer to the ground truth level.

We train this model with 30 features and PM2:5 labels,
and Grid Search CV and Randomized Search CV are com-
monly used for hyperparameter optimization. Grid Search
CV is a straightforward procedure that tries each set of
hyperparameters one by one and selects the best one. This
approach consumes too much time resources, so Random-
ized Search CV (RSCV) is chosen as an alternative in this
study, and the introduction of a random factor can improve
the efficiency of the optimization search in some cases, sav-
ing computational time by using only a fixed number of
parameter settings to find the locally optimal solution.

2.8. Estimating AQ Mappings with Gridded Networks. The
ML-LUR proposed in this study replaces the model part
with XGBoost and combines satellite AOD inversion, mete-
orological parameters, and land use type parameters to esti-
mate PM2:5 concentrations near the ground. Due to the
relative uncertainty of remote sensing satellite products,
aerosol thickness inversion results were combined with the
global solar photometer network to render high-precision
AOD measurements with an uncertainty of less than 0.02.
The atmospheric chemical transport model (GEOS-Chem)
simulated AOD is also used as a significant fraction of the
AOD source. Satellite observations comprise 89% of the
global population-weighted AOD data from December 1,
2019, to December 1, 2021. Ultimately, the mapping of spa-
tiotemporal AQ was achieved by using information on
meteorological parameter characteristics (temperature, rela-
tive humidity, and wind speed), land use type characteris-
tics, digital elevation, and latitude and longitude as model
feature inputs.

Table 1: Supporting features used in this study.

Data category Data type

Static Geographic and land use

Area of wood land cover (km2)

Area of grass land cover (km2)

Area of construction land (km2)

Area of ocean (km2)

POIs (19 categories)

AOIs (19 categories)

Digital elevation (m)

Dynamic
Meteorology

RH (%)

Temperature (°C)

Wind speed (m/s)

Remote sensing AOD retrievals
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3. Results

3.1. The Annual Seasonal Variation of PM2:5. The variation
trend of fine particulate air pollutants in China from Decem-
ber 2019 to November 2021 is shown in Table 2, in which
the overall concentration change of PM2:5 and aerosol thick-
ness, the average seasonal change, and the annual average
change trend are presented by year and quarter. The overall
average PM2:5 concentration and AOD values are 33.77
(SD = 31:15)μg/m3 and 0.08 (SD = 0:20). In the seasonal
breakdown, the average PM2:5 concentrations are in the fol-
lowing order from highest to lowest: winter, spring, autumn,
and summer. In winter, the average PM2:5 concentration can
reach 53.50 (SD = 40:43)μg/m3, while in summer, the aver-
age PM2:5 concentration is only 19.04 (SD = 12:36)μg/m3,
while the AOD values are larger in winter and spring
(0.10) and the smallest in summer (0.04). This inconsistency
between the magnitude and season of the data for PM2:5
concentration and AOD may be due to other factors (e.g.,
weather factors and human factors). The last two rows of
Table 1 show the annual average PM2:5 concentrations and
AOD values for 2020 and 2021, respectively. Compared to
2020, the average PM2:5 concentration in 2021 decreases from
34.26 (SD = 31:43)μg/m3 to 30.95 (SD = 28:86)μg/m3, which
is a decrease in the pollution level.

In this study, because of the large spatial latitude and lon-
gitude span in China, it is relatively normal that there will be
a less close association between PM2:5 concentrations and
AOD values aggregated between different regions of the
country. For example, in northwest China, where the temper-
ature difference between day and night is large, and air parti-
cles are generally an important indicator of atmospheric
stratification; we observed that the vertical distribution of
aerosols adapts to the thermal change of the boundary layer,
resulting in the low height of the atmospheric mixed layer,
and the stratification of the atmosphere occurs in a very short
time in a day. Therefore, the research shows that the relation-
ship between the characteristics of the short-term mixing
layer and pollutant concentration is not so close in the north-
west plateau area. On the contrary, in southern China, the
temperature difference between day and night is generally
considerable, and the occurrence of atmospheric stratifica-
tion takes a comparatively long time. Similarly, it can be
determined that the characteristics of the short-term mixed
layer in this region are more closely related to the study of
air pollutant particles, and the vertical distribution of aerosol
is more closely related to PM2:5 concentration.

We also found low correlations for simple linear regres-
sions for most of the coastal areas throughout the study
period. The main reason for this phenomenon may be that
the coastal areas are affected by numerous types of near-
surface wind, which are mostly uneven and deflected, and
under these conditions, pollutants are transported between
land and ocean. In addition, due to the particularity of the
weather in coastal areas, which are greatly influenced by
ocean currents and sea and land winds, as well as a variety
of complex terrain comparable to hills, pollutant diffusion
conditions are frequently quite different from those in
inland areas, resulting in the phenomenon that emission

sources, AOD, and pollutant concentration do not constitute
a simple linear proportion. In addition, the influence of
ocean climate on clouds will also make aerosol observation
problematic and lead to a certain degree of error. Mean-
while, most of the monitoring sites in the coastal areas of
the country show correlations below the overall average cor-
relation. The seasonal transport pattern of air quality may
lead to relatively low correlations due to the more active
air mixing in different seasons in coastal areas, as well as
the strong influence of the local sea breeze.

Table 3 gives the overall, seasonal, and annual model
performance for China during the study period. The R2
values of the overall training model were 0.88, MAE was
7.56, RMSE was 15.51, and SMAPE was 20.62. The R2 values
of the training model were above 0.80 for all four quarters
and above 0.86 for all quarters except summer, where the
training model had the highest R2 in autumn (0.90),
followed by winter (0.88), spring (0.86), and summer
(0.80). The fit differences among the four seasons are small,
indicating that the fitted model can explain the PM2:5 con-
centration changes better.

