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The nonuniform distribution characteristic of randomly deployed mobile nodes will lead to the coverage hole and redundancy in
wireless sensor networks (WSNs). To solve this problem, we propose a multiobjective optimization algorithm for WSN based on
Improved Particle Swarm Optimization-Increment of the Ratio of Coverage Rate to Move Distance (IPSO-IRCD), and a network
node coverage optimization model is formulated to maximize the coverage rate of the target area while reducing the moving
distance of nodes. In each iteration of IPSO, the population fitness value is calculated and compared with the historical
optimal value, when the arbitrary dimensional location information of each node is updated, which can avoid the standard
PSO algorithm loses the optimal solution, and IPSO will determine the candidate deployment location of nodes. Based on
which, IRCD node coverage scheduling optimization algorithm is proposed, so that the final deployment location can be
determined iteratively by calculating IRCD of nodes. Simulation results indicate that, for the nodes initial coverage state
follows random distribution and Gaussian distribution, IPSO-IRCD can, respectively, improve 4.6% and 7.4% coverage ratio
compared with the suboptimal algorithm in other five similar algorithms and reduce 809.59m and 626.63m nodes moving
distance.

1. Introduction

Wireless sensor networks (WSNs), which consist of a series
of deployed sensor nodes in the monitoring area, are a mul-
tihops and self-organization wireless network system. It can
real-time surveil, perceive, and collect the monitored object’s
information [1]. For large-scale WSN, numerous sensor
nodes are usually randomly distributed in the target area,
resulting in uneven node distribution and increasing net-
work cost [2]. Therefore, to design a reasonable coverage
strategy of sensor nodes is vital for improving the system
performance of WSN.

One of the fundamental problems in WSN is node cov-
erage, as it has a direct impact on the sensors moving dis-
tance and energy consumption [3]. The key challenge to
solve the coverage problem is how to optimize the deploy-

ment algorithm and adjust the deployment location of sen-
sor nodes, so that the quality of service in the target area
can be guaranteed. Based on which, an efficient method to
realize WSN coverage control is to deploy mobile sensor
nodes in target area, where the mobile sensor nodes can be
scheduled to the areas with low coverage rate, thus healing
coverage holes and enhancing coverage of the target area [4].

On the other hand, the sensor node will consume a cer-
tain energy when moving in the target area, and its energy
consumption is positively correlated with the moving dis-
tance [5]. For the WSN composed of mobile sensor nodes,
the node moving distance should be minimized to reduce
the energy consumption, while ensuring the coverage rate
of the target area. Meanwhile, the two metrics are affected
by the sensor node’s sensing range. It is obvious that the
larger the sensing range, the higher the node’s energy
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consumption and network coverage rate. A smaller sensing
range leads to lower energy consumption and network cov-
erage rate [6].

Network coverage is an important indicator to evaluate
WSN performance. In particular, coverage rate and node
moving distance have been used as the performance moni-
tors of WSN [7]. In this paper, we investigate the sensor
node coverage problem with the objective of coverage rate
and node moving distance and propose a multiobjective
optimization algorithm for WSN based on Improved Parti-
cle Swarm Optimization-Increment of the Ratio of Coverage
Rate to Move Distance (IPSO-IRCD).

1.1. Related Works. Many researchers have carried out
researches in the field of WSN coverage, and some typical
intelligent algorithms are widely used to solve the node cov-
erage problem in WSN, such as simulated annealing algo-
rithm, genetic algorithm, standard particle swarm
optimization algorithm (SPSO), and sparrow search algo-
rithm (SSA) [8, 9]. For WSN coverage optimization problem
in different scenarios, the work in [10–24] adopted the
improved intelligent algorithms to optimize the node cover-
age with the goal of network coverage rate. Aiming to
improve the algorithm convergence and maximize the cov-
erage rate, an enhanced sparrow search algorithm (ESSA)
for WSN coverage research was proposed in [10], where
the convergence factor, Cauchy operator, and cross-border
processing method were introduced to modify the basic
SSA, so that the performance of the algorithm could be fur-
ther improved. In [11], an improved whale optimization
algorithm for improving network coverage was proposed.
In order to maximize the network coverage rate and main-
tain connectivity for WSN, a combination of the distributed
PSO and virtual force algorithm was carried out in [12].
Coverage and energy are indispensable for WSN to perform
specific monitoring tasks. The work in [13] focused on a bal-
ance between coverage rate and energy cost based on PSO.
In [14], PSO and genetic algorithm were, respectively, intro-
duced to optimize the coverage rate and energy consump-
tion. To reduce the energy consumption of nodes close to
the sink, an enhanced power-efficient gathering in sensor
information systems algorithm was proposed to adjust the
communication distance and range of nodes in [15], and a
routing protocol based on smart energy management and
throughput maximization for clustered WSNs was proposed
in [16] to increase the network lifetime. In [17], a clustering
by social spider optimization and fuzzy logic algorithm and
mobile sink was proposed for maximizing energy efficiency.
The global levy flight of cuckoo search with PSO was pro-
posed in [18] to get improved network performance incor-
porating balanced energy dissipation and results in the
formation of optimum number of clusters and minimal
energy consumption. An energy-efficient algorithm for point
and area sweep-coverage in WSN was proposed in [19],
where the goal was to visit the point of interest and cover
the area of interest with few number of mobile sensor nodes.
The work in [20] focused on the issue of designing data rout-
ing techniques in WSNs to minimize the energy consumed
during the data communication. To save energy of the

