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Simultaneous localization and mapping (SLAM) is a typical computing-intensive task. Based on its own computing power, a
mobile robot has difficult meeting the real-time performance and accuracy requirements for the SLAM process at the same
time. Benefiting from the rapid growth of the network data transmission rate, cloud computing technology begins to be
applied in the robotics. There is the reliability problem caused by solely relying on cloud computing. To compensate for the
insufficient airborne capacity, ensure the real-time performance and reliability, and improve the accuracy, a SLAM algorithm
based on edge-cloud collaborative computing is proposed. The edge estimates the mobile robot pose and the local map using a
square root unscented Kalman filter (SR-UKF). The cloud estimates the mobile robot pose and the global map using a
distributed square root unscented particle filter (DSR-UPF). By using sufficient particles in the cloud, DSR-UPF can improve
the SLAM accuracy. The cloud returns the particle with the largest posteriori probability to the edge, and the edge performs
edge-cloud data fusion based on probability. Both the simulation and the experimental results show that the proposed
algorithm can improve the estimation accuracy and reduce the execution time at the same time. By transferring the heavy
computation from robots to the cloud, it can enhance the environmental adaptability of mobile robots.

1. Introduction

Since the beginning of the 21st century, autonomous naviga-
tion technology has received increasing attention [1, 2]. It is
among the disruptive technologies predicted by academic
institutions and groups, such as the McKinsey Global Insti-
tute, Citi GPS MIT, and the ARK investment management
company [3, 4]. Simultaneous localization and mapping
(SLAM) is the key to realize autonomous navigation, and it
has been widely used in unmanned vehicles, unmanned
underwater vehicles, unmanned aerial vehicles, augmented
reality, and in other fields.

The traditional SLAM algorithms rely on the mobile
computing resource carried by a robot to estimate the envi-
ronmental map and the robot pose. SLAM is a computing-
intensive task, and the limited computing power makes
mobile robots difficult to meet the real-time requirement.
Benefiting from the rapid development of wireless commu-
nication technology, cloud technologies have been applied

in robotics. The cloud robot was first proposed by Kuffner
[5]. It combines cloud computing technology and robotics
and has become a trending research direction [6]. A growing
number of cloud platforms, applications, and services have
been proposed for robotics. DaVinci, Rapyuta, RoboEarth,
sensor-cloud, etc. transfer the heavy computation from
robots to the safe computing environment in cloud [7, 8].
The humanoid robot developed by the Aldebaran Robotics
relies on the cloud platform to realize speech recognition,
face detection, and video acquisition [9]. A fast object cap-
ture method based on Dex-Net as a Service (DNaaS) is pro-
posed and verified by the PR2 robot [10]. Pandey et al.
designed a cloud underwater robot to collect and monitor
marine data, and it completed tasks by sharing local and
remote resources [11].

These above studies have proven the practicability and
validity of cloud robotics. As a result, new solutions for
SLAM have emerged. These solutions divide the SLAM pro-
cess into two stages: data acquisition in the robot and data

Hindawi
Journal of Sensors
Volume 2022, Article ID 7213044, 17 pages
https://doi.org/10.1155/2022/7213044

https://orcid.org/0000-0003-1994-9841
https://orcid.org/0000-0001-8471-6505
https://orcid.org/0000-0002-5501-5571
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7213044


computing in the cloud. Arumugam et al. adopted a Hadoop
cluster to boost the particle sampling of the FastSLAM algo-
rithm [12]. This algorithm can improve the efficiency of map
construction and shares data with other robots using the
software as a service (SaaS) model. However, Hadoop is
designed for batch processing and not essentially designed
for real-time performance [13]. Its poor real-time perfor-
mance limits its application in online SLAM environments.
Kamburugamuve et al. used a distributed framework to
implement the GMapping algorithm [14]. This framework
is based on the IoTCloud platform which connects smart
devices to cloud services for real-time data processing [15].
Lidar and inertial sensor data are sent to the cloud as stream
events. The cloud executes SLAM computing, and the results
of robot position and mapping are returned to the robot.
IoTCloud is designed to make a connection between the
Internet of Things (IoT) devices and the cloud, and its appli-
cation to the real-time SLAM needs to be verified. The fault
tolerance of this framework also should be improved. By the
RoboEarth platform, C2TAM transfers the SLAM comput-
ing from the robot to the cloud. It uses the parallel tracking
and mapping (PTAM) algorithm to achieve multirobot
cooperative tracking and map creation tasks [16]. The limi-
tation is that the high requirement for bandwidth is needed,
and it is difficult to apply to other sensing environments,
such as laser radar. Xu and Bian designed a cloud robotic
application platform based on the container technology.
The SLAM computation as microservices deployed in the
container is provided [17]. The real-time and stability of this
method is needed further verification. Liu et al. designed an
RGB-D SLAM method based on the cloud computing [18].
It executes mapping, location, map fusion, and loop detec-
tion in the cloud. However, the feature detection, pose esti-
mation, and 3D point cloud stitching are still executed in
the robot, and the computational load of the robot is still
heavy.

