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Fall detection is a challenging task for human activity recognition but is meaningful in health monitoring. However, for sensor-
based fall prediction problems, using recurrent architectures such as recurrent neural network models to extract temporal features
sometimes could not accurately capture global information. Therefore, an improved WTCN model is proposed in this research, in
which the temporal convolutional network is combined with the wavelet transform. Firstly, we use the wavelet transform to
process the one-dimensional time-domain signal into a two-dimensional time-frequency domain signal. This method helps us
to process the raw signal data efficiently. Secondly, we design a temporal convolutional network model with ultralong memory
referring to relevant convolutional architectures. It avoids the gradient disappearance and explosion problem usefully. In
addition, this paper also conducts experiments comparing our WTCN model with typical recurrent architectures such as the
long short-term memory network in conjunction with three datasets, UniMiB SHAR, SisFall, and UMAFall. The results show
that WTCN outperforms other traditional methods, the accuracy of the proposed algorithm is up to 99.53%, and human fall

behavior can be effectively recognized in real time.

1. Introduction

Human activity recognition (HAR) is a rapidly growing and
promising branch of data science with many current appli-
cations, including healthcare surveillance [1, 2], smart home
[3], and fall detection [4]. Among them, fall detection is one
of the most important research topics in HAR. According to
the World Health Organization (WHO) [5], falls are the sec-
ond leading cause of accidental death worldwide. However,
suppose this behavior is monitored and warned without
delay. The time required for medical treatment can be signif-
icantly reduced, thus effectively reducing the potential risk of
harm and death after a fall. Therefore, it is of great signifi-
cance to propose models with high accuracy for identifying
falling behaviors and applying them to suitable scenes and
groups.

Wearable sensors are the basis for human behavior rec-
ognition systems, including fall detection [6]. At this stage,
the methods for recognizing human falls are mainly divided
into those based on signal and visual sensors. For signal sen-

sors, accelerometers, gyroscopes, and magnetometers can
form an inertial measurement unit (IMU), where accelerom-
eters detect linear motion and gravity by measuring acceler-
ation in three axes (x, y, z); gyroscopes are used to measure
rotation rates, including roll, yaw, and pitch. Moreover, with
the development of camera techniques, such as the wide-
spread use of GoPro, the practice of using wearable cameras
for fall detection in the HAR field has increased over the last
few years [7-10]. Sensors with image and video processing
capabilities have been extensively investigated in this field
[11, 12], and these approaches also differ significantly from
signal-based sensor techniques. Fall detection based on
visual sensors is not as widely used as signal-based sensors
due to constraints, such as complex scenarios and the need
to consider participants’ privacy issues [13]. Therefore,
despite their significance in HAR applications, this paper
only plans to focus on signal-based sensors for fall behavior.

Machine learning and deep learning have brought dis-
ruptive changes to many fields in the past decade, including
image recognition, target detection, speech recognition, and
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natural language processing. As a typical behavioral recogni-
tion problem, many traditional machine learning and deep
learning algorithms have solved sensor-based fall detection
with good results. Models include support vector machine
(SVM) [14], Google’s deep neural network (DNN) [15], con-
volutional neural network (CNN) [16-19], long short-term
memory network (LSTM) [20, 21], and recurrent neural net-
work (RNN) [22-24]. However, when current fall detection
based on signal sensor applies deep learning networks, espe-
cially using recursive architectures such as a single RNN
model, it is sometimes challenging to capture global infor-
mation of temporal features efficiently and accurately.
Therefore, this paper proposes a new model, wavelet
transform-temporal convolutional network (WTCN), to
improve prediction accuracy.

Specifically, we build an improved WTCN fall detection
system by using a lightweight temporal convolutional net-
work (TCN) as the main structure and embedding the wave-
let transform for the signal processing procedure. Thereinto,
the wavelet transform helps us to process the raw signal data
efficiently; the deep structure of TCN compensates for the
lack of a single recurrent architecture with the advantages
of stable gradients, flexible receptive field size, the low mem-
ory requirement for training, and variable-length inputs
(Figure 1). In addition, this paper also uses a dropout layer
to suppress the overfitting of the model and changes all the
activation functions to PRelu. Finally, we apply different
deep learning models (CNN, LSTM, CNN+LSTM, TCN,
and WTCN) to the datasets (including UniMiB SHAR, Sis-
Fall, and UMAFall) reorganized by our research team for
experiments and compare their fall detection performances
among them. The results show that WTCN outperforms
the baseline recursive architecture in all four aspects of the
loss function, accuracy, recall, and precision.