mobile WSN, an improved low-energy adaptive clustering
hierarchy protocol for mobile WSN was proposed in [21]
to prolong the network lifetime and reduce the packet loss.
Similarly, a clustering algorithm for energy-efficient adaptive
scheme was proposed in [22] to extend the life time of WSNs
by minimizing the distance of data communication. Further-
more, a fuzzy-logic-based clustering approach with an
extension to the energy predication was proposed in [23]
to prolong the lifetime of WSNs by evenly distributing the
workload. In addition, machine learning algorithms were
also utilized to address the issue for WSNs in [24].

Note that PSO can be simply implemented and has high-
quality solution; many scholars have applied it to WSN and
achieved the great results in WSN coverage problem. How-
ever, since SPSO is prone to fall into the dilemma of local
optimal and poor convergence in WSN coverage optimiza-
tion, some researches have conducted IPSO to improve net-
work performance [25–30]. A PSO based on dynamic
acceleration coefficients (PSO-DAC) algorithm was pro-
posed in [25] to maximize the coverage rate. The algorithm
adopted decreasing inertia weight coefficients and intro-
duced dynamic acceleration coefficients, which overcame
the slow solving speed and the dilemma to go down in the
local extreme value. In [26], the method to handle the
cross-border particles was generalized to improve the appli-
cability of PSO. Then, the explorative capability enhance-
ment PSO algorithm was proposed to improve the
performance of PSO. Combined with the idea of virtual
force, an adaptive virtual force PSO algorithm was proposed
in [27], and the mobile nodes were scheduled to perform the
node redeployment location distribution. In order to
improve the coverage performance of WSN, a quasiphysical
PSO algorithm based on inertia weight was presented in
[28]. The algorithm fostered the convergence compared with
the SPSO, while a part of the nodes were overstepped the
boundary. Since the insufficient coverage of specified target
points in coverage distribution of WSN based on PSO, an
IPSO algorithm based on virtual potential field was pro-
posed in [29] to optimize coverage distribution of WSN.
However, the researchers not investigated the convergence
and coverage rate compared with other algorithms, and the
coverage performance can be further improved. In [30], a
hybrid PSO-butterfly algorithm (HPSBA) was proposed for
solving the node optimization deployment problem in
WSN. This algorithm designed logistic mapping and adap-
tive adjustment strategies to control parameter values, which
could effectively improve the coverage rate.

The above improved algorithms have produced ideal
effect on node deployment and coverage optimization, while
the algorithm convergence and network coverage remain to
be further improved. Meanwhile, it also indicates that apply-
ing the improved intelligent algorithms to WSN coverage
problem is a promising strategy.

Besides the network coverage rate, the moving distance
of sensor nodes is also an important indicator to evaluate
the performance of WSN [31–35]. In [31], aiming to reduce
the moving distance and find the optimal location for sensor
nodes scheduling, the sensor nodes were efficiently deployed
by using simulated annealing and PSO. Then, the sensor
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nodes were scheduled by applying the simulated annealing
and Dempster Shafer Theory. The sensing field was parti-
tioned into multiple grids, and the coverage rate of each grid
was calculated in [32]. Then, PSO was utilized to guide the
nodes to move to the grid with lower coverage rate, so as
to reduce the moving distance of the nodes effectively. The
work in [33] concerned with the nodes coverage hole, and
a node redeployment strategy based on the firefly algorithm
was proposed, where the reduction of moving distances of
nodes was achieved through moving the redundant nodes
effectively. In [34], sensor node deployment problem was
decomposed into target coverage and network connection
subproblems, and the target coverage subproblem was
solved by the proposed clique partition and greedy algo-
rithm based on Voronoi partition of the deployment region,
in order to reduce the total movement distance of sensor
nodes. Moreover, to shorten the average moving distance
of nodes, an area coverage optimization algorithm of WSN
based on virtual force perturbation and cuckoo search was
investigated in [35].