To overcome the disadvantage of insufficient capacity
and the overburdening in the SLAM process of mobile
robots, a SLAM algorithm based on edge-cloud collaborative
computing is proposed. The cloud executes a distributed
square root unscented particle filter (DSR-UPF) to build
the global map by stream computing. For meeting the real-
time requirement, the edge builds a local map through a
square root unscented Kalman filter (SR-UKF) to implement
the fast SLAM computing. The main contributions of this
paper are stated as follows:

(1) Comparing the traditional cloud-based SLAM algo-
rithms, the proposed algorithm not only ensure the
real-time performance but also improves the accu-
racy and efficiency by the edge-cloud collaborative
architecture

(2) Comparing the batch process of traditional cloud-
based SLAM algorithms, stream computing with
high real-time and low latency is used to construct
the cloud computing framework. By distribute paral-
lel computing, DSR-UPF can takes advantage of its
sufficient power to improve the execution perfor-

mance, and the accuracy is improved by the suffi-
cient particles. To overcome the drawback of linear
approximations to the motion function in traditional
particle filter SLAM algorithms, each particle uses
SR-UPF to samples particle in a highly accurate
manner

(3) In EKF-SLAM, the computation increases exponen-
tially with the increase of landmarks. To ensure the
real-time performance of the edge, SR-UKF is used
to build the local map. By only dealing with the
recently observed landmarks, it reduces the
computation

2. Background

2.1. SLAM Problem. SLAM is a process that enables a mobile
robot to build a map and locate itself at the same time in an
unknown environment. The goal of SLAM is to obtain the
best estimation of the robot pose and the map based on
the control data u1 :t and observation data z1 :t from the start
to time t. It can be described by a posteriori probability dis-
tribution as follows:

p xt ,Θ z1:t , u1:tjð Þ, ð1Þ

where xt is the robot pose at time t and Θ is the entire map.
According to the Bayes rule, the law of total probability,

and the Markov hypothesis, the posteriori probability distri-
bution of the robot pose and the environmental map can be
rewritten as follows:

p xt ,Θ z1:tj , u1:tð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
The posterior distribution at time t

∝ ηp ztjxtð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
The observationmodel

,

ð
p xt xt−1j , utð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Themotionmodel

  p xt−1,Θθ z1:t−1, u1:t−1jð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
The posterior distribution at time t−1

dxt−1:
ð2Þ

In general, the integral in Eq. (2) cannot be evaluated in
a closed form. The extended Kalman filter (EKF) and the
particle filter (PF) are simple approximations of the general
Bayes filter.

2.2. PF-SLAM. The EKF-SLAM (extended Kalman filter
SLAM) and the PF-SLAM (particle filter SLAM) are two
widely used solutions to the SLAM problem.

For PF-SLAM, the greater the particle number, the more
accuracy SLAM can obtain. More particles mean more com-
putation, and the traditional algorithm relying only on the
robot’s own resources cannot meet the real-time require-
ments. In reference [19], simulation experiments with 100,
300, and 500 particles are executed. The experimental results
show that 500 particles obtained a more accurate estimation
of the environment map and the robot pose than 100 parti-
cles and 300 particles. In order to control the particle num-
ber and improve the accuracy simultaneously, scholars have
improved and optimized the process of the particle sampling
and resampling, but the problem of massive computation of
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the SLAM algorithm based on particle filter has not been
fundamentally solved [20–22].

2.3. Stream Computing. The traditional data processing
architecture is mainly aimed at transactional data processing
scenarios with low real-time requirements. It is difficult to
apply in scenarios that have high real-time requirements.
Stream computing uses distributed ideas and methods to
process data in real-time. Stream computing can provide
huge computing power for mobile robots to process data
to ensure that low-cost robots can make more complex sens-
ing data processes and decision-making [23].

3. The SLAM Architecture Based on Edge-Cloud
Collaborative Computing

The system architecture of the proposed SLAM algorithm is
shown in Figure 1. It is composed of the edge and the cloud.
The edge is the mobile robot, and the cloud is a stream com-
puting cluster.

The edge includes five modules: data acquisition, message
client, local SLAM computing, edge-cloud fusion, and local
storage. The data acquisition module is used to acquire the lidar
data and the inertial navigation data and format them into a
unified form. The message client realizes sealing, sending,
receiving, and unsealing of messages. The local SLAM comput-
ing module performs a real-time SLAM computing to obtain
the estimation of the mobile robot pose and the local map.
The local storage module stores the map information in a cer-
tain time. Based on the probability distribution, the edge-
cloud fusion module fuses the SLAM computing results from
the edge and the cloud.

The cloud includes four modules: message server, coordi-
nation monitoring, distributed SLAM computing, and global
storage. The message server realizes a high availability and
load balancing message service by a Kafka cluster which com-
pletes a reliable communication between the cloud andmobile
robots. The Hadoop distributed file system (HDFS) is used to
store the global map, sensor data, path information, particle
information, etc. The coordination and monitoring module
realizes the coordination, monitoring, and management
between the control node and the N computing nodes. As a
distributed process coordination, zookeeper coordinates the
SLAM computing actions and makes the distributed SLAM
more reliable. The distributed SLAM computing module is
based on the Flink stream computing platform.

4. The SLAM Process Based on Edge-Cloud
Collaborative Computing

The process flow of the proposed algorithm is shown in
Figure 2. In each control decision cycle, the acquired data is
transferred to the edge and the cloud, which execute SLAM
computing at the same time. In the edge, the robot pose and
the local map are computed by the SR-UKF. The cloud per-
forms loop detection, distributed SLAM computing, and
priori knowledge correction in parallel. The distributed SLAM
uses the DSR-UPF, and each particle is calculated separately.
The particle with the largest posteriori probability is returned

to the edge. The edge realizes the fusion between the edge
SLAM result and the cloud SLAM result. The edge updates
the state of the mobile robot and saves the local map. Finally,
the cloud executes resampling according to the particle diver-
sity and saves the global map information to the HDFS and
the cache.

