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Objective. It has become a very difficult task for cameras to complete real-time crowd counting under congestion conditions.
Methods. This paper proposes a DRC-ConvLSTM network, which combines a depth-aware model and depth-adaptive
Gaussian kernel to extract the spatial-temporal features and depth-level matching of crowd depth space edge constraints in
videos, and finally achieves satisfactory crowd density estimation results. The model is trained with weak supervision on a
training set of point-labeled images. The design of the detector is to propose a deep adaptive perception network DRD-NET,
which can better initialize the size and position of the head detection frame in the image with the help of density map and
RGBD-adaptive perception network. Results. The results show that our method achieves the best performance in RGBD dense
video crowd counting on five labeled sequence datasets; the MICC dataset, CrowdFlow dataset, FDST dataset, Mall dataset,
and UCSD dataset were evaluated to verify its effectiveness. Conclusion. The experimental results show that the proposed
DRD-NET model combined with DRC-ConvLSTM outperforms the existing video crowd counting ConvLSTM model, and the
effectiveness of the parameters of each part of the model is further proved by ablation experiments.

1. Introduction

Video image processing to estimate the density distribution
of crowd gathering areas is the key to crowd counting. Video
crowd counting has important application value in the fields
of traffic management, disaster prevention, and public
administration [1–6]. When the number of crowded people
reaches the safety limit, pedestrians are reminded to evacu-
ate safely from the enclosed area to escape the danger, so
estimating the number of crowds is helpful for early warn-
ing. This issue is particularly important for emergency
escape behavior [7–10].

In addition to its role in the field of crowd counting, video
image counting is also used in cell microscopic counting, vehi-
cle counting, and other fields. Achieving crowd counting with
computer vision techniques is an important challenge. At
present, crowd counting mainly includes three types of
methods: detection-based methods [11–13], regression-based
methods [14, 15], and density map regression-based methods
[16, 17]. However, in the face of occlusion, scale changes,

background clutter, low resolution, and viewing angle
changes, there are still some limitations in the realization of
the above technologies.

Counting crowds in high dense aggregates is a challenging
task. High-density crowds have serious occlusion problems,
making traditional person detection methods ineffective [18].
Crowd video images capture the target from multiple angles,
which results in the opposite sex of crowd scaling, so the target
scale changes significantly. Each image includes hundreds or
thousands of pedestrians, so annotating images of highly
dense crowds is hard work. Large-scale crowd counting data-
set labeling becomes even more infeasible. The application of
crowd counting has potential practical value in many fields,
such as dense crowd anomaly detection [19], crowd manage-
ment in specific areas [20], and estimation of crowd size in
public places [21]. These application domains share a com-
mon premise work: crowd feature extraction followed by
crowd counting using object detection or regression models.
The complex shape of the group makes it difficult to extract
group features.
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Recent advances in video image processing technology
offer some possibilities for dense crowd counting. This field
has received more and more attention from researchers in
recent years, simultaneously providing empirical insights
and data contributions for crowd counting [22].

Pedestrian detection can currently only handle crowds
ranging from dozens to hundreds of people. However, this
detection task is no longer applicable in the face of high-
density crowd scenes with more than a few hundred people.

The biggest problem of object detection in crowded
crowds is the low recall rate of pedestrian detection boxes
[23, 24]. While regression-based crowd counting can esti-
mate the total number of crowds, it cannot provide the spa-
tial location information of the total crowds in the image.
CNN-based methods outperform handcrafted feature
extraction methods such as Scale Invariant Feature Trans-
form (SIFT) [25], Histogram of Oriented Gradients (HOG)
[26], and Local Binary Patterns (LBP) [27]. The multicol-
umn CNN network or scale aggregation module embeds
more scale information in crowd image features and
enhances the adaptability to scale changes. However, multi-
ple convolution kernels and multiple feature maps need to
store a lot of parameters and a lot of computing resources,
so they are not suitable for real-time video processing.

At present, most of the detection-based crowd counting
methods have difficulty in detecting small target groups,
while the regression-based methods can only estimate the
number of people in the entire image, but cannot locate
pedestrians, so they cannot achieve different scales in the
same image. Local crowd counts at different locations. In
contrast, RGBD depth images are helpful for head size esti-
mation, and high-quality density maps can be generated
with the help of a Gaussian-distributed depth-adaptive ker-
nel [28]. High-quality density maps can be used to train
more robust regression networks, providing closer-to-
realistic priors for crowd detection. One of the reasons why
the previous detection methods cannot detect small heads
is due to the lack of scale perceptron or the limitation of
its own structure, and for those small/tiny heads, an effective
multiscale perceptron should be designed. Fortunately, a
multimodal image fusion perceptron of RGB images and
RGBD depth is able to provide a prior for estimating head
size, which helps to adaptively detect human heads at differ-
ent scales. As shown in Figure 1, the recognition effect is bet-
ter for crowd images with uniform scales, but for crowds
that are too dense, it is still impossible to achieve head detec-
tion that covers the crowd at all scales.

Compared with still images, video images can provide
more continuous features in time and space. The network
structure of ConvLSTM can make full use of temporal infor-
mation to improve the performance on this dataset [29]. We
propose an improved ConvLSTM method combined with a
deep fusion perceptron to estimate the number of dense
crowds in videos and achieve head detection of crowded
crowds in videos.

Contributions based on this study are as follows:

(i) Through the analysis of previous work, it is found
that BiConvLSTM has the possibility of further

improvement. The DRC-ConvLSTM network adds
a two-way reverse conduction mechanism to
BiConvLSTM, which further improves the accuracy
of video dense crowd counting. DRC-ConvLSTM
points out how to effectively enhance this spatio-
temporal perception in crowd images. At the same
time, the DRC-ConvLSTM network combined with
a depth-adaptive Gaussian kernel can extract the
depth space edge constraint feature of the image to
better complete the crowd counting in the video

(ii) Previous work has rarely added RGBD depth fea-
tures to the ConvLSTM model. Our DRC-
CONVLTMmodel integrates depth features with vis-
ible light features to further improve the robustness of
dense crowd counting under different lighting condi-
tions. The depth image training is evaluated on the
MICC dataset to verify its effectiveness

(iii) Previous work on local counting and detection of
people with different scales is very little. In this paper,
density-based feature point clustering can analyze
and separate local groups with different scales in
crowd scenes. By using improved DBSCAN density
clustering, the local counting and detection of a vari-
able density population are realized to understand the
size of different populations

2. Related Work

At present, there are few methods for local crowd counting
and crowding calculation in public scenes. However, many
countries have some grading standards for measuring the
level of local crowd congestion for specific environments.
For example, the transportation department has some grad-
ing standards to measure the standing density and crowding
standards of passengers. The standards of passenger stand-
ing density are divided into two categories: comfortable
and crowded. For example, in the United States, TCQSM
provides a definition and reference of pedestrian level of ser-
vice (LOS) for evaluating passenger congestion [30]. In
China, passenger standing density can be divided into three
different levels [31].

In the past, there are many literatures that use computer
vision and image processing technology to complete the
evaluation of video crowd crowding. For example, Alhadhira

(a) (b)

Figure 1: Human head detection in images with large scale
averages and large scale gaps: (a) human heads at same scales; (b)
human heads at different scales.