1.2. Motivation and Contribution. In this paper, we take cov-
erage rate and node moving distance as our optimization
target of sensor nodes deployment in WSN. We consider
the multiple mobile sensor node deployment scenario, in
which, the coverage rate and moving distance of sensor
nodes are directly related to the final deployment location
of mobile sensor nodes. If the coverage ranges are over-
lapped for multiple sensor nodes or the coverage holes are
existed in target area, sensor nodes need to move to the areas
with low coverage rate. Obviously, the coverage rate and
moving distance of sensor nodes are correlative. As we have
summarized the related work above, there are several works
focusing on the coverage rate and node moving distance
optimization. However, there are few papers considering
the coverage rate and moving distance of sensor nodes
jointly. Moreover, the increment of coverage rate induced
by moving sensor nodes from initial deployment location
to candidate deployment location is possibly too low or even
unchanged; thus, the IRCD is also an important element that
affects the performance of WSN. Most works in WSN cover-
age optimization have ignored the IRCD of sensor nodes.

Motivated by this, we jointly consider the two metrics of
coverage rate and moving distance of sensor nodes in WSN
coverage optimization and propose a multiobjective optimi-
zation algorithm for WSN based on IPSO-IRCD. The main
contributions of this paper are summarized as follows:

(i) We study a multiobjective optimization problem for
WSN. To characterize the fundamental trade-off
between the coverage rate and the moving distance
of sensor nodes, we define the objective function
as the weighted sum of the two metrics, to maximize
the coverage rate while reducing the moving dis-
tance of the sensor nodes

(ii) We propose an IPSO-IRCD algorithm to solve the
formulated multiobjective optimization problem.
Firstly, to maximize the coverage rate, IPSO is uti-

lized to determine the candidate deployment loca-
tion of mobile nodes by calculating the population
fitness value and comparing with the historical opti-
mal value. Then, to reduce the moving distance of
the sensor nodes, the proposed node scheduling
algorithm based on IRCD is utilized to determine
the final deployment location of mobile nodes.
Finally, the corresponding mobile nodes are moving
from initial deployment location to the final deploy-
ment location

(iii) Since SPSO may drop the optimization solutions in
the process of updating the dimensional informa-
tion of the particle, IPSO is utilized to produce more
optimization solutions of sensor nodes and higher
coverage rate, by calculating the fitness value of each
node after each location status is updated. However,
the search space of the optimization solution is
increased in IPSO, thus increasing the computa-
tional complexity for IPSO

(iv) Simulation results indicate that the proposed algo-
rithm obtains the suboptimal solution with a dozen
iterations. Moreover, for the nodes initial coverage
state follows random distribution and Gaussian dis-
tribution, IPSO-IRCD can, respectively, improve
4.6% and 7.4% coverage ratio compared with the
suboptimal ESSA algorithm proposed in [10] and
reduce 809.59m and 626.63m nodes moving
distance

The rest of this paper is organized as follows. The system
model is presented in Section 2. In Section 3, we first briefly
illustrate the SPSO, and then, the IPSO is proposed to deter-
mine the candidate deployment location of sensor nodes.
Section 4 presents the node scheduling algorithm based on
IRCD. Algorithm computational complexity analysis is sum-
marized in Section 5. Simulation results and analysis are
provided in Section 6. Finally, conclusions are drawn in Sec-
tion 7.

2. System Model

2.1. Network Model. As shown in Figure 1, we consider a
WSN composed of multiple sensor nodes. Suppose that the
set of sensor nodes in the monitoring area is S = fSjg, j = 1
,⋯, n, where n is the number of sensor nodes. All sensor
nodes are randomly deployed in the monitoring area, and
they firstly switch to the sleep mode and remain static after
deployment. Then, we awake the corresponding sensor
nodes from sleep mode to fix coverage holes while the final
deployment locations of the nodes are determined. Further-
more, we assume that all sensor nodes are with the same
sensing radius Rs and communication radius Rc ≥ 2Rs, and
each sensor node in the monitoring area can acquire its
own location information from self-localization of WSN
and then broadcasts to the entire network. If a point in the
monitoring area is located in the sensing range of the sensor
node, it is considered that the point is covered by the sensor
node. Therefore, the monitoring area can be divided into
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covered area and uncovered area. Specifically, the covered
area is that covered by at least one sensor node, and the
uncovered area is that not covered by any sensor node.