4.1. Process Flow of the Edge. The process flow of the edge is
mainly divided into six steps: data acquisition, message trans-
mission, edge SLAM, message reception, fusion of the edge
and cloud SLAM results, and local map storage.

4.1.1. Data Acquisition. The mobile robot acquires the control
data from the inertial navigation system (INS) and the observed
data from the lidar.

4.1.2. Message Transmission. The mobile robot encapsulates
the control data and the observed data in a control cycle into
a message. Each message is marked with a unique sequence
number, and this unique number is also encapsulated to the
reply message from the cloud. It is used to identify an inter-
active process between the edge and the cloud. The Kafka
client transmits this message to the cloud by the communi-
cation network.

4.1.3. The Edge SLAM Based on the SR-UKF. The SR-UKF
(square root unscented Kalman filter) SLAM algorithm is
the improvement of the EKF-SLAM which is the process
of iterative updating for the system state and the covariance
matrix. With the increase of landmarks, the system state vec-
tor and covariance matrix become larger, and the computa-
tion increase dramatically. In order to ensure the real-time
performance, the edge uses the SR-UKF algorithm to build
the local map, and only the recently observed landmarks
are used for the map updating. It avoids the covariance
matrix being too large and reduces the computation. Com-
pared with EKF, SR-UKF avoids the linearization model
error and improves the system accuracy.

The SR-UKF constructs the statistical characteristics of
the system by 2L + 1 sigma points, which can characterize
the system state vector. L is the dimension of the system
state. First, the SR-UKF initializes the system mean, the
square root of the covariance matrix, and the weights of
sigma point as follows:

X0 = xinitS0 = chol Qinitð Þ, ð3Þ

ωm
0 =

λ

L + λ
 ωc

0 =
λ

L + λ
+ 1 − α2 + β
À Á

, ð4Þ

ωm
i = ωc

i =
1

2 L + λð Þ i = 1, 2⋯⋯L + 1⋯⋯2L, ð5Þ

where xinit and Qinit are the mean and the covariance of the
initial state. chol is a Cholesky factorization that decomposes
a symmetric, positive-definite matrix into the product of a
lower-triangular matrix and its transpose [24]. λ = α2ðL + κ
Þ − L is the scaling parameter. α determines the spread of
the sigma points around the system mean, and it is usually
set to 1e − 4 ≤ α ≤ 1. β is used to incorporate the prior
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distribution of the state variable, and it is set to 2 for a
Gaussian distribution. κ is a secondary scaling factor, and
it is set to 0. ωm

i is the mean weight of the i-th sigma point,
and ωc

i is the covariance weight.
At time t, the mean and the square root of the covariance

matrix of the system state are xt−1 and St−1. The iterative
update of xt−1 and St−1 is by sigma point calculation, predic-
tion, and observation update.

(1) Calculate the Sigma Point.

Xt−1 = xt−1xt−1 + ηSt−1xt−1 − ηSt−1½ �, ð6Þ

where the scale η is calculated as follows:

η =
ffiffiffiffiffiffiffiffiffiffi
L + λ

p
: ð7Þ
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Figure 1: The SLAM system architecture based on edge-cloud collaborative computing.
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Figure 2: The flow of the SLAM process based on edge-cloud collaborative computing.

4 Journal of Sensors



(2) Prediction. The Sigma point at time t is calculated as fol-
lows:

X∗
t = g Xt−1, utð Þ, ð8Þ

where g is the motion model function and ut is the control
data.

The predicted mean and the square root of covariance
matrix are calculated by Eqs. (9)–(12). Ŝt is calculated by a
QR decomposition, which decomposes a matrix into a normal
orthogonal matrix Q and an upper triangular matrix R. To
ensure the semipositive of the square root of the covariance
matrix, the Cholesky update (cholupdate) function [25] is used
to update Ŝt.

x̂t = 〠
2L

i=0
ωm
i X

∗
t,i, ð9Þ

Ŝt = qr
ffiffiffiffiffi
ωc
1

ph i
X∗
t,1:2L − x̂t

À Á ffiffiffiffi
Q

pn o
, ð10Þ

Ŝt = cholupdate Ŝt , X∗
t,0 − x̂t , ωc

o

È É
, ð11Þ

where qr is to denote a QR decomposition of a matrix. The
sigma point is updated as follows:

X̂t = x̂t x̂t + ηŜt x̂t − ηŜt
Â Ã

: ð12Þ

(3) Update by Observation. By using the observation model, the
landmark observation at time t is predicted as follows:

Ẑt = h Xtð Þ, ð13Þ

ẑt = 〠
2L

i=0
ωm
i Ẑt,i: ð14Þ

QRdecomposition and cholupdate are used to update ŜZt
as

follows:

ŜZt
= qr

ffiffiffiffiffi
ωc
1

p
Ẑt,1:2L − ẑt
À Á ffiffiffi

R
ph in o

, ð15Þ

ŜZt
= cholupdate ŜZt

, Ẑt,0 − ẑt , ωc
0

È É
: ð16Þ

The Kalman gain is calculated as follows:

Pxtzt
= 〠

2L

i=0
ωc
i Xt,i − x̂tð Þ Ẑt,i − ẑt

À ÁT , ð17Þ

Kt =
Pxtzt

/ŜTZt

ŜZt

: ð18Þ

Finally, the mean and the square root of the covariance
matrix are updated by the Kalman gain.

xt = x̂t + Kt Zt − ẑtð Þ, ð19Þ

U = KtŜZt
, ð20Þ

St = cholupdate Ŝt ,U ,−1
À Á

: ð21Þ

4.1.4. Message Reception. The edge receives messages by the
Kafka client. To ensure the system reliability, the exact one
mode is adopted to ensure that message processing and submis-
sion feedback are in the same transaction or atomicity.