2 Journal of Sensors



et al. [32] proposed that crowd analysis using surveillance
cameras can generate real-time crowd counting and give
early warning of stampede results. However, no optimal bal-
ance strategy is given in terms of computational perfor-
mance and accuracy. Chen et al. [33] implemented moving
object detection with background, which can quickly esti-
mate the number of pedestrians in a video. This method is
only suitable for low-density crowds and will fail when com-
puting still images. Therefore, researchers Ullah et al. [34]
proposed a method that can handle high-density counting
by computing optical flow fields to achieve cross-scene mov-
ing crowd counting, but this method is ineffective in still
images. The attention network (ADCrowdNet) proposed
by Yu and Zhang [35] provides local congestion crowd
counts for density maps with the help of an attention map
generator. Li et al. [36] proposed a RAZN model, which will
localize highly ambiguous regions, improve their sharpness,
and count them iteratively. Zhao et al. [37] established a
crowd density estimation based on crowd classification cri-
teria. The study found that the type of transportation that
passengers choose has an important relationship with the
changes in the number of crowded people. Shivapuja et al.
[38] evaluated the influencing factors of the construction
of intercity rail transit in Mumbai, India, by analyzing the
changes in the population. Yin et al. [39] analyzed the
impact of crowd congestion on the demand for public
transport systems. This method analyzes and optimizes
the passenger flow diversion of the Beijing rail transit.
Sekasi and Martens [40] analyzed the passenger flow and
divided the service level of the station platform into five
categories to evaluate the traffic congestion of the light rail.
Liang et al. [41] completed the service level division of Bei-
jing rail transit corridors. Mahmoud et al. [42] predicted
the conflict degree of vehicles turning right by evaluating
the pedestrian congestion of right-turning at intersections
and analyzing the correlation between the number of
pedestrians and congestion. Gao et al. [43] estimated crowd
numbers directly from features extracted from images. The
congestion map obtained by this method has a low resolu-
tion and cannot help vehicle dispatchers to accurately
locate the crowd.

Luckner et al. [44] proposed that the primary task of
estimating the level of crowd congestion is to correctly esti-
mate the number of crowds. This has been reported in the
literature on the relationship between local population den-
sity estimates and crowd counts, such as by Khan et al. [45]
where finding the population size of an entire region to pro-
vide hazard warnings is not reliable because the hazard may
only occur locally. In most cases, even if the overall density is
normal, localized crowding can be very dangerous. There-
fore, estimating the population count in the local area is
more in line with the actual situation.

More robust detection methods can compute and locate
local population counts. In video surveillance, target detection
works better in low-density situations, but often fails in high-
density situations due to fewer pixels per capita, severe occlu-
sion, and background clutter. Localizing and counting crowd
objects in videos face many problems [46–48]. Since detection
performance can be severely affected in overcrowded real-time

scenes, detection-based methods are often outperformed by
density map regression-based methods. The success of density
map-based regression methods can be attributed to their abil-
ity to bypass explicit detection and map input images directly
to scalar values [49–51]. However, although the method based
on density regression can perceive the distribution of the
crowd, it loses the ability to generate the individual localization
of the crowd, so it is difficult to further study the dense crowd
tracking and reidentification technology in surveillance.

Reference [52] has demonstrated that the performance
of object detection counting can be further improved.
Attempts have been made to apply more advanced detection
frameworks to improve crowd counting performance. For
example, Xue et al. [53] proposed an end-to-end person
detector that can cope with crowded scenes. Most previous
object detection methods do not handle small object crowd
counts well.

Since there are few RGBD crowd counting datasets cur-
rently, there is not much work to complete crowd counting
based on RGBD images [54, 55]. In these studies, depth infor-
mation usually provides prior knowledge of head position for
RGB image segmentation. Luo et al. [56] accomplish head
detection improvement, which is directly related to the help
of RGBD depth images. Wu [57] used the depth image col-
lected by the Kinect sensor to complete the performance
improvement of head detection. In [58], Liciotti et al. utilized
RGBD images to complete head and shoulders detection and
implement crowd counting. In this paper, we introduce a
large-scale RGBD dataset for crowd counting, and we generate
more accurate density maps and head detections.

Video stream data contains three main features: tempo-
ral features, spatial features, and periodic features. Many
advanced methods combine CNN and LSTM to generate a
ConvLSTM module. Kim et al. [59] used the ConvLSTM
module to process short-term crowd flow data in adjacent
regions. Chang and Luo [60] used bidirectional BiConvLSTM
to process the real-time crowd data at the prediction point and
extracted the periodic and spatiotemporal features of the video
stream data. Chen et al. [61] proposed an end-to-end deep
learning crowd flow prediction structure without data prepro-
cessing and data feature extraction to predict the number of
crowd flows. The above various improved ConvLSTM mod-
ules are used to extract spatiotemporal features of video
streams, among which BiConvLSTM (bidirectional LSTM)
has significantly improved the performance of extracting peri-
odic features of video streams.

Different density groups in crowd scenes can be analyzed
and separated by employing a modified DBSCAN clustering
[62]. Density-based clustering methods rely on head center
points to count local populations in order to understand
population local sizes.

Our work improves method [63] in that we both train
a detection network for crowd counting. While training
fully supervised detectors with bounding box annotations,
we only train weakly supervised detectors with point-
level annotations [64]. Unlike our method, which only
focuses on the number of people, our goal is to predict
the number of people and generate appropriately sized detec-
tion boxes.
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3. Methods

3.1. Gaussian Kernel Density Map

3.1.1. Kernel Density Estimation Method for Adaptive
Bandwidth. If the bandwidth of the Gaussian kernel is not
fixed, but varies depending on the location of the samples,
a method of kernel density estimation called adaptive or var-
iable bandwidth results. Due to the shooting distance of
crowd images, there may be scale differences in the images.
Therefore, in this paper, a variable bandwidth is used for
kernel density estimation.

This part is used to explain the principle of adaptive
bandwidth kernel density estimation method. The kernel
density estimation method of adaptive bandwidth is
obtained by modifying the bandwidth parameters on the
basis of the fixed bandwidth kernel density function, and
its form is shown in the following formula:
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Here kðxÞ is the kernel density estimation function with
bandwidth hj, M is the number of individuals in the crowd,
and each point j has a bandwidth hj, so the bandwidth can
be adaptive or variable. KðxÞ is the kernel function, and
the Gaussian kernel function is used here. 0 ≤ α ≤ 1 is a sen-
sitivity factor; usually, α is 0.5. When α = 0, the kernel den-
sity estimation of adaptive bandwidth becomes the kernel
density estimation of fixed bandwidth. The kernel density
estimate of the fixed bandwidth is the kernel density esti-
mate kðxÞ mentioned earlier. ω represents the parameter of
the bandwidth.

3.1.2. Depth-Adaptive Gaussian Kernel Density Map. The
adaptive Gaussian kernel can make the density map regres-
sion clearer and produce a regression density map that is
closer to the true density map. The adaptive Gaussian kernel
can be closer to the real head size, and the density map gen-
erated by regression can provide the deep network with the
prior knowledge of head detection, which can guide the
position and size of the detection frame.