To summarize, the main contributions of this paper are
as follows:

(1) In terms of datasets, our team reorganized a wide
range of publicly available datasets on human activ-
ity that included falling behavior, involved UMAFall,
SisFall, and UniMiB SHAR. Moreover, we relabeled
the behaviors of daily living (DAL) and falls (FALL)
among these three datasets and cleaned the redun-
dant and invalid data

(2) About data processing, the wavelet transform
method used in this paper can improve the predic-
tive capability of our model to a certain extent. Spe-
cifically, the 2D images, transformed from the 1D
data, contain both time and frequency domains, thus
giving a complete picture of the signal characteris-
tics. This procedure also provides the basis for subse-
quent improvements in the accuracy of recognizing
fall behaviors

(3) In the model structuring section, a new model
WTCN is proposed to improve the efliciency of fall
detection in this paper. To test the recognition effec-
tiveness of this model, we have compared it with the
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CNN, LSTM, CNN+LSTM, and TCN networks
based on the baseline, and the integrated dataset
mentioned above is applied. The experimental
results demonstrate that our proposed model has
better performances with higher recognition and
classification accuracy, which could also provide sug-
gestive ideas for subsequent research

(4) As a whole, no other researcher has been found to
use the integrated TCN model for fall detection, so
this paper supplements this and demonstrates that
it is a relatively great model with well-performed
results in this field

The rest of this article is described below. Section 2 illus-
trates the development and overview of related works
involved in fall detection algorithms, including an introduc-
tion to deep learning networks, and our preparation for
improving models. Section 3 shows the whole framework
of our WTCN model, which includes casual convolutions
and dilated convolutions, TCN network components, and
wavelet transformation. Section 4 describes the initial situa-
tion of the three datasets and the process of pre-processing
procedure performed by our team. Besides, this part also
adds some details related to the training process, and exper-
imental settings. Section 5 shows and discusses our experi-
mental results. Finally, Section 6 concludes with a
summary of the main work in this paper.

2. Related Work

At this stage, machine learning and deep learning algorithms
are widely used in HAR. The increased public datasets, hard-
ware acceleration capabilities, and algorithmic advances
have provided a solid foundation for researchers to develop
models with excellent performance and sophistication. This
section will describe algorithms applied to the field of fall
detection.

Machine learning algorithms have recognition classifica-
tion capabilities that automatically learn data attributes and
build classification models. If fall detection is considered a
typical classification problem, based on a training set con-
sisting of fall and non-fall data, typical machine learning
algorithms, such as SVM [14, 25, 26], DNN [15], boosted
decision tree (BDT), artificial neural network (ANN) [27],
and k-nearest neighbor (k-NN) [28], can be used to con-
struct fall detection models [29-31]. Mrozek et al. [32] pro-
posed scalable system architecture for remote monitoring of
fall behavior in an elderly population in which the applica-
bility of several machine learning algorithms to the detection
process was evaluated. Specifically, the researchers validated
random forest (RF), ANN, SVM, and BDT classifiers, with
BDT performing the best, achieving an average accuracy of
99% in the SisFall dataset. However, feature selection is the
key to the success or failure of machine learning algorithms,
and the accuracy of fall detection can be significantly
affected if the manually extracted features are not ideal.

Compared to machine learning-based fall detection
algorithms, deep learning algorithms can select features
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(a) Input raw signal (1D)

(b) Wavelet transform (2D)
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Residual block 2

i —p| TCN
T =
Residual block n
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F1GURE 1: The workflow of WTCN. (a) The first step to input raw signals from sensor-based datasets. Then, through wavelet transform (step
b), 1D signals could be converted to 2D images. (c) About model structuring and training procedures based on an optimized TCN network.

Finally, we can detect the fall behaviors through the above steps.
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F1GURE 2: The diagram of WTCN network structure.

autonomously and have powerful learning capabilities. At
present, there exist some kinds of deep learning algorithms
that have shown their ability to capture local features and
have achieved remarkable performance in the field of fall
detection, such as CNN, RNN, and LSTM. Specifically, in
contrast to fully connected neural networks, the pyramidal
structure of CNN enables them to aggregate low-level local
features into high-level semantic structures, which allows
them to learn further about superior features. There are sev-
eral mechanisms for CNN-based time series classification
problems, which can be divided into two categories. The first
of these would use time-series data as input to a 1D grid. For
example, Zheng et al. [33, 34] separate multivariate time
series into univariate time series and then perform feature
learning on each univariate series separately. The second
category would convert the 1D time-series data into 2D
image features, which would be subsequently processed.
For instance, some researchers have attempted to encode
time series data into two-dimensional images using a
short-time Fourier transform as input to a CNN [35, 36].
These studies also provide references for processing raw sen-
sor signals in this paper.

Since it was proposed in 1991 [37], RNN with time series
as input has been widely used for human activity classifica-
tion or gesture estimation [38-44]. Many researchers have
carried out extensive work to improve the performance of

RNN models in HAR [45-47], and Torti et al. [48] propose
an RNN system for fall detection suitable for a microcontrol-
ler embedded implementation, with an overall detection rate
of 98%. It is worth noting that the time processing ratio of its
input signal can reach 0.3, demonstrating the feasibility of
the proposed model for real-time remote monitoring. Some
scholars have designed various RNN-based models, includ-
ing IndRNN [49], CTRNN [50], PerRNN [51], and CBO-
RNN [52].