4.1.5. Local Map Storage. The local map and the robot position
from the result of the edge-cloud fusion are stored in the edge.

4.2. Process Flow of the Cloud. The process flow of the cloud
is mainly divided into six steps: message reception, parallel
computing, particle combination, computing result trans-
mission, resampling, and global map storage.

4.2.1. Message Reception. Based on the Kafka cluster, the control
and the observation data from the mobile robot are received.
The data are distributed to the loop detection, the distributed
SLAM, and the priori knowledge correction modules for con-
current execution.

4.2.2. Parallel Computing

(1) Loop Detection. Loop detection compares the observation
information in all periods stored in the cloud. The scan-to-
scan method is used to loop detection, which matches two
frames of lidar data. The Iterative Closest Point (ICP) algo-
rithm is used to match two frames by calculating the rigidity
change between two pairs of point clouds [26]. If the lasted
received data are highly similar to the data at a certain time
in history, a closed loop is formed. With the closed loop, the
cumulative error is reduced.

(2) DSR-UPF SLAM. The DSR-UPF (distributed square root
unscented particle filter) SLAM is a distributed parallel PF-
SLAM algorithm. In the PF-SLAM, the particle number
determines the algorithm accuracy. More particles can bring
not only the higher accuracy but also the more computation.
In order to improve the accuracy, the cloud adopts enough
particles based on the cloud computing power, and it exe-
cutes the PF-SLAM algorithm in a distributed manner. In
the DSR-UPF SLAM, each particle is independently associ-
ated with the estimation of N landmarks. At time t, the par-

ticle set is shown in Figure 3. x½i�t is the estimated pose of the i
-th particle, and ω½i�

t is the weight of this particle. ðμ½i,j�t ,∑½i,j�
t Þ

represents the mean and the covariance matrix of the j-th
landmark estimation of the i-th particle, respectively.

As shown in Figure 4, each particle is estimated
independently.

Each computing node predicts and updates the new pose by
the SR-UKF, and it updates the landmark position by the
extended Kalman filter (EKF). Landmark updating depends
on whether the landmark is observed at time t. If the landmark
is newly observed, its mean and covariance are initialized as
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follows:

μ
i,N+1½ �
t = h−1 zt , x

i½ �
t

� �
, ð22Þ

〠
i,N+1½ �

t

=HrzRtH
T
rz , ð23Þ

where h−1 is the inverse function of the observation model and
Hrz is the Jacobian matrix of function h−1. If the j-th landmark
is not observed at time t, its mean and covariance remain
unchanged. If the j-th landmark is observed at time t, the mean

and the covariance are updated as follows:

μ
i,j½ �
t = μ

i,j½ �
t−1 + Kt zt − ẑ i½ �

t

� �
, ð24Þ

〠
i,j½ �

t

= I − KtHzð Þ〠
i,j½ �

t−1
, ð25Þ

where Kt is the Kalman gain and Hz is the Jacobian matrix of
the observation model.

The particle weight is defined as the ratio of the target
distribution over the proposal distribution. The i-th particle
weight is defined as follows:

ω
i½ �
t =

Target distribution
Proposal distribution

=
p x i½ �

1:t u1:t , z1:tj
� �
q x i½ �

1:t u1:t , z1:tj
� � : ð26Þ

The proposal distribution qðx½i�1:tju1:t , z1:tÞ can be repre-
sented by a recursive form as follows:

q x i½ �
1:t u1:t , z1:tj

� �
= q x i½ �

t x i½ �
t−1, ut , zt

���� �
q x i½ �

t−1 u1:t−1, z1:t−1j
� �

:

ð27Þ

The Bayes rule is used to calculate the weight as follows:

ω
i½ �
t ∝

p zt x
i½ �
t

���� �
p x i½ �

t x i½ �
t−1, ut

���� �
p x i½ �

t−1 u1:t−1, z1:t−1j
� �

q x i½ �
t x i½ �

t−1, ut, zt
���� �

q x i½ �
t−1 u1:t−1, z1:t−1j

� �

= ω
i½ �
t−1

p zt x
i½ �
t

���� �
p x i½ �

t x i½ �
t−1, ut

���� �
q x i½ �

t x i½ �
t−1, ut , zt

���� � ,

ð28Þ

where the proposal distribution qðx½i�t jx½i�t−1, ut , ztÞ is calcu-
lated as follows:

q x i½ �
t x i½ �

t−1, ut , zt
���� �

= p x i½ �
t x i½ �

t−1, ut , zt
���� �

: ð29Þ

(3) Prior Knowledge Correction. Most SLAM algorithms
assume that the control noise statistics Q and observation
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Input: M initial particles
Step:
1. particlesM1=SelectParticles(particles, Ps);
2. particlesM2=FastMutation(particlesM1, Pm);
3. particlesM3=Crossover(particlesM1, Pc);
4. newParticles=particlesM1+particlesM2+particlesM3;
Output: M new particles

Algorithm 1: Improved genetic resampling method.
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noise statistics R are completely known and correct. Because
of the complexity of the real world, this assumption is hard
to be tenable. Incorrect a priori knowledge about the control
and the observation noise matrices can seriously degrade the
accuracy of these algorithms [27–30]. Based on the previous

research [31], a dynamic fractional order and alpha stable
distribution particle swarm optimization method is adopted,
and the prior knowledge Q and R are adjusted dynamically
by a fitness function. This fitness function is based on the
inconsistency between the predicted observations and the
observations. By introducing the prior knowledge correction
step, it can reflect the real values of the prior knowledge
more accurately.