The center point of the human head image label is calcu-
lated with a standard Gaussian kernel function and con-
verted into a crowd density map. Assuming that C =
fx1, x2,⋯, xng is a dataset in d-dimensional space, assuming
that an image has n head instances, and the number of
instances is n, then the distribution density of the data can
be expressed as

f̂ xð Þ = 1
nhd
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The multivariate Gaussian kernel function is given by
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Among them, kx − xik is the Euclidean distance between
x and xi, h is the bandwidth, and the dimension is d. When
the bandwidth h is equal to the head diameter h correspond-
ing to the depth image, the estimated amount of data is n
and can be expressed as

n = 4
h d+4ð Þ d + 2ð Þ

: ð6Þ

When the bandwidth h is equal to the depth image cor-
responding to the head diameter h = Rdeep,

n =
4

Rdeep
d+4ð Þ d + 2ð Þ : ð7Þ

For a multimodal dataset X = fx1, x2,⋯, xng, xn repre-
sents each instance; let its class label set F = fc1, c2,⋯, cf g,
where the class ci (the number of instances in f) is Nci; then,
the density of instance xi with respect to category ci is calcu-
lated as

f ci xið Þ =
1

Nci − 1
〠
n
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1
Rd
deep
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h
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Among them, LðxiÞ and LðxjÞ represent the labels of
instances xi and xj, respectively.

3.2. Density Map-Guided Detection. Detection-based models
such as RetinaNet cannot detect these small/tiny heads
because the detection subnet cannot adaptively adjust the
depth perceptron of these heads. However, our network bene-
fits from adapting the Gaussian kernel density map with
depth. The size of the density map header is related to how
many pixels the Gaussian kernel occupies in the density
map. Therefore, the decoding layer of RGBD based on the
learning feedback of our network detects heads of different
scales to guide the detection of small heads. The RGBD map
is downsampled to the same size as the density map. The
RGBD pixel values for each head inMl are used for reinforce-
ment learning of our estimated density map. Specifically, for a
given training head RGBD depth size, it is assumed that the
size of the head to be detected is the size of the labeled rectan-
gle. Then, we generate a head frame feature matrixMl through
training and further fuse Ml with the density map function
DAðxÞ to generate an RGBD-adaptive Gaussian kernel con-
straint density map:
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DA
l xð Þ =DA xð Þ ⊗Ml: ð9Þ

Here, ⊗ represents feature fusion, Dl
AðxÞ is the density

map constrained by the RGBD-adaptive Gaussian kernel, Ml
is the head box feature matrix, and DAðxÞ is the adaptive
Gaussian density map function.

3.3. Gaussian Kernel Density Map

3.3.1. Kernel Density Estimation Method for Adaptive
Bandwidth. RGBD multilayer perceptron can solve the prob-
lem of adaptive perception of head size changes in the same
scene. The RGBD multilayer perceptron is composed of vis-
ible light image and RGBD dual-modal image feature fusion
network MLP-CNN. The network fuses the multimodal fea-
tures of visible light images and RGBD images by importing
them through the middle layer of the model.

This paper proposes an effective fusion of RGB features
and RGBD depth features to improve the accuracy of object
recognition. Taking both the RGB image and the RGBD
depth image as the input original data vector and connecting
them, the input data can be expressed as fxr1, xr2,⋯, xrn ;
xd1, xd2,⋯, xdng, where fxr1, xr2,⋯, xrng and fxd1, xd2,⋯,
xdng denote RGB and RGBD depth image vectors, respec-
tively. Then, the parameter matrix A corresponding to the
input data can be expressed as

A =
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A21, A22 ⋯ A2rn

⋮
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⋮
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2
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3
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The first half of A is

ARGB =

A11, A12 ⋯ A1rn

A21, A22 ⋯ A2rn
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2
666664

3
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ARGB is the parameter corresponding to the RGB image
vector. The second half is

ADepth =

A1 rn+1ð Þ,⋯, A1 rn+rdð Þ
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2
666664

3
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ADepth is the parameter corresponding to the RGBD
depth image vector, and k represents all possible class labels.
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The overall cost function is shown in the following equa-
tion.
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The weight decay parameter λRGB corresponding to the
RGB feature of the object is initialized to a smaller value,
reducing its penalty and extracting more RGB features.
λRGBD is the weight decay parameter corresponding to the
depth feature, and λdepth initializes a larger value to increase
its penalty and extract fewer depth features.

3.3.2. Depth Perception Network. For the depth branch, we
train a NiN variant and fit the depth data. NiN consists of
multiple modules, each of which consists of a convolutional
layer and multiple 1 × 1 convolution kernels whose kernels
capture spatial information. This module is equivalent to a
multilayer perceptron. For classification, a global average
pooling layer produces a score for each class. We follow
and discard global average pooling, resulting in an FCN that
predicts scores for each pixel and class.

RGBD network: as shown in Figure 2, we identified dif-
ferences in fusion. First, the RGB and depth inputs can be
directly concatenated, and we call this model early fusion.
In theory, a multimodal CNN with the aforementioned early
fusion is more expressive than a midlevel fusion, which can
exploit the correlation between early low-level CNN fea-
tures. However, the better the fusion performance, the
higher the required training cost. The benefit of late fusion
is that most of the network weights can be reused directly
without adjusting the network weights based on additional
input cues. Unfortunately, it does not allow the network to
learn about such high-level interdependencies among indi-
vidual input modalities, and ultimately, only results at the
classification level are fused.

3.4. Design of Real-Time Analysis Model for Dense Crowd

3.4.1. Real-Time Crowd Prediction Model. The model con-
sists of three parts, and the specific process is as follows:
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(1) Each input image is first processed by (a) MLP-CNN. (2)
The extracted features are fed to (b) for obtaining represen-
tations with spatial context information from different
depths of the network and predicting density maps. (3)
The spatial context representation is sent to (c) DRC-
ConvLSTM to detect the crowd, as shown in Figure 3.

3.4.2. From ConvLSTM to Bidirectional ConvLSTM.
ConvLSTM replaces matrix multiplication with a convolu-
tion operation for each gate in the LSTM unit. In this way,
it captures the underlying spatial features by performing
convolution operations in multidimensional data. The main
difference between ConvLSTM and LSTM is the input
dimension. Since LSTM input data is one-dimensional, it is
not suitable for spatial sequence data such as video, satellite,
and radar image datasets.

Inspired by the literature [59–61], the ConvLSTM model
is extended to a bidirectional BIConvLSTM model, which
can access bidirectional long-range information. Figure 4
depicts the bidirectional ConvLSTM model for crowd count-

ing. Its inputs are the same as those in the ConvLSTM
model. It works by computing the forward hidden sequence

H
!

and the backward hidden sequence H
 

and updating the
output layer by iterating backwards from t = t to t = 1 and
forwards from t = 1 to t = t to compute the output sequence.

If we denote the state update function in (2) as Ht , Ct
= ConvLSTMðXt ,Ht−1, Ct−1Þ, the formula of the bidirec-
tional ConvLSTM is shown in the following equation:

H
!1

t , C
!1

t = ConvLSTM Xt ,H
!1

t−1, C
!1

t−1

� �
,

H
 1

t , C
 1

t = ConvLSTM Xt ,H
 1

t−1, C
 1

t−1

� �
,

ð16Þ

where Yt is the timestamp, and Chang and Luo [60] found
that bidirectional ConvLSTM consistently outperformed
unidirectional ConvLSTM in crowd counting.