Fall detection tasks would perform better when a
model is set up with longer contextual information and
time intervals. However, this can lead to gradient disap-
pearance or explosion problems when backpropagation
[53] is performed. LSTM [54] has been introduced to
address these challenges. Notably, LSTM has been shown
to solve the long-term dependency problem in RNN, and
previous studies have demonstrated the high performance
of LSTM in HAR [55, 56]. Researchers have also explored
other architectures related to LSTM to improve the base-
line of HAR datasets. For example, Hu et al. [57] proposed
a loss function, and Zebin et al. [51] combined LSTM with
batch normalization to achieve 92% prediction accuracy
on raw accelerometer and gyroscope data, while Orddiez
and Roggen [58] proposed a hybrid CNN and LSTM
model (DeepConvLSTM) for activity recognition based
on data from multimodal wearable sensors. In addition,
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Ficure 3: A dilated causal convolutions with dilation factors d = 1, 2, and 4 and filter size k = 2.

other researchers have developed CNN-LSTM models for
different application scenarios by combining the feature
extraction capability of CNN and the time-series data pro-
cessing capability of LSTM [59-66].

These studies demonstrate the potential of deep learning
network models applied to the field of fall detection. Many
detection algorithms can achieve high accuracy and success-
fully extract the user’s activity state from sensor data. With
in-depth study, we find that using a single algorithm has
limitations, and it is difficult to adapt to the changes in
human falling behavior in various scenarios. In contrast,
the hybrid algorithm shows substantial superiority. Combin-
ing the advantages of different algorithms, it can better deal
with the multienvironment and multipose tasks of fall classi-
fication problems. Moreover, by observing the accelerometer
signals of ADLs and falls in databases, we have found that
the duration of the falling motion is relatively short, which
means that the frequency domain is more informative than
the time domain. Specifically, some of the actions of ADLs
and falls are similar when analyzing the time domain, such
as lying down from standing and falling backward. However,
it becomes relatively easy to distinguish after converting
these actions into signal waveforms of the frequency
domain. Therefore, to further improve the recognition accu-
racy of fall detection, combining previous studies and our
observations, this paper adopts a wavelet transform method
to process the raw sensor signal data. It can maximize the
retention of information links and temporal features of the
actions before and after the fall.

As previously explained in this section, researchers have
used classic deep learning algorithms to achieve a state
where the network has a memory for prior information,
such as using RNN alone or hybrid applying CNN+LSTM.
However, to varying degrees, the models in these studies suf-
fer from slow running times, inflexible sensory domains,
gradient disappearance and explosion, and high memory
usage. In summary, a CNN-based improved TCN network
model has been selected for training to achieve our optimi-
zation objective. That is, the new proposed model can satisty
the automatic extraction of the signal feature. At the same
time, the network has a memory for the prior sequence
information, thus helping to make efficient and accurate
decisions about fall detection. Specifically, the improvements

Residual module

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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FiGURE 4: The structure of the residual module.

of our model compared with other studies are outlined as
follows:

(i) There is an optimization of the running time. Given
a time series signal, our model allows the network to
map the input directly to get the result without
requiring sequential processing like RNN, which
cannot be parallelized

(ii) It can perform stable gradient descent. Compared
with the gradient disappearance and explosion
problems that often exist in RNN, the residual net-
work included in the TCN model in this paper can
solve them to a certain extent
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(iii) It has a lower memory footprint. With the same
number of layers, our model runs with less memory
due to the sharing of convolutional kernels within a
layer, compared to RNN, which saves information
at each step

3. Framework

First, we briefly describe the main structure of our WTCN
model, which includes casual convolutions and dilated con-
volutions. Then, we give a brief account of the network com-
ponents used in this paper, such as weight norm, residual
block, and dropout. Third, we introduce the wavelet trans-
form with which we update the 3D acceleration sensor sig-
nals. Finally, the result of serially applied wavelet transform
and TCN are called the WTCN. The overall architecture is
shown in Figure 2.

3.1. Dilated Casual Convolutions. The input data used for fall
detection in this article is time series data acquired by accel-
erometers set at a certain sampling rate. Therefore, before
introducing the dilated casual convolutions network, we first
introduce the nature of the sequence modeling task. We use
the acceleration sensor to obtain the electrical signal
sequence X,,x;, -, xr as the function’s input after the
analog-to-digital conversion procedure, and hope to predict
the corresponding fall detection results y,. The key con-
straint is that we only use previously observed input to pre-
dict y;. In a mathematical form, the sequence modeling
network is the function f(-) that generates the above map-
ping, satisfying ¥, =f(xp, %y, - xp) [67]. Then, the
sequence modeling task’s goal is to find a network f(-) that
is trained to minimise the loss function of its predicted and
actual results.

To model sequences, we need to deal with variable-
length sequences, keep track of long-term dependencies,
maintain order information, and share parameters within
sequences. RNNs meet these sequence modeling design cri-

teria and are considered a common model for handling
sequence modeling tasks. However, TCNs outperform
RNNs on specific tasks and datasets, such as Seq, MNIST,
and Music Nottingham [67].

