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The sensor units are considered one of the significant technologies that use solar energy as an assistant power source to the
batteries. Despite their advantages over the other forms of renewables, solar energy has an intermittent nature which negatively
affects the operation of these units. Reaching an effective operation ensuring sustainable units requires a prior prediction of the
harvested solar energy. Artificial neural networks (ANNs) appeared recently as a promising prediction approach with those
units. This is attributed to the high accuracy compared to the conventional stochastic and statistical ones. Till now, the optimal
neural network that fits with sensor units has not been precisely determined. This paper is aimed at finding the optimal neural
network that would be applied with solar-supplied sensor units. This is performed by applying a cascaded input/structure
direct optimization. The optimization process handles the aspects of accuracy, computational efforts, and complexity. It mainly
identifies the type and number of parameters that would be utilized as inputs in the first stage. Then, it optimizes the structure
by addressing the number of hidden layers and hidden neurons. The corresponding analysis has been implemented for
premeasured real data over five-year time period. The results showed that the optimal neural network can be achieved by using
three input parameters which are the air temperature (AT), the relative humidity (RH), and the zenith angle (θz). For the
structure, it has been concluded that the proposed optimal ANN should have two hidden layers with ten neurons in each of
them. Lastly, the proposed optimal ANN was verified against the associated prediction error which is minimized to less than 2%.

1. Introduction

The sensor units have recently been trended to integrate
solar harvesters as an additional power source to the existing
batteries. From one side, this is considered a benefit for ful-
filling more sustainable technology. On another side, this is
attributed to the need to reduce the cost and the efforts
resulting from the repeated visits to replace the batteries
when they are depleted or even to maintain them [1–3].

Moreover, solar energy is preferred over other forms
for being characterized by a high power density (about
15 W/cm2) [4, 5]. Since the sensor units are mostly

employed in outdoor environments, solar energy adds a
feature to them. This feature is mainly considered required
for fulfilling the task of measuring some parameters from
distant places. Especially, when those parameters are con-
nected with military targets and purposes as well as mete-
orological stations in which reaching is mostly not easily
possible [6–8].

The sensor units fed by solar harvesters face the main
challenge represented by the intermittent or fluctuating
nature of solar energy. This energy is counted as a nonfixed
supplying energy [9, 10]. Against this problem, predicting
solar harvested energy has been adopted to overcome this
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obstacle [11]. In this regard, the prediction was used to fulfill
an advanced knowledge about the collected energy to be a
help index for organizing the operation of the sensor units
in a way that ensures effective and sustainable work. And
without a doubt, this work level could not be reached with-
out achieving well management of the energy consumption
in those units [12–14].

For more clarification on this topic, the parts or the com-
ponents that jointly build the sensor node and contribute to
managing the consumption of energy in the sensors units
would be figured in Figure 1 showing the direction of energy
movement. This figure is taken from [15]. According to this
figure, the DC to DC converters play a significant role in
amplifying the energy collected from the solar harvester or
curtailment it to be suitable for storage. The microcontroller
is considered the core of the energy management toolbox,
for being the operator or the component that controls the
distribution of energy that the other components in the
sensor unit would consume during different operation
periods. It is also named the “decision-maker” about the
energy allocation in those nodes. In this component, energy
management schemes that depend on a preprediction for the
harvested energy are utilized. Thus, the prediction algo-
rithms would be programmed also besides those schemes

inside this component. On the right side of this figure, the
sensor unit appears. This unit includes the measurement
unit represented by the sensors, as well as the communica-
tion unit that is responsible for transferring or receiving
the data wirelessly [5, 15].

Units of sensors are described with small size and lim-
ited ability for their microcontrollers. For this reason, the
traditional prediction approaches (i.e., the stochastic and
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Figure 1: Components of energy management for sensor units supplied by the solar harvester [15].
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Figure 2: Structure of an artificial neural network [5].

Table 1: Different activation functions are used in artificial neural
networks [32].