Inspired by the above methods, the BIConvLSTM model
can be further extended to DRC-ConvLSTM, which can
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access two sets of parallel bidirectional long-range informa-
tion. Figure 5 depicts DRC-ConvLSTM for crowd counting.
Its inputs and outputs are the same as those in the
ConvLSTM model. Its working principle is to calculate the

forward hidden sequence H
!

and the backward hidden

sequence H
 
twice by means of feature stacking and by iterat-

ing backward from t = t to t = 1 and iterating forward from
t = 1 to t = t and then updating the output layer to calculate
the output sequence; using the double-layer reverse
ConvLSTM feature flow is an attempt at feature augmenta-
tion theory.
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3.5. DBSCAN Algorithm. There are two important parame-
ters Eps and MinPts in the DBSCAN algorithm. Eps is the
field radius when defining density, and MinPts is the thresh-
old when defining core points. The variables Eps and MinPts
are globally unique. Therefore, when the data distribution is
uneven or the parameters are not selected properly, the qual-
ity of the traditional DBSCAN clustering algorithm is poor.
The relevant definitions of the algorithm are as follows:

r = dist p, qð Þ ≤ Rf g: ð18Þ

distðp, qÞ is the distance between two points, and M is
the dataset.

The principle of the DBSCAN algorithm is as follows.
DBSCAN searches for clusters by examining the Eps

neighborhood of each point in the dataset and creates a clus-
ter with p as the core object if the Eps neighborhood of point
p contains more than MinPts.

The iterative aggregation of DBSCAN directly obtains
the density-reachable objects from these core objects and
merges some of the density-reachable points.

The process ends when no new points are added to any
clusters.

The DBSCAN algorithm can divide the dataset into core
points, boundary points, and noise points and can determine
the number of clusters at the same time, but the clustering
effect of datasets with uneven density distribution is poor.

Because the population distribution has the characteris-
tics of uneven density, the Gaussian mixture model can bet-
ter classify the uneven data. A Gaussian mixture model
(GMM) was used to classify the population density before
running DBCSCAN clustering. When the Gaussian mixture
model is used for clustering, the parameters in the GMM can
be iteratively calculated by the EM algorithm (expectation
maximization algorithm).

The parameters of the final initialized Gaussian mixture
model can be expressed by the following equation:

μ′k =
1
Nk

〠
N

n=1
γ znkð Þxn,

N ′k = 〠
N

n=1
γ znkð Þ,

〠
k

′ = 1
Nk

〠
N

n=1
γ znkð Þ xn − μkð Þ xn − μkð ÞT :

ð19Þ

According to the Bayesian formula, the posterior proba-
bility pðxjzÞ is obtained:

γ zkð Þ = p zk = 1 xjð Þ = πkN x μk,∑kjð Þ
∑K

j=1πjN x μ j,∑j

���	 
 , ð20Þ

where γðzkÞ represents the posterior probability of the kth
component. Assuming x = fx1, x =⋯x =g, there are 3
parameters in the GMM model that need to be estimated,
μ is the mean position of the Gaussian peak of the mixture
Gaussian kernel, Σ is the shape mean of the mixture Gauss-
ian curve, πk is equivalent to the value of each component
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Nðxjμk, ΣkÞ weight, and zk ð1 ≤ k ≤ KÞ can only take two
values of 0 or 1; z = 1 means the probability of selecting
the kth class ðpðzk = 1ÞÞ = πkÞ; zk = 0means that the kth class
is not selected as the class.

The detection network (MRCNN) is based on the
improved DBSCAN density clustering algorithm. GMM can
adaptively determine the optimal density threshold with dif-
ferent density clusters and has good clustering results on data-
sets with uneven density distribution. The improved density
clustering algorithm of DBSCAN can solve the problem of
denoising and multidensity clustering, which improves the
cluster detection of people of different scales in the crowd.

4. Experiments

4.1. Dataset Selection Training Configuration

4.1.1. Dataset Introduction and Evaluation Criteria. The
video crowd counting method has been evaluated experi-
mentally on five labeled sequence datasets, the MICC dataset
(RGBD), CrowdFlow dataset, FDST dataset, Mall dataset,
and UCSD dataset. Experiments on the RGBD dataset and
RGB dataset verify the feasibility and applicability of our
proposed method in two different video modalities. We first
give the parameters of the five key datasets of video frames
used in the experiments. Then, the comparison results
between the method used in this paper and the current
state-of-the-art video crowd counting methods under these
datasets are given, and the crowd detection results with high
recall rate are given. Finally, this paper conducts ablation
experimental studies to demonstrate the independent effec-
tiveness of each unit method in our method ensemble.

(1) MICC Dataset. The MICC dataset is a sequence of frames
shot from an indoor fixed scene. A total of 3358 frames of
crowd RGBD images are obtained. The resolution of the
frames is 480 × 640 pixels. The image acquisition mode is
RGB+RBGD. The maximum number of head annotations
in a single frame is 11. The minimum number of head anno-
tations in the frame is 0, and there are 17,630 head annota-
tions in total. The MICC dataset contains three kinds of
video sequences: stream sequence, team sequence, and group
sequence. The flow sequence includes a total of 1260 frames
containing 3542 pedestrian bounding box annotations.
There are 5031 pedestrian bounding box annotations in
the 918 frames of the queue sequence and 9057 pedestrian
bounding box annotations in the 1180 frames of the group
sequence, and each RGB image corresponds to an RGBD

image. In streaming sequences, people walk from one loca-
tion to another and the frame rate is lower. In the queuing
sequence, the acquisition frame rate is larger and pedestrians
move slowly. In the group sequence, people are constrained
to the area of action, as shown in Table 1.

(2) UCSD Dataset. The UCSD dataset is a sequence of scenes
captured by surveillance cameras in the school. A total of 2000
frames of crowd gathering RGB images were obtained. The
resolution of the frames was 238 × 158 pixels. The maximum
number of head annotations in a single frame was 46, and
the minimum number of head annotations in a single frame
was 11. There are 49,885 head annotations in total. The acqui-
sition frame rate is 10 fps. The dataset gives the center ground
truth label for each pedestrian. ROI and perspective maps are
provided in the dataset, as shown in Table 1.

(3) Mall Dataset. The Mall dataset was collected from close-
up shots in a public area of a shopping mall. A total of 2000
frames of aggregated RGB annotated images of moving and
stationary pedestrians were acquired. ROI and perspective
maps are also provided in the dataset. The resolution of each
frame is 640 × 480 pixels, the maximum number of head
annotations in a single frame is 53, and the minimum num-
ber of head annotations in a single frame is 11, with a total of
62,315 head annotations. The dataset gives ground truth
labels for each pedestrian. This dataset is more challenging
with chiaroscuro conditions and reflective shadows on glass.
ROI and perspective maps are provided in the dataset, as
shown in Table 1.

(4) FDST Dataset. The FDST dataset includes both indoor
and outdoor scenes. The indoor scene is collected from
close-range monitoring of a public area of a shopping mall,
and the outdoor scene is collected from close-range moni-
toring of road and street scenes, including a total of 100
images captured from 13 different scenes. The video consists
of a total of 150,000 RGB images, which contain 394,081
header comment boxes. And the resolution of the frames is
1920 × 1080 pixels. The maximum number of head annota-
tions in a single frame is 50, and the minimum number of
head annotations in a single frame is 13, with a total of
394,081 head annotations. The dataset gives local annota-
tions for each pedestrian, as shown in Table 1.