4.2.3. Particle Combination. After all particles are updated,
the effective particle number Neff is calculated as follows:

Neff =
1

∑M
i=1 ω

i½ �
t

� �2 , ð30Þ
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Figure 5: A comparison between the three algorithms in the simulation environment.

Table 1: The comparisons between the three algorithms.

Algorithms
RMSE_P

(m)
RMSE_L

(m)
Execution time

(s)

FastSLAM 2.0 2.70 2.42 22.46

UFastSLAM 1.55 1.37 29.52

The proposed
algorithm

1.37 1.21 19.28
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where M is the number of particles, and ω½i�
t is the normal-

ized weight of the i-th particle. If Neff is less than the speci-
fied threshold, the particle set is resampled. After
resampling, all particle weights are reset as follows:

ω
i½ �
t =

1
M

ð31Þ

4.2.4. Computing Result Transmission. The particle with the
largest weight is returned to the edge.

4.2.5. Particle Resampling. The SLAM algorithms based on
particle filter will degenerate over time no matter how many
landmarks in the environment and particles are used in the
estimation [32]. Resampling aims to amend the particle
degeneracy, but it always leads to the loss of the particle
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diversity, which is called particle depletion [33]. To improve
the diversity of particles as much as possible, some biological
evolutionary algorithms have been applied for resampling
[34, 35]. To prevent particle degeneracy and improve parti-
cle diversity, an improved genetic resampling method is pro-
posed. It uses a double roulette wheel as the selection
operation and a fast metropolis Hastings (FMH) mutation
as the mutation operation. The FMH mutation can improve
the divergence problem of the traditional mutation methods
and produce particles that can better reflect the target distri-
bution [36]. The main procedures of particle resampling are
listed as follows:

The SelectParticles method uses the double roulette
selection to select M1 (M1 =M × Ps) parent particles from
M initial particles. The FastMutation method uses the
FMH mutation to generate M2 particles from theM1 parent
particles. The Crossover method uses the crossover opera-
tion to generate M3 particles from M1 parent particles.

Ps, Pc, and Pm represent the probability of the selection,
crossover, and mutation, respectively. Ps is set to 0.5, and the
values of Pc and Pm are determined by the particle diversity
Vd as follows:

Vd =
Ht

Hbest
, ð32Þ

Ht = 〠
M

i=1
f2 x i½ �

t

� �
, ð33Þ

f2 x i½ �
t

� �
= 〠

M

j=1
〠
M

j=1
x i,k½ �
t − x j,k½ �

t

��� ���
 !

, ð34Þ

where the function f2 is to calculate the sum of the distances
between the i-th particle and the other particles. Hbest repre-
sents the maximum value of Vd from the beginning. Pc and

Pm are calculated as follows:

Pc = 0:8, Pm = 0:2
3
4
<Vd ≤ 1,

Pc = 0:6, Pm = 0:4
1
2
<Vd ≤

3
4
,

Pc = 0:4, Pm = 0:6
1
4
<Vd ≤

1
2
,

Pc = 0:3, Pm = 0:7 0 < Vd ≤
1
4
:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð35Þ

4.2.6. Global Map Storage. The global map, sensor informa-
tion, and all particles information are stored the distributed
cache and the HDFS.

4.3. Process Flow of the Edge-Cloud Fusion. The edge-cloud
fusion is the combination of the edge results and the cloud
results. To improve the reliability and overcome the prob-
lems caused by transmission delay, the edge-cloud fusion
depends on the data transmission time. If the cloud result
is not returned to the edge in real-time, the edge-cloud
fusion is no longer executed in the edge, and the edge result
is directly used as the SLAM result.

Based on the fusion principle of the posterior probability
function ratio, the fusion of SLAM results from the cloud
and the edge is realized. The posteriori probability of the
edge SLAM is shown as follows.

ylt = p zt xlt ,Θltjð Þp xlt ut , �xt−1jð Þ = ,

YN
j=1

p zt xlt ,mlj

��À Á
p xlt ut , �xt−1jð Þ = ,

YN
j=1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πRt mj

À Áq e− zt mjð Þ−ẑt ml jð Þð Þ2/2Rt mjð Þ 1ffiffiffiffiffiffiffiffiffiffi
2πQt

p e− xlt−x̂tð Þ2/2Qt ,

ð36Þ

where xlt is the edge estimation of the mobile robot pose at
time t and Qt is the covariance matrix of the estimation at
time t. Θlt is the edge estimation of the environment map
which includes the N landmark estimations. mlj is the esti-
mated means of the j -th landmark, and RtðmjÞ is the rele-
vant covariance matrix. xt−1 is the estimated pose at time
t − 1. ztðmjÞ is the real observation of the j-th landmark,
and ẑtðmljÞ is the predicted observation of the j-th land-
mark. x̂t is the predicted robot pose based on the motion
model.