About the characteristics of TCNs, firstly, this network
can take an input sequence of any length and map it to an
output sequence of the same length. Secondly, because the
convolutional layer of the TCN network adopts causal con-
volution, it can avoid the data leakage problem from the
future into the past [68, 69]. However, when dealing with
tasks with long sequence lengths, in order to obtain adequate
history information, the network depth or the convolution
kernel size would increase as the TCN input sequence length
increases. As a result, gradient explosion or gradient disap-
pearance is more likely to occur in the training process.
Therefore, dilated convolutions are introduced to solve this
major shortcoming. This structure sets a fixed step size for
each two adjacent convolution kernels, which enable an
exponentially larger receptive field [70]. Using larger dilation
enables an output at the top level to represent a wider range
of inputs. Thus, receptive field can cover all input sequence
data. Therefore, the dilated causal convolution structure is
shown in Figure 3, in which there are 3 dilated causal convo-
lutions with dilation factors d =1,2,and4 and filter size 2.
Output Y, ‘s receptive field can reach X,_,.

Next is the specific design of this paper for dilated casual
convolutions. First, we specify the receptive field. Specifi-
cally, assuming that the kernel size is k; and the dilated
causal convolution layer number is L,, dilation is set to
2871 for each layer, the receptive field of the first layer net-
work can reach k; series length, the receptive field of the sec-
ond layer network can reach 3k, — 2, and the receptive field
of the Nth layer network can reach T=1+ (k,— 1) = (2&
— 1) series length. Second, in order to extend dilated causal
convolutions with receptive fields up to the sequence length
L, of the input signal, the network needs to satisfy the condi-
tion T>L. Thus, the formula that the size of the
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TaBLE 1: Overall feature of three datasets.

Datasets ADLs Falls Data source Sampling Location Subject Gender
rates numbers Female Male
UniMiB SHAR  Yes Yes A Samsung phone with a 50 Hz Trouser pockets 30 18 - 60 24 6
BMA220 acceleration sensor P
A self-developed embedded
SisFall Yes  Yes device composed of a CPU, 200 Hz Waist 38 19-75 19 19
a ADXL345 accelerometer
An android smartphone and
UMAFall Yes yes 2 Sctofmobilitysensors g0y b st wrist, ankle 17 14-55 6 11

attached to different parts
of the body

Smartphone

<

Waist band
sensor
(b)
y
Mobility sensor
nodes

v

(0

FIGURE 6: Sensor location from (a) UniMib-SHAR, (b) SisFall, and (c) UMAFall datasets.

convolution kernel and the number of convolution layers
need to be satisfied can be expressed as

>L

1+ (k- 1) % (28 -1) (1)
3.2. Residual Connections. Residual connections demon-
strate the benefits of using additive merging signals in image
recognition, particularly object detection [71]. Some
researchers believe residual connections are essential for
training deep architectures [71-73]. As the TCN receptive
field is more dependent on the convolutional depth, kernel
size, and dilation of the network, problems such as network
degradation may arise as the depth of the network increases.

5

Therefore, in order to ensure that our network can be
trained effectively and stably, the TCN model in this paper
introduces the residual module instead of the traditional
convolutional layer structure, which is presented in Figure 4.

Specifically, for this network structure, there is one layer
of dilated causal convolution and a nonlinear activation
function ReLU in this block. For normalization, weight nor-
malization to the convolution kernel is used. In addition, we
also add dropout regularization after the dilated causal con-
volution, thus avoiding the overfitting problem to some
extent. In later experimental sessions, we tried adding more
convolutional layers or modifying the activation function to
explore the best block design.
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TABLE 2: Parameter configuration of the proposed network.

Layer Parameters

1 wavelet transform Mother wavelet : Mexican hat, sampling_rate = 16, totals cale = 8

2 TCN block Kernel size = 9, kernel number = 16, dilation rate = 1

3 TCN block Kernel size = 9, kernel number = 16, dilation rate = 2

4 TCN block Kernel size = 9, kernel number = 16, dilation rate = 4

5 TCN block Kernel size = 9, kernel number = 16, dilation rate = 8

6 TCN block Kernel size = 9, kernel number = 16, dilation rate = 16

7 TCN block Kernel size = 9, kernel number = 16, dilation rate = 32

8 fully-connected

Activation = log-sigmoid

3.3. Wavelet Transform. Oftentimes, the information that
cannot be readily seen in the time domain can be seen in
the frequency domain. Currently, there are two the most fre-
quently used ways to convert the time domain into the fre-
quency domain: Fourier transform and wavelet transform
[74]. However, there is no temporal information available
in the Fourier transform signal. When analyzing fall detec-
tion data, we are more interested in what spectral compo-
nent occurs at what time interval. Consequently, the
wavelet transform is much more suitable for analyzing
time-frequency representation in this paper.

The wavelet transform is a mathematical method of
spectral analysis developed based on the Fourier transform
[75, 76]. It can be automatically adapted to the requirements
of time-frequency signal analysis by “stretching” and “trans-
lating,” so that it can focus on arbitrary details of the signal
[77]. Wavelet transform methods can be divided into dis-
crete wavelet transforms (DWT) and continuous wavelet
transforms (CWT) [78]. Depending on the spatial dimen-
sion of the signal to be analyzed, the continuous wavelet
transform can take different forms, such as one-
dimensional and two-dimensional [79]. This paper plans to
use the one-dimensional continuous wavelet transform for
further study.