2.2. Coverage Sensing Model. Suppose that the monitoring
area A is a finite two-dimensional plane, which is discretized
into A × B grid points, and each grid point is with the same
size. Without loss of generality, sensor nodes are deployed at
different locations of grid points to supervise the monitoring
area. The center coordinate of the grid point Gi is denoted as
ðxGi , yGi Þ, and the coordinate of the sensor node Sj is denoted
as ðxSj , ySj Þ. Hence, the Euclidean distance between the sensor

node Sj and the grid point Gi is dðSj,GiÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxSj − xGi Þ2 + ðySj − yGi Þ2

q
. Based on Boolean sensing model,

the probability of grid points Gi covered by sensor node Sj
is [13]

P Sj,Gi

� �
=

1, d Sj,Gi

� �
≤ Rs1,

0, otherwise:

(
ð1Þ

Meanwhile, Gi might be covered by multiple sensor
nodes simultaneously, and the probability that Gi is covered
by at least one sensor node is [13]

P S,Gið Þ = 1 −
Yn
j=1

1 − P Sj,Gi

� �� �
: ð2Þ

Therefore, the total number of grid points covered in the
monitoring area is N =∑A×B

i=1 PðS,GiÞ.
2.3. Objective Function. Network coverage rate is an impor-
tant indicator of WSN coverage performance, which is
defined as the ratio of the effective coverage grid points to
the total grid points in the monitoring area [13], i.e.,

η = N
A × B

, ð3Þ

where η is the coverage rate of the monitoring area and A

× B is the total number of grid points in the monitoring
area.

In addition, by moving the sensor nodes can improve the
coverage rate of the monitoring area. However, due to the
energy consumption induced by the movement of sensor
nodes, the coverage performance of WSN is limited. There-
fore, we jointly consider the coverage rate and the moving
distance of sensor nodes and define the objective function
as the weighted sum of the two metrics. It is assumed that
the initial location of all nodes in S is denoted as ðxSini, ySiniÞ,
and the final deployment location is expressed as ðxSf in, ySf in
Þ. Furthermore, the objective function gðxÞ can be formu-
lated as

g xð Þ = αη + βλ
1

d Sð Þ , ð4Þ

where α and β are the weighting factors with α + β = 1 and λ
is the distance trade-off coefficient to ensure η and 1/dðSÞ are
comparable. dðSÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxSini − xSf inÞ2 + ðySini − ySf inÞ2

q
is the

moving distance of all sensor nodes.

3. IPSO-Based Node Candidate Deployment
Location Optimization Algorithm

3.1. SPSO. SPSO is a swarm intelligence algorithm that sim-
ulates the behavior of bird flock preying. Suppose that bird
flock is randomly distributed in the monitoring area where
only one piece of food in this area, the task of bird flock is
to find that food without knowing its location and distance.
Each individual bird updates its current location by means of
history information of individual and bird flock. As
expected, the bird flock confirms the exact location of food
by updating location iteratively. Motivated by this, SPSO
algorithm is proposed to solve optimization problem. Since
SPSO algorithm uses internal information to update speed
and location, the parameters of SPSO are fewer and the
implementation is easier. Moreover, SPSO algorithm is
mainly applied to continuous optimization problem and
may converge to the optimal solution more rapidly.

Monitoring area
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13 14
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Sensing areaSensor node

Sensing radius

Grid

Sensing radius Sensing area

Sensor node

(a) Grid discretization for the monitoring area (b) Magnification for the grid points in (a)

Figure 1: Sensor nodes deployment model of WSN.
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Therefore, SPSO algorithm is suitable for WSN coverage
optimization problem [36].

The particle swarm of SPSO is randomly located in the
decision space, and each particle is a potential solution to opti-
mization of problem. These particles are evaluated by fitness
value which is decided by optimization objective function,
and each particle decides its own speed and location according
to history best fitness value of its own and population. Then,
each particle moves in entire decision space to search the opti-
mization solution. In other words, each particle exchanges
information with other particles to get heuristic information
and guide the movement of the whole population, thus getting
optimum solution to optimization problem.

It is assumed that the decision space isD, population size of
particle swarm isM, wherein the location of particlem at itera-
tion k is denoted as xkm = ðxkm1, xkm2,⋯,xkmdÞ, and speed of parti-
clem is vkm = ðvkm1, vkm2,⋯,vkmdÞ. The optimal location of particle

m experienced in the iteration is bkm = ðbkm1, bkm2,⋯,bkmdÞ.
Therefore, based on the coverage rate η, the global optimal loca-
tion for all particles in the population can be calculated as [36]

gk = bkl max η bkl
� �n o

, l = 1, 2,⋯,M
���

n o
: ð5Þ

The speed and location of particle m in the iteration are
updated as follows [36]:

vk+1m = ωvkm + c1r1 bkm − xkm
� �

+ c2r2 gk − xkm
� �

, ð6Þ

vk+1m = vk+1m =
vmax, vk+1m > vmax,
vmin, vk+1m < vmin,

(
ð7Þ

xk+1m = xkm + vk+1m , ð8Þ
where ω is the inertia weight, and it can be employed to balance
the global search and local search ability of SPSO. c1 and c2 are
learning factors with the value in range ½1, 2�. r1 and r2 are two
random numbers in range ½0, 1�. vmax and vmin are, respectively,
the maximum and minimum flight speed of particles, which
can be used to limit the flight speed of particles to improve
the search ability. In addition, the optimal location of particle
m experienced in the iteration is updated as

bk+1m = bk+1m =
bkm, η xk+1m

� �
≤ η bkm

� �
bkm,

xk+1m , η xk+1m

� �
> η bkm

� �
:

8><
>:

ð9Þ

3.2. IPSO. It is worth noting that each particle P in IPSO con-
tains all sensor nodes, that is, P = fS1, S2,⋯,Sng. In particular,
each scheme of particle represents a feasible solution, i.e., a node
deployment strategy for WSN. All nodes in each particle are
moving in two-dimensional space, and their speed and location
information are, respectively, given by

vm = vm1,x, vm1,y , vm2,x, vm2,y,⋯,vmn,x, vmn,y
� �

, ð10Þ

xm = xm1, ym1, xm2, ym2,⋯,xmn, ymnð Þ, ð11Þ

where vmn,x and vmn,y are, respectively, the speed of the nth
node in themth particle along with the x-axis and y-axis direc-
tions, xmn and ymn denote the x-coordinate and y-coordinate of
the nth node in the mth particle, respectively. Since the move-
ment of the sensor nodes can improve the coverage rate of
WSN, the fitness function f ðxÞ of IPSO is defined as coverage
rate, i.e.,

f xð Þ = η = ∑A×B
i=1 P S,Gið Þ
A × B

: ð12Þ

It should be mentioned that the fitness values are calculated
and compared when all the dimensional information of each
particle are updated according to Equations (6)–(8) in each iter-
ation of the SPSO, that is, the speed and location information of
all nodes in the particle are updated to determine the fitness
value. However, the method may drop the optimization solu-
tions in the process of updating the dimensional information
of the particle, which reduces the search space of the optimiza-
tion solution. Therefore, the convergence of the algorithm and
the coverage rate of WSN are both decreased. Moreover, the
redundantmoving distances of some sensor nodes are increased
simultaneously.

The basic idea of IPSO is that the location status of each
node in the particle is firstly updated in each iteration, which
include three location statuses, i.e., updating the location
information of each node in x-axis and y-axis directions
independently and jointly. Then, we calculate the fitness
value of each node after each of three location statuses is
updated, while the locations of other nodes remain
unchanged, and the fitness values for three location statuses
are, respectively, denoted by f ðxk+1mj Þ, f ðyk+1mj Þ, and f ðxk+1mj ,
yk+1mj Þ, j = 1,⋯, n. Finally, the optimal fitness value f ∗ðxk+1m Þ
is calculated by the updated fitness value of all nodes in each
location status, i.e.,

f ∗ xk+1m

� �
= max

j=1,⋯,n
max f xk+1mj

� �
,

n
f yk+1mj

� �
, f xk+1mj , yk+1mj

� �o��
:

ð13Þ

In addition, f ∗ðxk+1m Þ is compared with the historical fit-
ness value. In case that f ∗ðxk+1m Þ is better than its historical
optimal fitness value f bðxmÞ, the location of the node that
corresponds to the optimal fitness value and the historical
optimal value of the particle are updated, i.e.,

xk+1mj =

xkmj + vk+1mj,x, f ∗ xk+1mj

� �
> f b xmð Þ,

xkmj, f ∗ yk+1mj

� �
> f b xmð Þxkmj,

xkmj + vk+1mj,x, f ∗ xk+1mj , yk+1mj

� �
> f b xmð Þ,

8>>>>><
>>>>>:

ð14Þ
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yk+1mj =

ykmj, f ∗ xk+1mj

� �
> f b xmð Þ,

ykmj + vk+1mj,y, f ∗ yk+1mj

� �
> f b xmð Þ,

ykmj + vk+1mj,y, f ∗ xk+1mj , yk+1mj

� �
> f b xmð Þ,

8>>>>><
>>>>>:

ð15Þ

f b xmð Þ = f ∗ xk+1m

� �
: ð16Þ

The above process is repeated for all sensor nodes in the
particle until f ∗ðxk+1m Þ is no longer better than the historical
optimal fitness value f bðxmÞ. Meanwhile, the optimal loca-
tion bk+1m that the particle experienced is updated according
to Equation (9). Similarly, the above process is also repeated
for all particles in the population, and the location of sensor
node and the historical optimal value of the particle are
updated according to Equations (13)–(16). Finally, the
global optimal locations gk+1 of all particles are updated
according to Equation (5).