(5) CrowdFlow Dataset. The dataset consists of 5 different
VR scenes and 10 sequences of RGB-rendered sequence

Table 1: Statistics of the five datasets.

Dataset Resolution Color Num FPS Max Min Ave Total Modality

MICC 480 × 640 RGB+D 3358 — 11 0 5.2 17,630 Depth

UCSD 158 × 238 Grey 2000 10 46 11 24.9 49,885 Grey

Mall 640 × 480 RGB 2000 <2 53 11 31.2 62,315 RGB

FDST 1920 × 1080 RGB 15,000 — 50 13 26.3 394,081 RGB

CrowdFlow 1280 × 720 RGB 3200 25 1451 98 462 1,478,406 RGB
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images. The rendering process includes still camera render-
ing and moving camera rendering (simulating drone surveil-
lance). A total of 3200 crowd-gathered RGB-rendered
images and 1,478,406 annotated pedestrians were collected
at a frame rate of 25 fps with a frame resolution of 1280 ×
720 pixels. The maximum number of head annotations in
a single frame is 1451, and the minimum number of head
annotations in a single frame is 98. The dataset contains very
dense crowd picture sequences, so it is very challenging to
count dense crowd videos, as shown in Table 1.

4.1.2. Dataset Parameter Setting and Training

(1) MICC Dataset. Since the three sequences of flow, groups,
and queue have the same scene and participant characteris-
tics, 20% of the RGB images of the flow, group, and queue
scenes and their corresponding RGBD images can be input
as the training set, and the remaining 80% of the RGB
images can be input. The images and their corresponding
RGBD images are used as the test set. This dataset is for
training a crowd counting network with depth perception.

(2) UCSD Dataset. In order to be able to compare with the
baseline method, 601 to 1400 frames are selected as the train-
ing set, and the remaining 1200 frames are used as the test set.

(3) Mall Dataset. We use the first 1-800 frames in the Mall
dataset as the training set and the remaining 801-2000
frames as the test set.

(4) FDST Dataset. 9000 frames of 60 videos in the FDST data-
set are used as the training set, and 6000 frames of 40 videos
are used as the test set to complete the training. This training
method is adopted by most of the comparison methods.

(5) CrowdFlow Dataset. In the CrowdFlow dataset, we use
the first three sequences of static crowd images in the
IM05_hDyn folder and moving camera scenes in the IM05
folder for training and validation, and the last two sequences
for testing crowd counts.

(6) Training Settings. We train MLPCNN in an end-to-end
fashion. The Gaussian parameter in MLPCNN is set to 0.5,
and the standard deviation is set to 0.02. In our experiments,
MLPCNN chooses Stochastic Gradient Descent (SGD) with
momentum to train the model with a small learning rate for
the MICC deep dataset, CrowdFlow dataset, FDST dataset,
Mall dataset, and UCSD dataset, the initial learning rate Set
to 0.005 and Momentum to 0.85. In this way, the convergence
speed is faster during training, and the training process is
shown in Figure 6. In particular, the perspectives provided
by the Mall dataset and the UCSD dataset are ground truth
density maps adjusted by setting σ = 0:3MðpÞ, and the other
datasets are initialized with default parameters as training.
The implementation of our method is carried out under the
Pytorch framework, and the hardware uses three NVIDIA
1080 Ti GPU graphics cards and four Intel(R) E5-2630 v4
CPUs to ensure the performance requirements of graphics
cards and computing units.
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Figure 6: Training process: (a) learning rate setting curve; (b) loss function change curve; (c) total training time change curve.
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4.2. Comparison with State-of-the-Art Methods

4.2.1. Crowd Counting in Video. We collected four different
categories of crowd counting methods: object detection-
based methods (M1), regression statistics-based crowd
counting methods (M2), regression-guided detection-based
crowd counting methods (M1+M2), and ConvLSTM-based
crowd counting methods (M3). Compare specific experi-
mental data citations for the most representative methods
in each field. Finally, the performance of each type of
method on these same datasets is given, and the difference
and obvious improvement of the method used in this paper
with the current crowd counting methods are given. From
Table 1, it can be found that different categories of methods
have certain limitations and room for improvement. This
paper only compares the specific performance of the four
types of counting methods related to this paper, as shown
in Table 1.

(1) Metrics. We use mean absolute error (MAE) and mean
squared error (MSE) to evaluate different methods based
on commonly used metrics in existing crowd counting
work:

MAE = 1
N
〠
N

1
zi − ẑij j, ð21Þ

MSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

1
zi − ẑið Þ2

s
, ð22Þ

where N is the total number of test images, zi is the actual
number of people in the ith test image, and ẑi is the esti-
mated number of people in the ith image.

(2) Detection Methods (M1). As shown in Table 2, RetinaNet
utilizes ResNet and efficient network feature pyramid and
adopts anchor box adaptive anchors, and the detection
crowd size error MAE = 1:641 and MSE = 2:554. The
CrowdFlow dataset detects crowd size error MAE = 212
and MSE = 235. The structure of DetNet is improved on
the basis of ResNet50, because ResNet50 itself has excellent
performance and improves detection, so the results achieved
0.1/0.172 improvement in MAE and MSE indicators of the
MICC dataset and achieved MAE and MSE indicators of
CrowdFlow dataset 17/11 improvement. Using SIFT head
detection, Idrees et al. [63] achieved a 0.145 improvement in
the MAE indicator of the MICC dataset compared to DetNet
and a 46.4/18 improvement in the MAE and MSE indicators
of the CrowdFlow dataset. Although these detection frame-
works can detect some small-scale objects, the M1 method
cannot cope with dense crowds with serious occlusion.

(3) Regression Methods (M2). Table 2 [67, 68] shows the tra-
ditional regression methods, and most traditional regression
methods are regression methods based on CNN density
map. Compared with detection-based methods, CSRNet
[71] compared to Idrees et al. [63] and MAE and MSE indi-
cators on the CrowdFlow dataset achieve a 0.8/25 boost. But
the M2 method lacks deeper spatial features, so the method
will be more likely to fail. And the pedestrian space position
cannot be located.

Table 2: Comparison of different state-of-the-art methods on MICC dataset, UCSD dataset, Mall dataset, FDST dataset, and CrowdFlow
dataset.

Method
MAE
(D0)

MSE
(D0)

MAE
(D1)

MSE
(D1)

MAE
(D2)

MSE
(D2)

MAE
(D3)

MSE
(D3)

MAE
(D4)

MSE
(D4)

RetinaNet [65] (M1) 1.641 2.554 — — — — — — 212 235

DetNet [66] (M1) 1.541 2.382 — — — — — — 195 224

Idrees et al. [63](M1) 1.396 2.642 — — — — — — 148.6 206

Gaussian regression [67] (M2) — — 2.24 7.97 3.72 20.1 — — — —

Ridge regression [68] (M2) — — 2.25 7.82 3.59 19 — — — —

MCNN [69] (M2) 1.5 2.259 1.07 1.35 2.24 8.5 3.77 4.88 172.8 216

Switch-CNN [70] (M2) — — 1.62 2.1 — — — — — —

CSRNet [71] (M2) 1.359 2.125 1.16 1.47 — — — — 137.8 181

MCNN-adaptive [63] (M1 & M2) 1.489 2.114 1.02 1.26 2.12 8.1 3.54 4.65 168.5 205

CSRNet-adaptive [63] (M1 & M2) 1.343 2.007 1.01 1.19 2.09 7.9 3.51 4.57 136.5 180.5