The mathematical process of the one-dimensional con-
tinuous wavelet transform can be described as follows:
firstly, obtaining a series of subwavelet functions by stretch-
ing and translating the mother wavelet function; secondly,
doing convolution with the unprocessed signal; finally, get-
ting a set of wavelet coefficient matrices (as shown in
Figure 5).

After decades of development, scholars have proposed a
variety of wavelet functions, including Haar [80], Morlet
[81], Daubechies [82], Coiflets [83], MexicanHat [84], and
other wavelets. Each wavelet has different properties such
as support length, filter length, and center frequency. We
can choose the proper wavelet function according to the
actual processing requirements for research.

4. Experiment

4.1. Fall Detection Tasks. We evaluated CNNs, RNNs, and
WTCNs on datasets commonly used to benchmark fall
detection tasks. The datasets applied to fall detection tasks

TaBLE 3: Confusion matrix.

Predict Positive Negative
True True Positive (TP) True Negative (TN)
False False Positive (FP) False Negative (FN)

consist of two main types: vision-based datasets and
sensor-based datasets. Examples of vision-based datasets
are KTH [85] and Wieszmann [86]. Sensor-based datasets
include four types: object sensors, wearable sensors, hybrid
sensors, and ambient sensors. Vankastern Benchmark [87]
and Ambient kitchen [88] are object sensor-based datasets,
UCI-HAR and WISDM [89] are wearable sensor-based
datasets, and Opportunity [89] is a hybrid sensor-based
dataset, and AAL [90] is an ambient sensor-based dataset.
This paper mainly focuses on datasets based on object sen-
sors (mainly smartphones), specifically UniMiB SHAR
[14], and wearable sensor types, SisFall [91], and UMAFall
[92]. Table 1 shows basic information about these three
datasets, including the type of sensor, frequency of col-
lected signals, age, and gender of the subjects. Moreover,
Figure 6 shows further information about the sensors’
location from the experimental subjects using visualization
images.

4.1.1. Object Sensor Dataset. The UniMiB-SHAR dataset [14]
is acquired with an Android smartphone Application from
30 subjects (6 male and 24 female) for human activity recog-
nition and fall detection. The dataset is sampled at a fre-
quency of 50 Hz using the 3D accelerometer of a Samsung
smartphone, including 11,771 samples of both human activ-
ities and falls.

In this dataset, each accelerometer signal is segmented
into a window of almost 3 seconds each time (151 samples)
around a peak of the accelerometer signal is located at time ¢
when the magnitude of this signal is high than 1.5 g (with g
being the gravitational acceleration). The magnitude at the
preview time t — 1 was lower than 0. In addition, this is a
publicly available dataset that many researchers have used
to train and test their models directly [93-95]. We have also
included all the data from this dataset.
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TABLE 4: Settings of the models used on the UniMiB-SHAR and SisFall-UMAFall datasets in the comparison experiments.

UniMiB-SHAR' and SisFall-UMAFall*

Model Parameter Value
Convolutional kernel size for blocks 1 (32, 3)}, (51, 3)?
Convolutional sliding stride for block 1 (1, 1Y 1, 1)?
CNN Convolutional kernels for block 1 100!, 60>
Pooling sizes for block 1 2, 1)
Neurons in fully connected layer 6000", 9000°
LSTM cells in layers 1 and 2 151%, 151", 2007, 2007
LSTM Output dimensions of LSTM cells in layers 1 and 2 1000, 1000', 12007, 1200°
Neurons in fully connected layer 1000, 1200°
Convolutional kernel size for blocks 1 (32, 3)%, (51, 3)*
Convolutional sliding stride for block 1 (1, DY 1, 1)?
Convolutional kernels for block 1 100%, 602
CNN-LSTM Pooling sizes for block 1 2, 1)
LSTM cells in layers 1 and 2 60", 60", 150%, 150°
Output dimensions of LSTM cells in layers 1 and 2 1000%, 1000, 12002, 1200°
Neurons in fully connected layer 1000, 1200*
1 TCN block (5,16),d=1
2 TCN block (5,16),d=2
3 TCN block (5,16), d=4
TCN 4 TCN block (5,16),d=8
6 TCN block (5,16), d=16
7 TCN block (5, 16), d=32
Neurons in fully connected layer 16

! >The parameters of CNN, LSTM, and CNN-LSTM models used in the UniMiB-SHAR, and SisFall-UMAFall, respectively.

4.1.2. Wearable Sensor Datasets. SisFall is a publicly available
dataset containing records of human activities of daily living
and falls [91]. Unlike most datasets based on smartphones
[96, 97] to collect data, it uses a dedicated custom sensing
device. In this dataset, data was sourced from two triaxial
accelerometers (ADXL345 and MMAS8451Q) and a triaxial
gyroscope (ITG3200). Moreover, the sampling frequency is
200 Hz, and the acquisition site is the waistband of experi-
mental subjects.

Besides, the UMA-Fall dataset [92] includes 746 samples
from various test subjects. The experimental data were col-
lected from five wireless sensors placed on the subjects,
including a smartphone and four sensors. Regarding these
five sensors’ location, the smartphone was placed in the sub-
ject’s pocket, and the four sensors were worn on the subjects’
ankles, wrist, chest, and waist, respectively. All five sensors
could transmit triaxial accelerometers, triaxial gyroscope,
and magnetometer data via Bluetooth.