The posteriori probability of the cloud SLAM is shown
as follows.

yct = p zt xct,Θctjð Þp xct ut , xt−1jð Þ = ,

YN
j=1

p zt xct,mcj
��À Á

p xct ut , xt−1jð Þ = ,

YN
j=1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πRt mj

À Áq e− zt mjð Þ−ẑt mcjð Þð Þ2/2Rt mjð Þ 1ffiffiffiffiffiffiffiffiffiffi
2πQt

p e− xct−x̂tð Þ2/2Qt ,

ð37Þ

30

25

20

15

N
ES

S

10

5

0
0 50 100 150

Time (s)

The proposed algorithm
UFastSLAM
FastSLAM 2.0

Figure 8: The average NEES comparison.

10 Journal of Sensors



where xct is the cloud estimation of the mobile robot pose
and Θct is the cloud estimation of the environment map.
mcj is the j -th landmark estimation, and ẑtðmcjÞ is the pre-
dicted observation of the j-th landmark.

The pose and map estimation fusion for the mobile
robot are written as follows:

xt =
yct

yct + yltð Þ xct +
ylt

yct + yltð Þ xlt , ð38Þ

mj =
yct

yct + yltð Þmcj +
ylt

yct + yltð Þmlj: ð39Þ

5. Experimental Results and Discussion

To verify the performance of the proposed algorithm, com-
parisons between the proposed algorithm, the FastSLAM
2.0 [37] and the UFastSLAM [38] are made. FastSLAM 2.0
and its variants become the most widely used laser SLAM
solutions. They have been applied in the fields of unmanned
vehicles, unmanned aerial vehicles, unmanned ships, mobile
robots, and so on. As an important improvement of Fas-
tSLAM 2.0, UFastSLAM applies UKF to the iterative updat-
ing of the mobile robot pose. UFastSLAM is widely used not
only in laser SLAM but also in visual SLAM [39].

5.1. Simulation Experiments. In the simulation environment,
the system state is described by the Cartesian coordinate sys-
tem. The motion and observation models are as follows:

xt = xxt , yxt , θxt
h iT

= g xt−1, utð Þ =

xxt−1 + ΔTVt cos θxt−1 + αt
À Á

yxt−1 + ΔTVt sin θxt−1 + αt
À Á

θxt−1 +
ΔTVt sin αtð Þ

L

2
66664

3
77775 + ε,

ð40Þ

zt mj

À Á
= lt mj

À Á
, βt mj

À ÁÂ ÃT = h xt ,mj

À Á
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xmj − xxt

� �2
+ ymj − yxt

� �2r

arctan
ym j − yxt
xm j − xxt

 !
− θxt

2
66664

3
77775 + δ,

ð41Þ
where (xxt , yxt ) represents the mobile robot position. The
heading θxt is the motion direction at time t. Its value range
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Figure 9: The map with the sparse landmarks.

Table 2: The comparisons between the three algorithms on the
map with the sparse landmarks.

Algorithms
RMSE_P

(m)
RMSE_L

(m)
Execution time

(s)

FastSLAM 2.0 7.45 9.39 20.54

UFastSLAM 4.27 5.08 26.37

The proposed
algorithm

3.51 4.20 18.69

L = 2.83 m

H = 0.76 mb = 0.5 m

a = 0.95 m

Encoder
position

Laser and GPS
position

Figure 10: The motion model of the truck.
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is [- π, π] rad. (xm j, ymj) is the j-th landmark position. ut and
zt denote the control and observation data, respectively. ut
includes the velocity Vt and the steering angle αt. ztðmjÞ rep-
resents the range-bearing observation from the robot to the j
-th landmark, ltðmjÞ is the distance, and βtðmjÞ is the angle
from 0 to 2π clockwise. ΔT is the sampling interval, and L is
the wheel base.

In the simulation environment, a low-cost embedded
control board is simulated as the whole mobile robot system.
As a control center, it is widely used for portable and low-
cost mobile robot systems. The control board is equipped
with 1.5GHz CPU with 4 core processors and 2G memory

and installed a robot operating system (ROS). The control
board simulates the robot moving process according to the
predefined path. To simulate the real environment, the
speed and angle are added a random noise, and the data with
noise are used as the control data. The distance and angle
between the landmarks and the robot are calculated. The
distance and angle with a random noise are taken as the
observation data. This process simulates the acquisition pro-
cess of control data and observation data. The maximum
driving speed Vt is 3m/s, and the maximum steering angle
αt is π/6 rad. The speed noise εv is 0.3m/s, and the angle
noise εβ is π/60 rad. It is equipped a ranger bearing sensor
with a π rad frontal view and a maximum range of 30m.
The range noise of the observation δl is 0.2m, and the angle
noise δβ is π/180 rad. The cloud uses three servers to build a
stream computing cluster by the Flink platform and the
related components. The cloud server uses 16G memory
and 2.2GHz CPU with 8 core processors.

As shown in Figure 5(a), the mobile robot moves in a
250m × 200m area with 75 landmarks. The robot starts
from (0, 0) and moves according to a series of planned target
points. The FastSLAM 2.0 and the UFastSLAM use 20
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Figure 11: The comparison between the three algorithms based on the University Car Park dataset.

Table 3: The distance error comparison between the three
algorithms based on the University Car Park dataset.

Algorithms
dr−ave
(m)

dl−ave
(m)

Execution time (s)

FastSLAM 2.0 0.153 0.096 9.36

UFastSLAM 0.129 0.081 11.09

The proposed
algorithm

0.107 0.069 8.42
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particles to estimate the system state. Based on the sufficient
computing power in the cloud, the proposed algorithm uses
40 particles to estimate the system state. Figures 5(b)–5(d)
show the experimental results of the three algorithms. The
black solid line represents the motion trajectory, and the
dotted line represents the estimated path by each algorithm.
The black plus sign + represents the landmark position, and
the circle sign ○ represents the estimated landmark position.