For the IPSO iteration, the search ability of IPSO is
affected by the inertia weight ω. In particular, the global
search ability of IPSO can be effectively improved with larger
ω, while the smaller ω is conducive to local search. There-
fore, Sigmoid function is utilized to modify the inertia
weight, and a nonlinear decreasing inertia weight strategy
is proposed, that is,

ω kð Þ = ωmax − ωmax − ωminð Þ 1
1 + exp a − bkð Þ , ð17Þ

where ωmax and ωmin are, respectively, the maximum and
minimum values of inertia weight, a and b are constants,
and k is the number of current iterations.

Besides, the search ability of IPSO is also affected by the
learning factors c1 and c2. In order to provide different evo-
lutionary strategies for different particles in the same gener-
ation, we adopt adaptive dynamic variation to modify the
learning factors, i.e.,

ck1,m = 4 − ck2,m, ð18Þ

ck2,m = cmin + 2 − cminð Þ ∗ exp
−f bkm

� �

f gk
� �

0
@

1
A, ð19Þ

where cmin is the minimum value of learning factor, f ð
bkmÞ is the current fitness value of particle m, and f ðgkÞ is
the global optimal fitness value of the population.

3.3. Candidate Deployment Location Optimization Strategy
for Mobile Sensor Nodes. To solve the problem of coverage
redundancy and holes in the monitoring area and improve
the network coverage, IPSO is proposed to calculate the can-
didate deployment location of mobile sensor nodes itera-
tively. In each iteration, the current location of the particle
is regarded as the target location of the mobile sensor nodes,
and the fitness function value f ðxÞ of the particle at the cur-
rent location is calculated. Moreover, to update the historical

optimal fitness function value and population optimal value
of particles, f ðxÞ is compared with the two values. In case
that the algorithm reaches the maximum number of itera-
tions k = K , the location of the optimal particle in population
is set as the candidate deployment location of mobile sensor
nodes. Based on the idea of IPSO proposed in Section 3.2,
the steps to determine the candidate deployment location
of mobile sensor nodes are as follows:

(i) Initialize the number n and location ðxSini, ySiniÞ of
mobile sensor nodes, population size M, the max-
imum number of iterations K , maximum\mini-
mum inertia weight ωmax \ ωmin, minimum
learning factor cmin, particle location x0m and speed
v0m, and so on

(ii) Calculate fitness value f ðxÞ of each particle in pop-
ulation, i.e., the network coverage rate η. Take cur-
rent location xkm and fitness value f ðxkmÞ of each
particle as its historical optimal location and fitness
value. The particle location xkm with the optimal fit-
ness value max f f ðxkmÞg is regarded as the histori-
cal optimal location gk of the population, and the
corresponding fitness value max f f ðxkmÞg is set as
the optimal fitness value of the population

(iii) Update the inertia weight ω and learning factor c1
and c2 according to Equations (17), (18), and (19)

(iv) Update the speed vk+1m and location xk+1m of particles
according to Equations (6) and (8)

(v) Calculate fitness values f ðxk+1mj Þ, f ðyk+1mj Þ, and f ð
xk+1mj , yk+1mj Þ of each node in particle m according to
Equation (12)

(vi) Calculate the optimal fitness value f ∗ðxk+1m Þ of all
nodes in particle m according to Equation (13)

(vii) If f ∗ðxk+1m Þ is better than its historical optimal fit-
ness value f bðxmÞ, the node location corresponding
to the optimal fitness value and the historical opti-
mal value f bðxmÞ of the particle are updated
according to Equations (14)–(16). Otherwise, the
optimal location bkm experienced by the particle m
is updated according to Equation (9)

(viii) If all particles have updated their historical opti-
mal value f bðxmÞ and optimal location bkm, then
the global optimal location gk of the population
is updated according to Equation (5). Otherwise,
return to step (iii) to update the historical opti-
mal value and optimal location of the next
particle

(ix) If the algorithm reaches the maximum number of
iterations k = K , then the historical optimal loca-
tion gk and optimal fitness value max f f bðxmÞ,m
= 1, 2,⋯,Mg of the population are obtained, and
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the historical optimal location gk of the population
is set as the candidate deployment location of
mobile sensor nodes; otherwise, go to step (iii)

The procedure of IPSO-based node candidate deploy-
ment location optimization algorithm is shown in Figure 2.

4. IRCD-Based Node Coverage Scheduling
Optimization Algorithm

The object of node coverage scheduling optimization is to
reduce the number and distance of mobile sensor nodes. It
is assumed that the node is virtually moving to the candidate

Start

Initialize basic parameters 

Calculate fitness value f(x) of each particle, and
record its individual and global optimal solution

Update the inertia weight and
learning factor, c1,c2

No

Output the candidate
deployment location gk

1Yes

Update the global optimal locationgk 

Calculate the optimal fitness value f ⁎(xk-1)1

Update the node location corresponding to the
optimal fitness value and the historical optimal value

Update the optimal 
location bkmfor

particle m

All particles have updated
fb(xm) and bkm?