4.1.3. Integration Standard of Wearable Sensor Datasets. Sis-
Fall and UMAFall are wearable sensor-based datasets, which
both have long time series signals compared to UniMiB
SHAR. As mentioned earlier, using non-categorical sample
data from different body locations can significantly reduce
the accuracy of predictive models. As UMAFall was collected
from five different locations, our team has sorted and

included only its signals from waist sensors in our integrated
database. It is worth noting that the sampling frequency of
SisFall and UMAFall databases are different, with 200 Hz
and 20 Hz, respectively (in this case, we only consider the
waist wearable sensors). Therefore, we first need to down-
sample the signal data of SisFall from 200Hz to 20Hz
(Figure 7), thus enabling us to analyze the fall movements
further using the settled data with the same sampling fre-
quency subsequently.

After downsampling, we need to do the segmentation
procedure (Figure 8, the marked red fields in the figures
are the split windows).

Firstly, according to the characteristics of time series signal
among fall behaviors in SisFall Dataset, regions with large rates
of change (>1.5g, g is gravitational acceleration) in gravita-
tional acceleration data have all the characteristics of processes
occurring before and after fall behavior. Besides, the sequence
lengths of the object sensor datasets and wearable sensor data-
sets are inconsistent, with the former having a fixed sequence
length of 151 and the latter having a sequence length of up to
2000 for the ADLs and 300 for the Falls. Since we wanted to
verify the performance of our WTCN model with low-
frequency wearable sensors and to ensure that the data proc-
essed by the wearable sensors and the UniMiB-SHAR dataset
input sequence were of similar length, a signal window of 10s
is chosen was chosen to intercept the data.
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Secondly, the datasets needed to be further segmented
according to the trial length of different action types.
Specifically, because of the different lengths of each trial
for ADLs and falls, we segmented the data using a 10s
long signal window, based on which the time series data
for different action types were divided into different
groups. We first segmented four ADL types of the time
series data (D01 walking slowly, D02 walking quickly,
D03 jogging slowly, and D04 jogging quickly), finally
divided into ten groups. Secondly, since there are three
ADLs’ trial lengths up to 25s (D05 walking upstairs
and downstairs slowly, D06 walking upstairs and down-
stairs quickly, D17 standing, getting into a car, remaining
seated, and getting out of the car), we split them into two
groups. Besides, the rest of the behavior types were
grouped. At this point, we have processed the data to
obtain window samples with a time series length of 200
(20Hz sampling rate, 10s length).

In addition, we also analyzed the experimental objects
from the original baseline databases and excluded irrele-
vant data. Specifically, in SisFall database, only SE06 (an
older person with a high level of health) performed the
falls experiment, while the rest of the elderly only did
ADLs. Therefore, to ensure consistent data proportions

for both the ADLs and fall action labels, we excluded data
from the ADL sample for the rest of the elderly group
except for SE06 and included the data of SE06 in our inte-
grated database.

4.2. Model Settings. Regarding model settings for the entire
network structure, the parameters of each layer are shown
in Table 2. The network source is a three-channel accelera-
tion sensor, and each channel is a 1D sequence of data with
length H. The input data flows over Wavelet Transforms
blocks, 6 stacked TCN blocks, and a fully connected (FC)
layer (with log_softmax). The network’s output is compared
with the fall or ADL label, and then the error is backpropa-
gated to update the network. In this current work, though
there are many widely-used CWT mother wavelets, we only
select several of them: Morlet wavelet, Mexican hat wavelet,
and Gaussian.

Furthermore, based on the block in residual connec-
tions mentioned in Section 3.2, further modifications have
been attempted, such as the proposed replacement of the
ReLU layer with PReLU. To be specific, the PReLU (Para-
metric Rectified Linear Unit) is an activation function,
which sacrifices hard-zero sparsity for a gradient and thus
is more robust during optimization [98]. This function is
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F1Gure 10: Loss function, recall, accuracy, and precision of number of epoches for 1 and 2 TCN Blocks neural networks.

shown as Equation (2) (i indicates a different channel),
where a; is the parametric rate which is updated by
following Equation (3).

X, x>0,
PReLU(x;) = f(x) = 2)
a;x; &x<0,

de
Ad: = uha. + € — . 3
a;=y a‘+€8a- (3)

1

4.3. Performance Evaluation and Comparison. This article
uses NLLLOSS (the negative log-likelihood loss) as a loss func-
tion during model training. Besides, it is helpful to train a clas-
sification problem with two classes (see Table 3). Moreover,
we take accuracy, precision, and recall as model evaluation
indicators when model testing.

(1) Accuracy = (TP + TN)/(TP + TN + FP + EN)
(2) Precision = TP/(TP + FP)
(3) Recall = TP/(TP + FN)

4.4. Model Training. Our deep-learning models were imple-
mented using the PyTorch library. The computing platform
was equipped with an AMD Ryzen 5 3500X 6-Core Proces-

sor at 3.59GHz, 16.0GB RAM, and a 6GB NVIDIA
GeForce GTX 1660 SUPER GPU. All parameters of the
models were randomly orthogonally initialized, and an
Adam optimizer was adopted for back-propagation learning
when model training. The batch size and epochs are 32 and
30. The initial learning rate is 2e —3 and will be smaller
every 10 epochs.