Estimation accuracy and execution efficiency are the
most important indicators of SLAM algorithms. The com-
parison between the three algorithms is based on the two
indicators. Estimation accuracy mainly includes the estima-
tion accuracy for robot positions and the estimation accu-
racy for map. The higher the estimation accuracy, the
closer the SLAM estimation is to the real state of the robot
system. High estimation accuracy is beneficial to explore
the unknown environment and navigate autonomously for
robots. It is evident that the estimated trajectory and map
by the proposed algorithm is closer to the actual system
state. The error of the proposed algorithm in both path esti-
mation and landmark position estimation is much smaller
than that of the other two algorithms. The execution effi-
ciency is the key to whether SLAM algorithms can be
applied to autonomous navigation. Based on the cloud com-
puting power, the average execution time of the single step
in the proposed algorithm is the shortest execution time of
32ms, followed by the FastSLAM 2.0 algorithm of 36ms,
and the UFastSLAM algorithm of 49ms.

Because the control and observation noise are random,
the results of each experiment are different. To obtain a
more detailed and accurate comparison, 50 simulation
experiments with the simulation environment of
Figure 5(a) are carried out. Root mean square error (RMSE)
is used to measure the deviation between the estimated value
and the real value, and it can reflect well the SLAM accuracy.
Table 1 shows the compared results based on RMSE.

RMSE_P represents the RMSE on the robot position
estimation, and RMSE_L represents the RMSE on the land-
mark estimation. The result shows that the proposed algo-
rithm is more accurate than the other two algorithms in
estimating the robot position and the landmark locations.
The execution time is the accumulation of the single step
execution time in each experiment. The execution time of
the proposed algorithm is also shorter than that of the two
other algorithms. For the limitation of experimental condi-
tions, the total number of core processors in the cloud is
smaller than the number of particles. If the total number of
core processors is larger than the number of particles, the
parallelism of the proposed algorithm will be greatly
improved, and the performance will be further improved.
At the same time, if the cloud resources are sufficient, more
particles can be used to improve the accuracy.

Figure 6 shows the RMSE comparisons based on time
series between the three algorithms. The four subfigures
show the RMSE comparisons in the x-axis, the y-axis, the
heading, and the position. The RMSE of the proposed algo-
rithm is less than that of the other two algorithms in each
time period.

Figure 7 shows the RMSE comparison on landmark posi-
tions between the three algorithms after the loop is closed. It
can be seen that the landmark estimation errors of the proposed
algorithm are fewer than that of the other two algorithms.

Consistency means that the deviation between the esti-
mated state and the true state should be kept at a roughly
constant level. The normalized estimation error squared
(NESS) [40] is often used in measuring the SLAM consis-
tency over the N Monte Carlo runs and is defined as follows:

εt = xt − x̂tð ÞP−1
t xt − x̂tð Þ, ð42Þ

(a) Victoria Park (b) GPS trajectory

Figure 12: The experimental environment based on the Victoria Park dataset.
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where xt and Pt are the estimated mean and the covariance
of the robot pose, respectively. x̂t is the real pose. Given N
runs, the average NEES is computed as follows:

�εk =
1
n
〠
n

i=1
εk,i: ð43Þ

For the 3-dimensional vehicle pose and the 50 Monte
Carlo runs, the two-sided 95% probability region is bounded
by the interval [2.36, 3.72]. If �εk exceeds the upper bound,
the SLAM algorithm becomes optimistic [41]. Figure 8

shows the average NEES comparison between the three algo-
rithms. It can be seen that the FastSLAM 2.0 algorithm
becomes rapidly optimistic while the average NEES of the
proposed algorithm maintains a low level for a long time.

In order to further verify the effectiveness of the pro-
posed algorithm, a map with the sparse landmarks as shown
in Figure 9 is constructed. 50 simulation experiments are
carried out for this environment. Table 2 shows the com-
pared results between the three algorithms based on RMSE.
Comparing the experiment map of the Figure 5, the land-
marks are decreased from 75 to 35. The decrease reduces
the SLAM computation and estimation accuracy. Compared
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with the other two algorithms, the proposed algorithm has
higher accuracy of the robot pose and landmark position
estimation and less calculation time.

The experimental results show that the proposed algo-
rithm has higher accuracy and less computation time,
whether on the map with the dense landmarks or the sparse
landmarks.

5.2. Experiments with the University Car Park and Victoria
Park Dataset. The University Car Park and the Victoria Park
dataset are collected by the Australian Centre for Field
Robotics (ACFR) in Sydney. They are popular in the SLAM
research community. A truck equipped with GPS, inertial,
and laser sensors is tested. The motion model of the truck
is shown in Figure 10.

The motion and the observation model are as follows:

where Vt is the velocity of the center of the axle, Vet is the
velocity of the back left wheel, ΔT is the sampling interval,
and αt is the steering angle.

5.2.1. The University Car Park Dataset. The University Car
Park dataset [42] is used to compare the FastSLAM 2.0, the
UFastSLAM, and the proposed algorithm. The experimental
environment is shown in Figure 11(a), and the results of the
three algorithms are shown in Figures 11(b)–11(d). The esti-
mated trajectory by the proposed algorithm is themost consis-
tent with the GPS trajectory. It indicates that the estimation
accuracy of the proposed algorithm is better than that of the
UFastSLAM and the FastSLAM 2.0 algorithms.