RDNet [72] (M1 & M2) 1.38 2.551 — — — — — — 170.5 225

RPNs [73] (M1 & M2) — — 0.97 1.12 — — — — — —

FCN-rLSTM [63] (M3) — — 1.54 3.02 — — — — — —

ConvLSTM-nt [63] (M3) 1.581 2.568 1.73 3.52 2.53 11.2 — — — —

ConvLSTM [63] (M3) 1.48 2.256 1.3 1.79 2.24 8.5 4.48 5.82 — —

BiConvLSTM [63] (M3) 1.356 2.105 1.13 1.43 2.1 7.6 4.12 4.48 — —

DRC-ConvLSTM (M4) — — 1.02 1.35 2.02 7.48 4.05 4.39 141.6 190.1

Our method (M4)
(DRC-ConvLSTM+DAM+DAGK)

1.226 2.001 — — — — — — — —
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(4) Density Regression-Guided Detection Methods (M1 and
M2). As shown in Table 2, the M1+M2 method implements
the crowd counting method for regression-guided detection.
MCNN-adaptive and CSRNet-adaptive add the depth per-
ception branch on the basis of density map regression, so
compared with MCNN and CSRNet [10], the MAE and
MSE indicators of the MICC dataset achieved 0.1/0.172
and 0.016/0.118 improvements, the UCSD dataset MAE
and MSE indicators achieved 0.05/0.09 and 0.15/0.26
improvements, and the CrowdFlow dataset MAE and MSE
indicators achieved 4.3/11 and 1.3/0.5 boost. RPN is a
method of density regression to guide target detection. It
has to be said that this method performs best in UCSD data-
sets. The M1 and M2 method can improve the crowd count-
ing accuracy and obtain the detection frame position, but the
M1+M2 method relies on a large number of bounding box
annotations, because the expensive annotation cost limits
the further application of detection tasks.

(5) ConvLSTM Improvement Methods (M3). Although these
CNN-based annotations can capture strong semantic anno-
tations, they lack contextual temporal correlation informa-
tion, which may lead to many false positive results.
ConvLSTM can provide contextual information related to
consecutive frames and time. As shown in Table 2, the M3
method makes full use of temporal information by designing
the network structure of ConvLSTM to improve the perfor-
mance of this dataset. Among these structures, the density
map generated by the most complex BiConvLSTM method
is closest to the ground truth, achieving the MAE = 1:356
/MSE = 2:105 on the MICC dataset and the MAE = 1:13
/MSE=1.43 on the UCSD dataset, the Mall dataset achieves
the MAE = 2:1/MSE = 7:6, and the FDST dataset achieves
the MAE = 4:12/MSE = 4:48. From the results of FCN-
rLSTM, ConvLSTM-nt, unidirectional ConvLSTM, and
bidirectional ConvLSTM, we can conclude that the video
crowd counting performance is BiConvLSTM>ConvLSTM
>FCN-rLSTM>ConvLSTM-nt in the order from strong to
weak, and DRC-ConvLSTM has the smallest error. But the
M3method relies on strong semantic annotation information.

(6) Our Proposed Method (M4). In order to further improve
the network performance and improve the problem that the
M3 method relies on the lack of strong semantic annotation
information, and at the same time improve the ability of the
M1+M2 method to correlate context information in time,
this paper proposes a potential way to further improve the

M3 method by incorporating both depth-aware and adap-
tive Gaussian kernels in the M3 method to estimate the
number of people in a video. Table 2 compares our model
variants with state-of-the-art methods. It was found that
the DRC-ConvLSTM method of M4 performed well on the
RGB image dataset, such as the UCSD dataset MAE and
MSE indicators achieved a 0.11/0.08 improvement, the Mall
dataset MAE and MSE indicators achieved a 0.18/0.12
improvement, and in the FDST dataset, MAE and MSE
errors decreased by 0.07/0.09. It is found that the DRC-
ConvLSTM method adds a depth-aware kernel and an adap-
tive Gaussian kernel to the accuracy compared to
BiConvLSTM on the RGBD image dataset.

4.2.2. Crowd Counting in Image. This paper compares the
errors of the models used in the most representative refer-
ences [74–76] in UCF_QNRF image dataset and UCF-CC-
50 image dataset. The conclusion after comparison is that
the performance of the proposed method in the UCF_QNRF
dataset is better than that of the DFN model, but the error is
worse than that of SS-CNN. The performance of the UCF-
CC-50 dataset is better than that of the DFN model, but
the error is worse than that of the SS-CNN and SD-CNN
models, as shown in Table 3. The reason is that SS-CNN
and SD-CNN have made a lot of contributions in the multi-
scale sensing mechanism, but the method in this paper only
uses the adaptive Gaussian kernel to judge the head size of
small targets which has certain limitations. In addition, the
population density of the depth sample MICC dataset used
in this paper is low, so the detection and recognition error
of the high-density dataset UCF-CC-50 is large.

4.2.3. Comparison of Complexity and Time Consumption of
Advanced Models. In the UCSD dataset, the error of this
method is the lowest among many improved methods of
ConvLSTM. In order to verify the real-time performance
of video real-time counting network, the most advanced
real-time counting network is compared in model parameter
quantity (Params) and frame rate (FPS). Model parameter
quantity (Params) is used to measure model complexity,
and frame rate (FPS) is used to measure model real-time
performance. Through comparison, it is found that the
method described in this paper adds a double reverse con-
duction mechanism to the BiConvLSTM model, so the
parameters of DRC-ConvLSTM are twice as large as those
of BiConvLSTM. However, too many model parameters
increase the processing time of video images, so some real-
time performance is sacrificed. FPS = 0:43 for DRC-
ConvLSTM, as shown in Table 4.

Analyzing the qualitative results shows that our method
performs well in datasets with varying degrees of crowding.
The main reason is that our proposed network learns more
spatiotemporal contextual information, which is consistent
with our original motivation. The results verify the effective-
ness of our method.

In Figure 7, we present one fixed scene in five datasets,
including four references in each scene (black: ground truth,
red: our method, blue: BiConvLSTM, AND green: RDNet).
From Figure 7, we can see that our method outperforms

Table 3: Error comparison between the method in this paper and
some recent most representative methods on UCF_QNRF and
UCF-CC-50 image datasets.

Methods/year
UCF_QNRF UCF-CC-50

MAE MSE MAE MSE

DFN [74]/2021 218.2 357.4 402.3 434.1

SS-CNN [75]/2021 115.2 175.7 229.4 325.6

SD-CNN [76]/2019 — — 235.7 345.6

Ours 146.4 216.7 358.5 389.3
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BiConvLSTM, BiConvLSTM outperforms ConvLSTM, and
ConvLSTM outperforms RDNet in all scenarios, which
proves that crowd counting improves after including tempo-
ral information and depth perceptron. For scenario 5, a care-
ful observation of the green count curve RDNet reveals that
there is an obvious underestimation problem in this sce-
nario. In fact, many people will have a large area of shadow
when they walk to the right channel, so many pedestrians
are blocked by shadows. This large area of occlusion will
seriously affect the detection effect of RDNet under visible
light. However, our method and THE BiConvLSTM method
are able to discover moving target pedestrians under the
continuous learning of time series frames, so the red and
blue curves are closer to the black ground truth baseline.
Since our method adds depth perceptron and adaptive
Gaussian kernel, our method is closer to the baseline. Our
spatiotemporal model tends to count them because detection
is more accurate with feature information from time frames.