Activation function Activation function expression

Linear x

Logistic (Logsig)
1

1 + e−x

Hyperbolic (Tansig)
ex − e−x

ex + e−x

Exponential e−x

Start

Collecting data

Optimize the number and
type of inputs

Optimize the structure of the
neural network

Optimize neural network

Figure 3: Algorithm of cascaded direct optimization of the neural
network for sensor units powered by the solar harvester.
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statistical ones) seem suitable for being simple enough and
being easily implemented in the microcontroller. Despite
that, their precision is not sufficient to achieve a sensor unit
of well-managed energy consumption [16–18]. The main
reason is attributed to utilizing historical data for a few days
before the predictable slots only with the traditional methods.
Here, large prediction mistakes appear when sudden weather
changes as well as at the slots of sunrise and sunset. After
appearing as a modern, commonly used, and accurate pre-

diction approach, the artificial neural networks (ANNs)
were suggested to implement the prediction task not only
in the sensor units powered by solar energy but also in
the optical sensors where the bio and optical monitoring
is performed [12, 19–22].

ANNs have been implemented till now with an arbitrary
architecture. Meaning that the structure (topology) and the
inputs of the neural network, that allows the implementation
in the microcontroller and simultaneously fulfills a high level
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Figure 5: Environmental parameters measured over the period (1st Jan 2011 to 31st Dec 2016) (a) θz (b) DR (c) AT (d) RH.
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Figure 4: Measured GSR throughout (1st Jan 2011 to 31st Dec 2016).
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of precision, are still needed to be identified. The main target
of this paper is to apply a cascaded direct optimization tech-
nique to identify the optimal neural network’s topology and
inputs, respectively, to be applied with solar-supplied sensor
nodes as well as the optical ones.

This paper is structured as follows. In Section 2, an
explanation of the processing, the assessment, and the mech-
anism of implementation for artificial neural networks
(ANNs) as a prediction approach is presented. Section 3
proposes a cascaded direct optimization technique to be
applied. Section 4 analyses and validates the proposed
optimizing algorithm of the ANN for sensor units which
includes identifying the optimal number and type of input

parameters, specifying the optimal number of hidden layers
and hidden neurons, and realizing the prediction error
caused. Lastly, a conclusion about the resulted optimal
ANN appears in Section 5.

2. Artificial Neural Networks (ANNs)

2.1. Processing and Assessment of ANNs. As stated earlier,
either stochastic or statistical prediction approaches could
be used with small, limited computing devices or resources
like microcontrollers. These approaches mainly utilize previ-
ous solar energy readings in order to perform the prediction
process in the sensor units. Unfortunately, these approaches
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Figure 6: Correlation between the predicted and measured GSR over the period (1st Jan 2011 to 31st Dec 2016) by ANN of one input
parameter (a) θz (b) DR (c) AT (d) RH.
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Figure 7: Continued.
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are unreliable for the manufacturers of the technology of
sensor nodes as they may not fulfill an acceptable and
desired precision level. Hence, empirical models (e.g.,
Angstrom model) that describe global solar radiation are
not in use with these units. This is attributed to the limita-
tions of the availability of some parameters considered for
calculations. In this context, ANNs have been promoted as
a modern and accurate approach with the sensor nodes to
be benefited from [23].

ANNs, as a machine-learning-based methodology, work
depending on predefined historical data or samples. The
network is trained by mapping premeasured samples with
the desired output which in this case is represented by
global solar radiation (GSR) for the sensor node applica-
tion [24]. In other words, the ANN is utilized as a model-
ing technique for linear and nonlinear functions, where it
is built of three layers (input, hidden, and output). The
basic element in each layer is named a neuron, and each
layer consists of several neurons as in Figure 2, which is
reproduced from [5]. Each neuron connects to the other
neurons in the adjacent layers. Through a connection of
a specific weight and bias [25, 26], Figure 2 has been cre-
ated to describe the fixed part of the structure (number of
layers and neurons) which is needed to be optimized.
Thus, the weights and biases would never been indicated
because they are changing iteratively.

Processing of the neural network divides into two
actions, namely, training and normalization. These pro-
cesses can be implemented in the following sequence to
predict GSR values [27–29]:

(i) The first step is to normalize the premeasured input
and output values. This is performed by scaling the

data to values ranging between zero and one. This
is actually done by dividing the values available in
the dataset over the maximum founded value

(ii) The second step is to define the size of the input
matrix (i.e., the number of input parameters and
the number of samples available)

(iii) The third step is represented by creating the ANN
by selecting the number of hidden layers, the num-
ber of neurons in each layer, and the activation
function

(iv) Finally, training the ANN, during the training
phase, the value of the predefined activation func-
tion is calculated for each neuron in the first layer.
Then, neural variables are calculated using the
resulted value of the activation function, weights,
and biases of each connection according to Eq.
(1). These variables are passed to the adjacent neu-
rons in the next layer. This process continued until
the last output layer