Table 3 shows the estimation accuracy comparison
between the three algorithms where dr−ave is the average dis-
tance error for the robot position estimation and dl−ave is the
average distance error for the landmark position estimation.
As shown in Table 3, the estimated error of the proposed
algorithm is less than that of the FastSLAM 2.0 and the
UFastSLAM whether on the robot position estimation or
the landmark position estimation. The execution time of
the proposed algorithm is also less than that of the UFast-
SLAM and the FastSLAM 2.0. The single step execution time
of the proposed algorithm is 29ms, which is less than the
sampling interval. It can meet the real-time requirements.

5.2.2. The Victoria Park Dataset. The Victoria Park dataset
[43] is used to compare the three algorithms. The experi-
mental environment is a 300 × 300m2 large-scale environ-

ment, as shown in Figure 12. The dataset records the
sensor data obtained by manually driving the intelligent
vehicle for approximately 3.5 kilometers in 1545 seconds.
The vehicle collects 61945 frames of inertial navigation data,
7249 frames of lidar data, and 4461 frames of GPS data.

The main obstacle in the environment is trees. For the low
installation position of lidar, the trunk is used as the landmark.
Due to the shelter of trees, the GPS data is discontinuous. The
positions of these natural landmarks are not measured, and
the true position of landmarks cannot be marked on the
map. Figure 13 shows the experimental results.

The black line represents the GPS data, the dotted line
represents the path estimated by each algorithm, and the
plus sign + is the estimated landmark position. For the dis-
continuity of the GPS data and lack of the natural landmarks
position data, the difference between the estimated position
and the real position is not calculated. As shown in
Figure 13, the estimated path by the proposed algorithm is
more consistent with the GPS trajectory. For the lineariza-
tion error of the FastSLAM 2.0 algorithm, the estimated path
does not match the GPS trajectory. Because the cumulative
error of the UFastSLAM and the proposed algorithm is
small, the difference between the estimated path and GPS
trajectory is less than that of the FastSLAM 2.0 algorithm.
The execution time of the proposed algorithm is 674 sec-
onds, which is less than the 1029 seconds of the UFastSLAM
algorithm and the 952 seconds of the FastSLAM 2.0
algorithm.

xt = g xt−1, utð Þ =

xxt−1 + ΔTVt cos θxt−1 + αt
À Á

−
tan αtð Þ

L
a sin θxt−1

À Á
+ b cos θxt−1

À ÁÀ Á� �

yxt−1 + ΔTVt sin θxt−1 + αt
À Á

−
tan αtð Þ

L
b sin θxt−1

À Á
− a cos θxt−1

À ÁÀ Á� �

θxt−1 +
ΔTVt tan αtð Þ

L

2
666666664

3
777777775
+ ε, ð44Þ

Vt =
Vet

1 − H/Lð Þ × tan αtð Þ , ð45Þ

zt mj

À Á
= h xtð Þ =

lt mj

À Á
βt mj

À Á
" #

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xmj

− xxt

� �2
+ ymj

− yxt

� �2r

arctan
ymj

− yxt
xmj

− xxt

 !
− θxt +

π

2

2
66664

3
77775 + δ, ð46Þ
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6. Conclusions

The emergence of edge-cloud collaboration provides a new
solution to the SLAM problem. The distributed and parallel
stream service on the cloud extends the computing capacity
of mobile robots and improves the accuracy of SLAM with
more particles. The edge builds the local map to meet the
real-time requirements. The cloud changed the traditional
serial sampling and resampling process to distributed parallel
execution, and the cloud computing power has been used to
improve the execution efficiency. Edge-cloud collaborative
computing can compensate for the lack of compute ability of
mobile robots and enhance their environmental adaptability.

Based on the simulation environments and two public
datasets, the proposed algorithm, FastSLAM 2.0, and UFast-
SLAM are compared. Experimental results show that the pro-
posed algorithm has the highest estimation accuracy and the
lowest RMSE compared with the other two algorithms. The
experimental results also prove that the proposed algorithm
has the fastest execution time, which can ensure the real-
time performance of SLAM. For SLAM algorithms based on
particle filter, the accuracy can be improved by increasing
the particle number. Increasing the processor core number
in the cloud can enable the proposed algorithm to use more
particles to improve the accuracy without increasing the com-
puting time. The accuracy and efficiency of the proposed algo-
rithm can be further improved while the cloud computing
power is increased. Compared with the other two algorithms,
the proposed algorithm transfers the heavy computation from
robots to the cloud, and it can enhance the environmental
adaptability of mobile robots. The proposed algorithm not
only ensures the real-time performance but also improves
the accuracy and efficiency by the edge-cloud collaborative
architecture. Based on the low-cost edge and the performance
improvement, the proposed algorithm has the high utility and
promotion value.

The proposed algorithm combines power of the edge
and the cloud to improve the reliability and efficiency. How-
ever, several aspects need to be studied further. (1) The pro-
posed algorithm can be regarded as a hybrid SLAM
algorithm. The particle number and the transmission delay
in the cloud are important factors affecting the fusion
results. The further study is to optimize the proposed algo-
rithm by testing the edge-cloud fusion effect under different
network environments and different particle numbers. (2) In
experiments, the test of single robot edge-cloud fusion is
completed. In the future, the experiments of multirobot
edge-cloud fusion will be completed. The resource schedul-
ing and task optimization under the sudden situation of
big streaming data will be the research focus.
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