To confirm the effectiveness of our method in density
warning, we complete counting experiments under three dif-
ferent density videos. We can use this network to directly
regress the density of a video stream, which requires consec-
utive images as input. Figure 8 shows the results on three
real datasets. For MICC, FDST, and CrowdFlow, since the
MICC datasets we use have adequate frame annotations, this
enables us to pretrain depth perceptrons and regressors.
From the density map results generated on MICC, FDST,
and CrowdFlow, the density map of our method is very close
to the ground truth density map, which also improves the
counting performance to a certain extent. When the crowd
becomes very sparse (as in scenario 1), the overcorrelation
of temporal features does not lead to overlearning, thus
demonstrating the effectiveness of this method at different
densities.

4.2.4. Crowd Detection. At present, it is difficult to separately
count people of different scales in videos, and most counting
methods can only complete the global population estima-

tion. Although the crowd density map can estimate the total
number of crowds in dense crowds, it cannot locate the most
crowded crowds in the video. If the crowds of different scales
can be counted separately, the number of crowds in different
areas can be more comprehensively evaluated. Since the
dense crowd dataset gives the annotation of the real location
of the crowd head, first, we extract the head center from the
annotation, then we extract the head location points in the
density map with the help of adaptive Gaussian kernel,
RGBD depth perceptron, and DRC-ConvLSTM. By evaluat-
ing the precision, recall, and F-measure between the coordi-
nates of the estimated head location points in this paper and
the ground truth annotation location point coordinates, we
further verify the localization performance of our method
in videos of different scales. Due to the existence of various
density clustering phenomena in the density of the location
points, the number of people of different scales is estimated
by means of the improved DBSCAN clustering algorithm.
From left to right are the original image, global human head
count, high-density human head count, medium-density
human head count, and low-density human head count, as
shown in Figure 9. Compared with the current more com-
plex feature extraction detection framework, DBSCAN den-
sity clustering can effectively cluster multiscale crowds,
thereby improving the effectiveness of local crowd counting.

4.3. Ablation Study

4.3.1. Effectiveness of Density Map Regression-Guided
Detection. We conduct ablation experiments on density
regression-guided detection. As shown in Table 5, three dif-
ferent variables are selected for qualitative analysis, namely,
depth perception model DAM, depth-adaptive Gaussian
kernel DAGK, and DRC-ConvLSTM, in which DAM can
locate the layer of each target in the RGBD image; DAGK
generates an adaptive Gaussian kernel based on the RGBD
head image annotation points, and we can use these Gauss-
ian kernel density functions HðxÞ to generate the

Table 4: Detailed information comparison of the error, complexity, and time consumption of the state of the art on the UCSD dataset.

Method
MAE

(UCSD)
MSE

(UCSD)
Params

Frames/s
(fps)

MCNN [69] (M2) 1.07 1.35 0:13 × 106 45.81

Switch-CNN [70] (M2) 1.62 2.1 1:543 × 106 3.86

CSRNet [71] (M2) 1.16 1.47 16:26 × 106 0.37

MCNN-adaptive [63] (M1 & M2) 1.02 1.26 0:13 × 106 45.81

CSRNet-adaptive [63] (M1 & M2) 1.01 1.19 16:26 × 106 0.37

RPNs [73] (M1 & M2) 0.97 1.12 2:15 × 106 2.77

FCN-rLSTM [63] (M3) 1.54 3.02 5:74 × 106 1.18

ConvLSTM-nt [63] (M3) 1.73 3.52 4:68 × 106 1.27

ConvLSTM [63] (M3) 1.3 1.79 3:43 × 106 1.74

BiConvLSTM [63] (M3) 1.13 1.43 6:86 × 106 0.87

DRC-ConvLSTM (ours) (M4) 1.02 1.35 13:72 × 106 0.43
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corresponding density map; DRC-ConvLSTM can learn
continuous features in image sequence frames and then con-
struct and time associated joint features.

On the MICC and UCSD datasets, we compare five com-
binations and finally find the best combination. From the
results, we can see that using DAGK alone in the MICC deep

crowd counting dataset has a large error in the counting
results. We believe that the reason is that DAGK cannot fully
obtain the spatial boundary constraints of crowd features
from the depth layer. It is worth noting that the method
using only DAM does not converge, because the density
function HðXÞ cannot be constructed by only locating the
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Figure 7: Crowd count of time steps in prediction vs. ground truth on 5 scenes. Black: ground truth; red: our method; blue: BiConvLSTM;
green: RDNet.
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depth layer without finding the Gaussian kernel correspond-
ing to the target. Using DAM and DAGK at the same time is
more suitable for processing deep features, especially for
denser crowds with higher accuracy. From the experimental
results, it can be seen that the accuracy of using only DRC-
ConvLSTM is higher than that of using DAM and DAGK
at the same time. The reason is that DRC-ConvLSTM can
learn the deep temporal correlation features of the target
in the deep time series of MICC, so it is more efficient
in image counting. Finally, DAM and DAGK are added to
BiConvLSTM to further increase the depth layer information
extraction of the model and the depth information matching
of the Gaussian kernel. The result exceeds the accuracy of
using DRC-ConvLSTM alone, because the depth perception
kernel will produce better association constraints. DRC-
ConvLSTM has performed well in the UCSD dataset and
has surpassed BiConvLSTM, and the use of multivariate
Gaussians will shorten the convergence time of the Gaussian
kernel. Therefore, DRC-ConvLSTM is equally effective for
crowd counting in the MICC dataset and UCSD dataset.

4.3.2. Effectiveness of the DRC-ConvLSTM Method. We per-
formed ablation experiments on BiConvLSTM and its three

variants. As shown in Table 6, the video crowd counting per-
formance of BiConvLSTM and its three different variants is
explored. RC stands for BiConvLSTM, and the design of
BiConvLSTM includes two reverse sequence features passed
to the channel; SDT is a variant of BiConvLSTM, and
BiConvLSTM’s design includes two direct sequence feature
transmission channels; DRC is a variant of BiConvLSTM,
and the design of BiConvLSTM includes two layers of paral-
lel reverse sequence feature transmission channels; and DCC
is a variant of BiConvLSTM, and the design of BiConvLSTM
includes two layers with parallel isotropic sequential charac-
teristic conduction channels. From the results, we can see
that the accuracy of SDT’s counting results is not as high
as that of RC, because the same-direction feature conduction
can only strengthen the strength of the same feature but can-
not increase the diversity of time-series features, which is not
conducive to sequence feature feedback. In the same way,
the accuracy of the counting result of DCC is not as high
as that of DRC. However, the accuracy of the count results
of DCC is higher than that of DRC, because the two-layer
reverse feature can strengthen the characteristics of each col-
umn of reverse features more than one-layer reverse fea-
tures. Finally, DRC also has the highest head detection

Flow-frame: 271 Flow-frame: 273Flow-frame: 272 Flow-frame: 274 Flow-frame: 275

Flow-frame: 271 Flow-frame: 273Flow-frame: 272 Flow-frame: 274 Flow-frame: 275
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60-frame: 146 60-frame: 147 60-frame: 148 60-frame: 149 60-frame: 150
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our Method
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+DAM+DAGK)
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Crowd 

our Method
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Figure 8: Five consecutive frame sequences are shown in three datasets in a specific scene with low, medium and high population densities,
and the density map sequence of the corresponding frames is generated by the method in this paper.
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accuracy, which is mainly due to the fact that DRC can
obtain the contextual feature compensation of annotation
points, so precision and recall are the highest.