The RMSE values of the model were the largest in winter
(14.70), followed by spring (9.91), fall (7.40), and summer
(4.83); the magnitudes of MAE values were 8.29 (winter),
5.16 (spring), 3.41 (summer), and 4.69 (fall); and the magni-
tudes of SMAPE values were 17.27 (winter), 17.07 (spring),
20.40 (summer), and 19.58 (fall), respectively. Both MAE
and RMSE values reflect the error before the true and fitted
values, so the magnitudes are consistent. Considering that
the model uses a large number of sample data nationwide
and also the variability of data from different regions is large,
the maximum error is relatively small and the simulation
results are reliable by the true error reflected by MAE and
the amplified error reflected by RMSE.

The R2 value of the training model in 2020 is 0.89, and
the MAE, RMSE, and SMAPE are 5.63, 10.95, and 18.58,
respectively; the R2 value of the training model in 2021 is
0.90, and the MAE, RMSE, and SMAPE are 4.93, 8.58, and
18.28, respectively. The R2 values of the two training models
are high, indicating that the models are well fitted; the three
sets of error results are relatively close, indicating that the

Table 2: Average/annual/quarterly PM2.5 measurement and AOD
inversion from remote sensing data from December 2019 to
November 2021 in China.

PM2:5 concentration (μg/m3) AOD

Overall 33.77 (31.15) 0.08 (0.20)

Season

Winter 53.50 (40.43) 0.10 (0.21)

Spring 33.08 (30.73) 0.10 (0.24)

Summer 19.04 (12.36) 0.04 (0.16)

Fall 29.70 (23.37) 0.07 (0.18)

Year

2020 34.26 (31.43) 0.08 (0.20)

2021 30.95 (28.86) 0.08 (0.20)

5Journal of Sensors



predicted values are closer to the true values before, and the
sample data of the two time periods are more consistent.

3.2. Spatial Mappings of PM2:5 Concentrations. Figure 2
shows the spatial distribution of the average estimated
PM2:5 concentrations in China from December 2019 to
November 2021. Since the AOD is retrieved under cloud-
free conditions, the spatial pattern of mean estimated
PM2:5 is more likely to represent PM2:5 levels on cloud-free
days, which are more common during the warm season.
This spatial distribution map shows that the average PM2:5
concentrations are higher in the northwest and north China
plain regions, with an average of about 40μg/m3 , especially
in the southern region of Xinjiang, which is basically above
50μg/m3; the average PM2:5 concentrations in the southeast
coastal region are more consistently distributed, mostly
between 20μg/m3 and 30μg/m3; the environmental quality
in the Tibetan region is better, with average PM2:5 concen-
trations generally below 10μg/m3.

The results demonstrated that the spatial contrast of
PM2.5 was influenced by the broad spatial distribution cov-
erage rate, land utilization ratio and coverage rate, and the
terrain difference in different areas. The northern part of
China is comparatively flat and has a lot of plain terrain,
so pollutants in the air are more readily dispersed, and the
regional transport efficiency is relatively high. At the same
time, anthropogenic factors such as agricultural pollution,
industrial pollution, and automobile exhaust combined with
the weak purification function of the ecosystem make air
pollution in Northwest China serious; the main pollution
in Northwest China is sand and dust, which is affected by
extreme weather and wind whenever it cools down, and
dusty weather can lead to a high PM2:5 index, while weak
cold air activity, low precipitation, and long duration of still
windy weather during the heating period are not conducive
to pollutant diffusion; the continuous accumulation of pol-
lutants aggravates the pollution level; the Tibetan region
has high forest coverage and is located in the plateau, the
land is wide and sparse, and few pollutants are emitted.

4. Conclusion

In this study, we used the AOD data provided by MODIS
and the predictors such as pollution factors and land use fac-

tors extracted by the land use regression (LUR) model to
build models for different seasons based on the machine
learning algorithm XGBoost to achieve the prediction of
the spatial distribution of PM2:5 concentrations near the
whole China. The results show that the training model fits
well, with the R2 values of the fitting coefficients of 0.86
(spring), 0.80 (summer), 0.90 (autumn), and 0.88 (winter),
and the LUR model based on the XGBoost algorithm can
effectively reduce the spatial heterogeneity of geographic
variables and explain more than 80% of the variation of
PM2:5 concentration values. By comparing the simulated
and real values, the results show that the accuracy of the val-
idation data set is relatively high, with an average error of no
more than 3%, indicating that the prediction model can
effectively estimate the spatial distribution of near-ground
PM2:5 concentrations across the country and explain the
characteristics of PM2:5 concentration distribution.

Prediction results to some extent show that the present
situation of air pollution situation is still significant, through
operative to estimate the concentration distributions of
nationally; on the one hand, it can provide the shortages of
pollutant monitoring method of improving scientific

Table 3: Description of the results and evaluation for the ML-LUR model.

N R2 MAE (μg/m3) RMSE (μg/m3) SMAPE (%)

Overall 925357 0.88 7.56 15.51 20.62

(A) Season

Winter 227604 0.88 8.29 14.70 17.27

Spring 232623 0.86 5.16 9.91 17.07

Summer 228551 0.80 3.41 4.83 20.40

Fall 236582 0.90 4.69 7.40 19.58

(B) Year

2020 470071 0.89 5.63 10.95 18.58

2021 415159 0.90 4.93 8.58 18.28
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Figure 2: Spatial map of estimated PM2:5 concentrations in China
for the period of December 2019-November 2021.
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guidance and improve the layout of the base station moni-
toring and numerous auxiliary means such as satellite mon-
itoring to achieve the purpose of precise monitoring. On the
other hand, analyzing the formation factors of pollutants
through the difference of regional pollutant concentration
is conducive to reducing pollutant emission from the root.
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