Si = σ 〠
j

Xi:wij + bij

 !
, ð1Þ

where Si is the sate of the neuron i. Xi is the resulted
value of activation function at neuron i. wij is the
weight of connection between neuron i to neu-
ron j. bij is the bias of connection between neuron
i to neuron j. σ is the activation function.
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Figure 7: Correlation between the predicted and measured GSR over the period (1st Jan 2011 to 31st Dec 2016) by ANN of two input
parameters (a) DR + θz (b) DR + AT (c) DR + RH (d) θz + AT (e) θz + RH (f) AT + RH.
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(v) Minimizing the error, the calculation process is
performed iteratively to minimize the network per-
formance function which is described by mean
square error (MSE). In each iteration, the values
of weights and biases were updated

(vi) Generating an output matrix with a size similar to
the input matrix

(vii) In the last step, the output values are unnormalized,
and their accuracy is assessed by correlating the
outputs with the measured output values. This is

implemented through calculating the correlation
coefficient (R) as in the following equation.

R =
T∑t=T

t=1 xt:yt − ∑t=T
t=1 xt

� �
∑t=T

t=1 yt
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T∑t=T

t=1 x
2
t − ∑t=T

t=1 xt
� �2h i

: T∑t=T
t=1 y

2
t − ∑t=T

t=1 yt
� �2h ir ,

ð2Þ

where xt is the measured GSR at specific hour t. yt
is the predicted GSR at specific hour t. T is the total
number for the hourly samples of GSR.
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Figure 8: Correlation between the predicted and measured GSR over the period (1st Jan 2011 to 31st Dec 2016) by ANN of three input
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R = 0.99230
MSE = 21.33
Iteration = 30
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Figure 9: Continued.
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It is known that several activation functions are
available to be used within artificial neural networks.
Those variant functions are shown in Table 1. Conse-
quently, many models have been created by changing
the number of neurons, hidden layers, activation func-
tions, and number and type of input parameters. While
ANNs are networks in which signals flow in the forward
direction from the input to the output neurons, they
also include a closed-loop for propagation. That allows
the error to backpropagate in the neurons in a backward
direction during the training phase. For these reasons,
the ANN is called a feedforward-backpropagation net-
work [30, 31].

3. Mechanism of ANN Implementation with
Sensor Units

Some obstacles associated with applying this technique for
such sensor units have appeared. The most common
obstacle is the limitation of the microcontrollers. This
backs to the fact that the large-topology neural network
needs more space in the memory to save or store the
weights and biases. Thus, more execution time and more
computational efforts would be required. As a solution,
ANNs were applied offline with those sensors (i.e., imple-
mented by a device with large computational efforts like a
PC followed by extracting the resulted weights and biases
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Figure 9: Correlation coefficient R and MSE for different hidden layers at N = 5.
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R = 0.99530
MSE = 22.53
Iteration = 24

350

300

250

200

150

100

50

0
350300250200150100500

Pr
ed

ic
te

d 
G

SR
 in

 (J
/c

m
2 /

ho
ur

)

Measured GSR in (J/cm2/hour)

Data
Fit
Y = T

(a) One layer

R = 0.99569
MSE = 22.19
Iteration = 19

350

300

250

200

150

100

50

0
350300250200150100500

Pr
ed

ic
te

d 
G

SR
 in

 (J
/c

m
2 /

ho
ur

)

Measured GSR in (J/cm2/hour)

Data
Fit
Y = T

(b) Two layers

350

300

250

200

150

100

50

0
350300250200150100500

Pr
ed

ic
te

d 
G

SR
 in

 (J
/c

m
2 /

ho
ur

)

Measured GSR in (J/cm2/hour)

Data
Fit
Y = T

R = 0.99600
MSE = 22.02
Iteration = 8

(c) Three layers

R = 0.99620
MSE = 21.98
Iteration = 5

350

300

250

200

150

100

50

0
350300250200150100500

Pr
ed

ic
te

d 
G

SR
 in

 (J
/c

m
2 /

ho
ur

)

Measured GSR in (J/cm2/hour)

Data
Fit
Y = T

(d) Four layers

Figure 10: Continued.
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to be inserted in the microcontroller as fixed numbers for
a specific location) [33–35].