4.5. Comparison with the State of the Art. In this section, we
will present the state-of-the-art model settings used for the
comparison experiments.

The state-of-the-art CNN generally comprises an input
layer including 3D accelerate data, one convolutional layer
followed by nonlinear and pooling layers, and one fully
connected layer. In the convolution layer, we apply many
1D convolution kernels over an input signal composed of
several input planes. Besides, the convolution kernels auto-
matically learn local and short-term features in the time
domain. After the activation and max pooling layers, the
feature maps will be flattened and passed through one
fully connected layer. Finally, the probability of each class
will be computed by a softmax layer.

An LSTM can accurately memorize the valid infor-
mation from the new input in the time domain, and for-
get the long-term memory information it no longer
needs. First, we input three-dimensional electrical signals
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TCN Blocks neural networks.

with the same sequence length to the LSTM network.
Then, it inputs all the hidden nodes of the latest
sequence into the fully connected network after acquiring
longer memory. Finally, the classification probabilities
predicted by the model are obtained through the softmax
layer.

A hybrid convolutional and recurrent network structure
is often used for benchmarking one-dimensional signal data.
Similarly, this paper builds our hybrid (CNN-LSTM) model.
Specifically, we first input signal data to obtain time-domain
feature maps through the convolutional layer. Subsequently,
we enter it into the LSTM network to learn long-term time-
dependent information. As a result, the classification results
can be obtained after LSTM followed by a fully connected
and softmax layer.

In addition, we have designed control experiments based
on TCN. Table 4 shows the details of parameter settings for
designing the state-of-the-art model.

5. Results and Discussion

5.1. Different Axes: x/y/z-Axes. This section needs to identify
the dimensions of the acceleration data axes in which the
model performs best. Firstly, we input the X-, Y-, and Z
-axes of the acceleration sensor data, respectively, into the

model and train it. We found that the four metrics for eval-
uating the model’s performance were similar when a single-
dimensional acceleration axis was input, thus indicating that
the model’s sensitivity to a single-dimensional input data
source was relatively consistent. To investigate the model’s
sensitivity to the data source, we used three-axis acceleration
data for comparison experiments. As shown in Figure 9, we
found that the three-axis acceleration input data can achieve
better performance on the WI'CN model compared to the
one-dimensional input, and its accuracy can reach 99.36%.

5.2. Block Trial-1 Deep Blocks. In this section, we tried to
optimize the network by adjusting the depth of the TCN
blocks. As mentioned earlier, we assumed in the model con-
struction phase that the performance of the TCN block is
best when the residual matrix in the TCN block is one layer.
To test this hypothesis, we first increased the number of con-
volutional layers in the TCN block to 2 and conducted a
comparison experiment. The results showed that the four
evaluation metrics (loss function, recall, accuracy, and preci-
sion) of the TCN block with two layers of residual matrix
fluctuated more during the training process than the TCN
block with one layer (see Figure 10). This performance is
not conducive to faster convergence of the model. Therefore,
we decided to use a 1-layer residual matrix in the TCN block
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neural networks.

to better fit the results, which is more time- and resource-
efficient.

5.3. Network Variations (Kernel Number/Layer Size/Kernel
Size). We should first find the optimal number of convolu-
tional kernels for the model for network variations. Based
on the experimental results in Section 5.1 (a TCN block
structure with one layer of convolutional depth), we experi-
ment with changing the kernel number. As mentioned ear-
lier, we assumed in the model construction phase that the
performance is best when the number of convolutional ker-
nels is 16. In order to test our hypothesis, we conducted
comparison experiments by adjusting the number of convo-
lutional kernels to 4, 8, 16, and 32, respectively. The results
showed that the loss function converged faster for the 16
and 32 kernels; moreover, the model’s accuracy with the 16
kernel number increased steadily during the training pro-
cess, and the final result was 99.53% better than the other
kernel numbers (Figure 11). Therefore, our study used a
model with the number of convolutional kernels set to 16
to obtain better performance.

Furthermore, we need to investigate how the network
depth of the WTCN model affects the training results. We
emphasize that since the sensory domain should cover all
sequence data, when we change the number of network

layers, the kernel size of the corresponding convolutional
kernels should be adjusted. During the training process, we
found that the accuracy and precision indicators of the 5-
layer and 7-layer networks fluctuated significantly; the 6-
layer network was more stable, with an accuracy of 99.53%
(Figure 12). Therefore, a 6-layer deep and 9-kernel size net-
work model was used in our study.

5.4. Different Wavelets. So far, we have adjusted network
parameters and structure to get better predictive accuracy.
We should turn to select the optimal mother wavelet to pro-
cess the raw data. Previously, we only used the Mexican Hat
wavelet. In this part, we try to experiment with two more
functions: Morlet and Gausl. The Gausl and Mexican Hat
wavelet shows identical good scores (Figure 13). Specifically,
we analyze it and find that the Mexican Hat wavelet is the
second derivative of the Gauss function, showing the same
predictive ability as Gausl. Therefore, we finally decided
on the Mexican because of its better performance and
improved accuracy.