Precision and recall are compared on UCSD for different
variants of ConvLSTM and BiConvLSTM in Figure 10. In
the images, we see that ConvLSTM performs worse than dif-
ferent variants of BiConvLSTM in both precision and recall,
which confirms that changes in the number of feature layers
and conduction directions further affect the performance of
ConvLSTM. Like SDT, it brings slight improvement to
ConvLSTM but not as good as BiConvLSTM. However,
using stronger constraints, i.e., using the inverse DRC-
ConvLSTM with two layers, lead to a larger improvement,
confirming the importance of correctly constructing the fea-
ture flow. As expected, the dual-layer DRC performed opti-
mally among all variants, and the performance of DRC and
RC was further improved. This confirms that the use of two-
layer inverse DRC-ConvLSTM feature flow is an effective
improvement on feature augmentation theory. But not all
layers increase, such as DCC is not as accurate as RC, so
we confirm the important contribution of reverse feature
conduction used in multilayer ConvLSTM.

4.3.3. Effectiveness of Counting Different Dense Crowds Based
on Density Clustering. Using the improved DBSCAN in this
paper can achieve clustering of crowd points at different
scales, because the Gaussian mixture of dense crowds has
the clustering effectiveness of similar density regions. Using
a Gaussian mixture model can divide groups of different
densities, while the improved DBSCAN clusters people of
different scales according to different density levels to

Global detection Count: 147

(a)

High scale detectionCount: 73

(b)

Medium density detectionCount: 49

(c)

Low scale detectionCount: 25

(d)

Figure 9: Comparison of detection results of different densities and scales of people: (a) global detection; (b) high scale detection; (c)
medium density detection. (d) low scale detection.

Table 5: Ablation studies on our dataset.

Component C.1 C.2 C.3 C.4 C.5

DAM √ √ √
DAGK √ √ √
DRC-ConvLSTM √ √
MAE (MICC) 1.456 — 1.354 1.251 1.226

MSE (MICC) 2.468 — 2.249 2.226 2.001

MAE (UCSD) — — — 1.02 —

MSE (UCSD) — — — 1.35 —

DAM: depth-aware model; DAGK: depth-adaptive Gaussian kernel.

Table 6: Comparison of different feature counting methods on
ShanghaiTechPartA.

Component C.1 C.2 C.3 C.4 Ours

BiConvLSTM √ √ √ √ —

SDT √ —

RC √ —

DCC √ —

DRC √ —

MAE 1.28 1.24 1.18 1.12 1.02

MSE 1.53 1.48 1.41 1.38 1.35

Precision 0.746 0.826 0.909 0.928 0.931

Recall 0.716 0.722 0.747 0.795 0.801

RC: reverse conduction; SDT: same direction transmission; DRC: double
reverse conduction; DCC: double coconduction.
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complete the individual counting of local groups, while the
traditional DBSCAN requires a fixed number of parameters
MinPts and distance parameters Eps. Therefore, the cluster-
ing of populations with large scale changes cannot be
completed.

The DBSCAN algorithm is verified by the experimental
study of ablation, so as to guide more accurate local popula-
tion counting and head detection of different scale popula-
tions. Therefore, two different clustering combination
schemes were carried out, and the results are shown in
Table 7. From the results, we find that using DBSCAN on
the DRC-ConvLSTM method cannot achieve estimation
with less error; the reason is that DBSCAN cannot find
crowds of different scales, because traditional DBSCAN is
only effective for single density clustering. However, using
the improved DBSCAN on the DRC-ConvLSTM method

can identify people with large differences in density, so the
combination of the improved DBSCAN and the DRC-
ConvLSTM method in the above four cases can achieve sep-
arate counting of regions at different scales. The MAE and
MSE accuracies of the method used in this paper are the
highest.

5. Conclusion

In this paper, a network DRC-ConvLSTM for video crowd
counting and multicrowding scale separate counting is
implemented by the final design. Our proposed DRC-
ConvLSTM is trained and tested on RGB and RGBD data-
sets. On the RGB dataset, the design of the DRC-
ConvLSTM network can further extract the crowd features
associated with time. On the RGBD dataset, the DRC-
ConvLSTM network combined with the depth perception
model and the depth-adaptive Gaussian kernel can extract
the depth space edge constraint features and deep layer
matching, which ultimately achieves better crowd density
estimation results than using DRC-ConvLSTM alone. The
depth modality effectiveness of this method is tested on the
MICC depth annotation dataset. The counting effectiveness
under visible light is tested and evaluated on four labeled
datasets, CrowdFlow dataset, FDST dataset, Mall dataset,
and UCSD dataset. Observing the experimental results, our
method achieves superior results than other state-of-the-art
techniques in video real-time crowd counting. The improved
DBSCAN clustering algorithm has good clustering results
for uneven datasets and performs well in denoising, multi-
density clustering, and merged clustering, which enables
DRC-ConvLSTM to count individuals at different scales.

6. Discussion

DRC-ConvLSTM has certain limitations in counting the
crowd in the video. When the light is very weak, there will
be large errors in crowd detection and counting. For exam-
ple, Figure 11 is the crowd detection results in CrowdFlow
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Figure 10: Traditional method density map and detection results: (a) input image; (b) YOLO V3 crowd head detection results; (c) MCNN
ground truth density map; (d) MCNN estimated density. Precision-recall curves for all object classes. (a) Average precision-recall curves of
DRC and RC; (b) average precision-recall curves of DRC and DCC; (c) average precision-recall curves of DRC and SDT.

Table 7: Comparison of different classification detection results on
ShanghaiTechPartA dataset.

Component C.1 C.2 Ours(local area count)

DRC-ConvLSTM √ √ —

DBSCAN √ —

DBSCAN+ √ —

MAE — 1.02 1.02

MSE — 1.35 1.35

DRC: double reverse conduction.

(a) (b)

Figure 11: Crowd detection in CrowdFlow dataset: (a) before
detection; (b) after detection.
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dataset, Figure 11(a) is the original picture of the crowd, and
Figure 11(b) is the detection results. From Figure 11(b), it
can be clearly seen that when the crowd passes through the
shadow area, head detection can only detect a small number
of heads with obvious characteristics. However, the detec-
tion rate of the head with no obvious features in the shadow
area is very low. The detection rate is high in areas with suf-
ficient light. Although the depth sensing module included in
the method used in this paper can improve some detection
accuracy, CrowdFlow and most current real scenes do not
contain the depth information of crowd images. Therefore,
in real applications, this method is greatly constrained by
the difficulty in obtaining the illumination and depth infor-
mation. These problems need to be solved in the future.

In addition, crowd clusters of different densities are esti-
mated, and then, the population cluster counts in different
density areas are accumulated to obtain an overall popula-
tion count estimate. This is more efficient than estimating
the population of the entire graph directly. Doing so allows
us to impose density clustering constraints and thus estimate
which part of the population in the same densely populated
area is more necessary for the warning of danger of over-
crowding. A promising future application is people counting
using drones that can shoot over crowds to overcome exces-
sive occlusion and scale changes.
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