The neural network that is used with sensor units would
be of feedforward-back propagation type. It is worth men-
tioning too that the utilized activation function should be
chosen to fit with the nature of the daily curve of harvested
solar energy. Thus, “Logsig” function would be used to pre-
dict solar energy in the sensor units. This function shows the
highest accuracy compared to the ones. The reason behind
this is the values of the collected solar energy (global solar
radiation) which are always positive and never be zero and
not less than that, even at the night. Regarding this matter,
the correlation coefficient (R) is usually considered enough
to evaluate the accuracy of the utilized predictive ANN for

positive values, while the squared correlation coefficient
ðR2Þ would be suitable when a predictive parameter has
both negative and positive values. Computing ðR2Þ for
the case of global solar radiation would be used for more
confirmation of the accuracy results [36].

4. Cascaded Direct Optimization Technique

In this section, a direct optimization technique will be
applied and followed in a cascaded way to elicit the optimal
neural network for the sensor nodes supplied by solar har-
vesters. It is worth mentioning that the “direct optimization”
term indicates the procedure or the process in which com-
parison for various parameters is executed iteratively until
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Figure 10: Correlation coefficient R and MSE for different hidden layers at N = 10.
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Figure 11: Continued.
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finding a satisfactory solution or the optimum one. This
kind of optimization was created to solve problems of
difficult global optimization with bound constraints and a
real-valued objective function [37, 38]. However, Figure 3
shows the algorithm for eliciting this optimal neural network
that has been addressed for our problem. According to
Figure 3, data about different values for global solar radia-
tion (GSR) will be collected at first to be used as output,
while some other environmental or atmospheric parameters
are used as inputs. Then, a direct optimization process
would be implemented in two cascaded steps: the first one
is to find the optimal number and type of inputs. In the
second step, another direct optimization process would be

executed to extract the optimal number of hidden layers
and hidden neurons [39].

For each one of these two cascaded direct optimization
processes, a specific criterion should be considered to extract
the optimal target (inputs and structure). For example, the
high accuracy (represented by the correlation coefficient
(R)) or the low computational efforts (represented by the
number of iterations) would be adopted for the first direct
optimization, while the mean square error (MSE) would
be taken for the second one. Note that the number of neu-
rons and layers would be kept constant in the first direct
optimization process. On the other hand, the number
and type of inputs that resulted from the first direct
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Figure 11: Correlation coefficient R and MSE for different hidden layers at N = 15.
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optimization process would be kept fixed in the second
optimization operation.

Moreover, the calculations of all these criteria for the
ANNs understudy would be performed using the neural
networks toolbox in MATLAB software. This toolbox is sys-
tematically designed to calculate smoothly the values of all
those criteria for different models of neural networks. Thus,
we would have high flexibility to change the number and
type of inputs, the number of neurons and hidden layers,
and the activation function.

5. Optimizing a Neural Network for Sensor
Units Powered by Solar Energy

Under this section, three subsections would be inserted to
show, respectively, the data set or group that would be
utilized for analysis and assessment, the optimum number
and type of inputs, and the optimum structure (topology)
of the desired neural network that would be considered for
the application of the sensor unit.

5.1. Data Group. A group of input and output data is
required to train the proposed ANN applied to the sensor
units. Since the GSR is the real source of energy that feeds
these units, it has been chosen here as the output parameter.
The considered values of GSR are shown in Figure 4.
Observe that these values have been measured hourly and
expressed by J/cm2 for the city of Berlin for five years (from
1st Jan 2011 to 31st Dec 2016) [40]. It is clear from the figure
that the maximum value of the hourly GSR would not
exceed 350 J/cm2 in this city.

For input data, some environmental parameters have
been selected to be studied. Among different environmental
parameters, diffuse radiation (DR), zenith angle (θz), air
temperature (AT), and relative humidity (RH) have been
chosen to implement the training process. The selection pro-
cess was made to nominate the parameters that do have a
direct connection with global solar radiation. Note that all

these parameters have been measured hourly for the same
location in Berlin city over the same simulation period (from
1st Jan 2011 to 31st Dec 2016) and figured in Figure 5. One
more time, this city and this period have been determined
according to the free availability. We have to say also that
the reason behind choosing five years is the reasonable need
for a dataset describing real and different weather situations.
This is considered necessary for an application like the
sensor unit. In this figure, there are some spikes appeared
for the parameters of air temperature, diffuse radiation,
and relative humidity. These spikes in this figure indicate
exceptional conditions occurred in weather parameters.
Nevertheless, they did not appear with the zenith angle as
this parameter is associated with the sun which is outside
the atmosphere (i.e., the zenith angle would have predefined
and fixed values).