5.5. Summarization of Results and Comparison with Previous
Methods. In conclusion, compared to 1DCNN, LSTM,
Hybrid, and TCN baseline networks, the WTCN model
has achieved the best performance on the UniMib-SHAR
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TaBLE 5: Accuracy of WTCN model and other baseline models in experimental datasets.

Dataset method WTCN TCN 1DCNN LSTM Hybrid (CNN+LSTM)
UniMib-SHAR 99.53 99.28 98.90 96.18 99.11
SisFall-UMAFall 98.87 98.76 98.21 95.33 98.56

TaBLE 6: Time of models.
Model WTCN TCN 1DCNN LSTM Hybrid (CNN+LSTM)
Time/s 0.0161 0.0156 0.0125 0.1373 0.0638

and SisFall-UMAFall datasets. Specifically, the accuracy was
99.53% on UniMib-SHAR and 98.87% on SisFall-UMAFall,
respectively (Table 5).

In addition, our team also tested the computation time
of the start-of-the-art model, and the results are shown in
Table 6. We have found that WTCN was considerably faster
than the LSTM model and slightly faster than the hybrid
(CNNN+LSTM) model, but slightly slower than 1DCNN
and TCN. To analyze the reasons for this, firstly, as the
IDCNN model has fewer convolutional layers than the
WTCN model, the amount of computation consumed dur-
ing the experiments conducted by our team is less than that

of WTCN. Thus, the computation consumes slightly less
time than WTCN. Secondly, as the WTCN model has an
additional wavelet transform layer compared to the TCN
model, it adds a little more computing time during the wave-
let transform. In the future, we need to further focus on
reducing the model’s complexity while ensuring the predic-
tion’s accuracy, so as to lower the time delay when applying
prediction models to practical applications.

Furthermore, Table 7 shows the results of the perfor-
mance comparison between WTCN and other existing
models. As previous papers tended to adopt a public dataset
directly instead of integrating multiple datasets as we have
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TaBLE 7: Performance comparison (in %) of our WTCN model with other existing models.
Authors Year Model Accuracy
Micucci et al. [14] 2017 SVM 98.71
Ivascu et al. [18] 2017 DNN 96.73
Mukherjee et al. [99] 2020 EnsemConvNet 99.69
Kanjilal et al. [100] 2021 1D-CNN feature 99.26
Kanjilal et al. [100] 2021 RNN-LSTM feature 99.45
Our team 2022 WTCN 99.53

done, our comparison and discussion are based on the
UniMib-SHAR dataset only. On the whole, our WTCN out-
performs almost all previous models. Moreover, it can be
seen that the recognition accuracy of deep learning models
(EnsemConvNet, 1D-CNN, RNN-LSTM, and WTCN) is
better than that of the machine learning models (SVM and
DNN) on fall detection tasks. Besides, it is worth noting that
although EnsemConvNet has achieved excellent perfor-
mance, it is a relatively complex model that includes CNN-
Net, Encoded-Net, and CNN-LSTM. In order to achieve a
tradeoft between accuracy and lightness, we prefer to design
a light WCTN model, which would be suitable for installa-
tion on mobile phones or other wearable devices in the
future.

6. Conclusions

Fall detection is one of the most challenging tasks in the
human behavior recognition field. In order to solve the exist-
ing problems of CNN and RNN when they are used in these
tasks, a well-performed temporal convolutional network
(TCN) with wavelet transform has been proposed. The
wavelet transform has been proved to be of the excellent
capability to transform the raw signals from 1D to 2D with-
out losing the details from raw signal data. Besides, because
the TCN network has a deep causal convolution hierarchy
and unique residual connection, it can deal with long
sequences in time series data. By tuning parameters, we
design a WTCN model with ultralong memory and stable
gradients, which is capable of autoregression prediction.
An experiment comparing the WTCN model with typical
recursive architectures such as LSTM validates the robust-
ness of the developed method.

Future work will extend in several directions. Firstly,
there is a need to supplement realistic falls data for older
age groups (>60 years) as much as possible. Specifically,
the main problem of fall detection research is the difficulty
of obtaining real falls data, as it is challenging to capture this
type of data in the real-life setting of older people. However,
it is necessary and meaningful to supplement this kind of
data in order for the prediction model to work in real life.
Secondly, given the complexity of real-life fall behavior
occurrence, designing a robust prediction method that is
insensitive to the conditions is vital for transforming fall
detection from laboratory research into a practical applica-
tion for health monitoring. In addition, while model-based
and data-driven prediction methods can achieve a high
degree of recognition accuracy, they also have limitations

such as generalization capabilities. Therefore, future research
could also focus on hybrid models to explore the possibility
of integrating different models by making full use of their
strengths.

Data Availability

The original acceleration data supporting our research paper
are from three public datasets (UniMiB SHAR, SisFall, and
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In addition, processed data integrated by our team is also
available. To assist future research, we have uploaded our
integrated dataset at https://www.kaggle.com/datasets/
scoutofdan/fall-detection-dateset.
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