End

Yes

No

No

Yes

Update the speed vk–1 and location xk–1of particles m  m

Calculate fitness values f (xk+1), f (yk+1)
and f (xk+1,yk+1) 

mj mj
mj mj
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k = K?

Figure 2: Algorithm procedure of node candidate deployment location optimization based on IPSO.
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Figure 3: Optimization of the number of mobile sensor nodes.
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deployment location when the candidate deployment loca-
tion is determined. Moreover, the node will awake from
the sleep mode and move to the final deployment location.
As shown in Figure 3, there are two situations while the
mobile sensor node Sj moving from P0 to P1: (a) the incre-
ment of network coverage rate is small; (b) the moving dis-
tance of node is too long, that is, the kind of movement is
redundant. In this case, the mobile sensor node Sj is set as
sleep mode, i.e., Sj keeps static status, so as to reduce the
number and distance of mobile sensor nodes.

To further reduce the moving distance of mobile sensor
nodes, a node scheduling optimization algorithm based on
IRCD is proposed in this paper. The main idea of IRCD is
firstly to calculate the network coverage rate η0, where the
mobile sensor nodes are located at the candidate deployment
location. Then, we calculate the network coverage rate ηj
when node Sj is in the initial location, and other nodes are
in the candidate deployment location. Finally, the increment
of coverage rate Δη0j is calculated based on η0 and ηj, and
the moving distance for Sj from the initial location to the
candidate deployment location is also be calculated. Simi-
larly, for each independent node in S, the coverage rate ηi, i
≠ j is repeatedly calculated when independent node is in
the initial location and other nodes are in the candidate
deployment location, until the coverage rates for all indepen-
dent nodes in the initial location are calculated. Then, the

increment of coverage rate Δη0i and the moving distance d
ðSiÞ for each independent node are calculated.

Furthermore, the ratio of coverage rate increment and
moving distance Δη0j/dðSjÞ for all sensor nodes are sorted
in ascending order. Meanwhile, we record the Sj with the
smallest Δη0j/dðSjÞ, i.e., Sj = argmin

j∈f1,2,⋯,ng,Sj∈S
Δη0j/dðSjÞ, and

update the candidate deployment location and moving dis-
tance dðSjÞ for Sj. The above process is repeated until the
minimum Δη0j/dðSjÞ is greater than the threshold Δηt for
the increment of the ratio between coverage rate and moving
distance, and the final node deployment location and total
moving distance are obtained. In this case, the correspond-
ing mobile sensor nodes are scheduled to the final deploy-
ment location. The steps of IRCD-based node scheduling
algorithm are as follows:

(i) Calculate the distance dðSjÞ, Sj ∈ S from the initial
location to the candidate deployment location of
each node

(ii) Calculate the coverage rate η0 when each node is
located at the candidate deployment location
according to Equation (3)

(iii) Calculate the coverage rate ηj when one node Sj ∈ S
is in the initial location and all other nodes are in
the candidate deployment location according to
Equation (3), and the difference Δη0j = η0 − ηj
between η0 and ηj, as well as the ratio Δη0j/dðSjÞ
of the difference to the moving distance

(iv) Repeat step (iii) until the ηi, i ≠ j of each node in the
initial location, and the difference Δη0i between η0
and ηi, as well as the ratio Δη0i/dðSiÞ of the differ-
ence to the moving distance are calculated

(v) Sort Δη0j/dðSjÞ for all nodes in ascending order, and
the candidate deployment location for Sj with the
smallest Δη0j/dðSjÞ is updated to the initial location,

i.e., ðxSj,f in, ySj,f inÞ = ðxSj,ini, ySj,iniÞ. Then, the corre-
sponding moving distance dðSjÞ is updated to 0

Start

Calculated the coverage rate 𝜂j for Sj
the difference Δ𝜂0 of coverage rate,

the ratio Δ𝜂0 /d (Sj) of the difference to
the moving distance

Calculated the coverage
rate 𝜂0 for each node

Calculated d(Sj) for each

Sort Δ𝜂0 /d (Sj) for all nodes in ascending 
order, and update the deployment

location and moving distance for Sj with
the smallest Δ𝜂0 /d (Sj) 

NoMin( Δ𝜂0 /d (Sj) ) > Δ𝜂t?

Output the final deployment location

Yes

End

Figure 4: Node scheduling algorithm procedure based on IRCD.

Table 1: Simulation parameters.