5.2. Optimizing the Number and Type of Inputs. To apply the
developed ANN with the sensor units at high accuracy, low
computational efforts, and low complexity, the optimal
number and type of input parameters have been selected
through the proposed optimization process considering
these requirements carefully. For this purpose, the afore-
mentioned input parameters have been taken and tested in
three different possibilities: single, combinations of two,
and combinations of three parameters. The correlation
coefficient R has been calculated for all these possibilities at
fixed numbers of neurons and hidden layers as shown in
(Figures 6–8). Besides this factor, the proportion of the
variance represented by R2 (squared correlation coefficient)
as well as the slope of the linear equation would also be indi-
cated in those figures as being important and necessary as
statistical parameters confirming the accuracy results and
the linearity levels. Because the values of R in all possibilities
are less than 1, the values of R2 would be less than them
for R. It is worth mentioning here that these values are a
little bit less than standards because the utilized approxi-
mation in the MATLAB toolbox considers three digits
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after the comma. However, this would not influence the
results of the optimization process. It is necessary to
declare here that the parameters of (AT and RH) will be
measured later (at the implementation time) by small sen-
sors if they have been chosen to be part of the participated
component of the developed ANN, while the parameters
of (DR and θz) will be measured by a pyranometer.

From Figure 6, it can be observed that the network of
zenith angle (θz) shows the highest R (0.865). While the
network of air temperature shows the lowest R (0.603), the
network of diffuse radiation and the network of relative
humidity were in the middle (0.819 and 0.690), respectively.
The values of R2 accompanied with the values of R are 0.748,
0.670, 0.364, and 0.476, respectively, for the networks of
zenith angle, diffuse radiation air temperature, and relative
humidity. Not only for Figure 6 but also others (Figures 7
and 8), the authors will only offer the slope values in the
figures for the readers who are interested in more detailed
calculations without mentioning them in the texts.

From Figure 7, the network of zenith angle and relative
humidity behaves the best with R (0.948) and (0.899) for
R2. From the same figure, the network of the lowest R
(0.730) appeared for the network of air temperature and
relative humidity together. This value leads also to the lowest
R2 which is recorded to be 0.533 as in the figure.

As shown in Figure 8, the network that considers a com-
bination of diffuse radiation, zenith angle, and air tempera-
ture shows a value of R (0.908) corresponds to (0.824) for
R2. Note that this is the worst among the three input combi-
nation networks. On the other hand, the network of zenith
angle, air temperature, and relative humidity has shown
the best R with (0.997) and the best R2 (0.994), meaning that
it is the optimal one among all combinations of inputs.
Based on that, eliminating the parameter of diffuse radiation
as input and relying only on the other remaining parameters
(i.e., the zenith angle, the air temperature, and the relative
humidity) could lead to defining the optimal network input
data.

5.3. Optimizing the Structure of the Neural Network. This
stage is aimed to identify the optimal number of hidden
layers and hidden neurons. For this purpose, the correlation
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Figure 14: Structure of optimal neural network for wireless sensor
units showing all participated components.
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coefficientR, the number of iterations, and the MSE have
been considered as criteria for direct optimization. Note that
the optimal structure should be selected to show the maxi-
mum value of R (the highest accuracy), the lowest number
of iterations (the lowest computational efforts), and the
minimum value of MSE (the lowest complexity). Hence, all
these factors have been calculated for a sequence of layers.
Note that a range of eight hidden layers has been selected
for purpose of this study. In other words, (1 to 8) would be
the bounds for the constraint of the layer’s number.

Speaking of optimizing the structure of the addressed
ANN, the number of neurons should be also considered to
contribute to the desired targets represented by reducing
the size of the memory. For this reason, the number of
neurons has been changed over a range of values (bounds
for the constraint of neuron’s number) to examine this
impact. For instance, in this research, the number of neurons
has been increased from 5 to 15 over a step of 5 (i.e., 5, 10,
and 15) as depicted in Figures 9–11. It is worth mentioning
here that the proportion of the variance ðR2Þ and the slope of
the linear equations would not be indicated for being the
MATLAB toolbox approximate them to the same values
rather than the number of layers and neurons after consider-
ing three digits after the comma as stated before. However,
those values are (R2 ≅ 0:99 and the slope ≅ 1).

To facilitate and easily realize the optimization process,
the values of R and the iteration number have been collected
and figured together in Figure 12 for different layers. It is
worth pointing out that this step is essential for examining
the optimal number of hidden layers, meaning that priority
is given to the structuring of the neural network because it
is directly related to the degree of complexity. This is aimed
to reduce both the execution time and the computational
efforts (i.e., less memory size). In this regard, it can be
noticed that increasing the number of hidden layers would
increase the value of R as shown in Figure 12. However, after
seven layers, the value of Rwill be almost constant regardless
of the number of neurons. Additionally, a decreasing behav-
ior for the number of iterations accompanies an increasing
number of hidden layers. Unfortunately, both behaviors
(for R and iterations) conflict with the low complexity that
is required for the optimal network. However, two hidden

layers show a reasonable limit of complexity, computational
efforts, and accuracy. Thus, it can be considered the optimal
one for wireless sensor units.

Observe Figure 13 which shows the impact of changing
the number of neurons on the corresponding correlation fac-
tor and MSE error. It can be noticed that increasing the neu-
rons from 5 to 10 neurons is accompanied by an increase in
the value of R . Conversely, this leads to a higher MSE. This
means that the highest accuracy does not match the lowest
complexity. Consequently, the optimal operating point of
the network is selected to be the middle point (10 neurons).
The reason behind that is the slight improvement for R when
the neurons changed from 10 to 15 compared to the signifi-
cant improvement when the neurons changed from 5 to 10.

Combining the results from both direct optimization
processes, the optimal neural network would have three
inputs (air temperature, relative humidity, and zenith angle)
and one output (global solar radiation). It also would include
two hidden layers with ten neurons inside each one. For
more clarification about the construction (setup) of this
optimal network, Figure 14 is used to show the whole com-
ponents that participated in the optimal neural network.

5.4. Prediction Error. After identifying the optimal network
that could fit when applied with sensor units, it will be used
to predict the GSR throughout the study period (1st Jan 2011
to 31st Dec 2016) for testing purposes. The predicted GSR
results have been figured in Figure 15. Consequently, the
predicted error has been calculated according to Eq. (3)
and figured in Figure 16. This figure indicates that the opti-
mal neural network minimizes the error of prediction to be
less than 2% for the whole observations during the 5 years
under study.

Prediction Error =
Measured Energy − Predicted Energy

Measured Energy

����
����

× 100%:
ð3Þ

Taken both figures (Figures 15 and 16) together, the
results have proven the efficacy of the following cascaded
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direct optimization process in selecting the optimum fits
among the inputs and the structure options of the ANN
for solar energy prediction applications. It can be summa-
rized that an ANN structured of 2 hidden layers with 10
neurons each would achieve the most accurate prediction
of solar-harvested energy when it is fed by the air tempera-
ture, relative humidity, and zenith angle as selected inputs.

6. Conclusion

A cascaded direct optimization approach for selecting both
inputs and structure of ANNs that are applied in sensor units
has been proposed. Artificial neural networks (ANNs) have
been presented in this paper as a prediction approach utilized
with the sensor units. This approach depends on a training
process for premeasured environmental data. The predicted
variable resulting from the utilized neural networks is the
global solar radiation (GSR), the real source of operational
energy. This paper found the optimal neural network that is
suitable for the sensor units powered by solar harvesters
based on a cascaded direct optimization for the inputs/struc-
ture. In these optimization processes, an analysis was done
considering the aspects of accuracy, computational efforts,
and complexity. This neural network included three input
parameters (air temperature, relative humidity, and zenith
angle). Additionally, it consisted of two hidden layers with
ten neurons in each. The prediction error caused by applying
the optimal resulted neural network did not exceed 2%.

Nomenclature

AT: Air temperature
ANNs: Artificial neural networks
bij: Bias of connections between neuron i and neuron j
cm2: Squared centimeter
DR: Diffuse radiation
GSR: Global solar radiation
J : Joule
MSE: Mean square error
R: Correlation coefficient
R2: Squared correlation coefficient
RH: Relative humidity.
Si: State of the neuron i
T : Total number of hourly GSR samples
wij: Weight of connection between neuron i and

neuron j
W: Watt
WSN′s : Wireless sensor networks
xt : Measured GSR at specific hour t
Xi: Resulted value of activation function at neuron i
yt : Predicted GSR at specific hour t
θz : Zenith angle
σ: Activation function.
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