Parameters Value

Number of sensor nodes (n) 40

Population size (M) 20

Sensing radius (Rs) 5m

Maximum number of iterations (K) 80

Maximum\minimum inertia weight (ωmax, ωmin) 0.9, 0.4

Minimum learning factor (cmin) 1.2

Maximum\minimum flight speed (vmax, vmin) 3, -3

The value of threshold (Δηt) 0.05%

Weighting factors (α, β) 0.8, 0.2
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(vi) For the node with dðSjÞ ≠ 0, if the minimum Δη0j/
dðSjÞ is greater than the threshold Δηt , the algo-
rithm ends and outputs the final node deployment
location ðxSf in, ySf inÞ and total moving distance dðSÞ;
otherwise, go to step (iii)

The procedure of IRCD-based node scheduling algo-
rithm is shown in Figure 4.

5. Complexity Analysis

In this section, we analyze the computational complexity of
our proposed IPSO-IRCD algorithm. In particular, we first
conduct the mobile sensor node candidate deployment loca-
tion optimization based on IPSO to maximize network cov-

erage rate. Then, IRCD-based node coverage scheduling
optimization algorithm is implemented to reduce the num-
ber and moving distance of mobile sensor nodes. Therefore,
we analyze the computational complexity of IPSO and
IRCD, respectively.

For IPSO, the computational complexity for population
initialization is O(nM), the calculation for fitness value is
with the computational complexity O(nM), the computa-
tional complexity for calculating the optimal fitness value
in all sensor nodes is given as O(n), and the computational
complexity for updating nodes global location is O(M).
Hence, the computational complexity of IPSO is O(nMK),
where K denotes the iteration number.

For IRCD, the computational complexity for calculating
the moving distance of each node is O(n), the computational
complexity of the ratio of coverage rate increment to moving
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Figure 5: Nodes deployment (n = 20).

9Journal of Sensors



distance is given as O(n), and to sort the ratio of coverage
rate increment to moving distance for all nodes is with the
computational complexity O(nlogn). Thus, the computa-
tional complexity of IRCD algorithm is O(nlogn).

Therefore, the total computational complexity of IPSO-
IRCD is O(nMK) + O(nlogn).

To illustrate the superior complexity of the proposed
IPSO-IRCD algorithm, we compare the total computational
complexity of IPSO-IRCD with exhaustive search algorithm.
Specifically, based on the discretization of the monitoring
area and to determine the deployment location of mobile
sensor nodes, exhaustive search algorithm is conducted to
search the A × B grid points in the monitoring area. There-
fore, the total computational complexity to execute exhaus-
tive search algorithm is O(nAB). Moreover, to obtain the
optimal WSN coverage strategy by applying the exhaustive

search algorithm, the distance between the adjacent grid
points in the monitoring area should be as small as possible,
which increases the number of grid points. Accordingly, the
total computational complexity O(nAB) of exhaustive search
algorithm is much greater than O(nMK) + O(nlogn) of
IPSO-IRCD.

6. Numerical Results

In this section, numerical results are provided to evaluate the
performance of our proposed WSN coverage scheme. In the
simulation, we consider that the sensor node initial coverage
status follows random distribution and Gaussian distribution.
The size of the simulation region is 50m × 50m. Without loss
of generality, the performance of IPSO-IRCD is compared
with SPSO, SSA, and ESSA proposed in [10], PSO-DAC
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proposed in [25], and HPSBA proposed in [30]. Unless other-
wise stated, the numerical setup of the simulations is given in
Table 1. To execute the proposed IPSO-IRCD algorithm, M
particles are utilized to represent M distinct coverage strategy
for WSN, where each particle P contains all n sensor node
information. In particular, IPSO is iteratively applied to
update the location information of each particle P with the
goal of maximizing the coverage rate of the monitoring area.
When the iterative process reaches the maximum number of
iterations K, the sensor nodes coverage strategy of particle P
with the maximum coverage rate is regarded as a candidate
deployment strategy. However, for the candidate deployment
strategy, the increment of network coverage rate may be small
or the moving distance of sensor nodes is too long while the
mobile sensor node Sj moving from the initial location to
the candidate deployment location. To reduce the moving dis-
tance of mobile sensor nodes, IRCD is proposed to determine
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Figure 7: Nodes deployment (n = 40).

Table 2: Comparison of WSN performance under different
number of nodes and different initial distribution.

Number
of sensor
nodes

Initial
network
coverage
rate

Final
network
coverage
rate

Moving
distance of
nodes (m)

Random
distribution

20 43.87% 60.9% 89.22

30 58.13% 81.32% 156.58

40 66.47% 92.85% 185.96

Gaussian
distribution

20 26.84% 60.82% 190.27

30 34.64% 81.89% 251.17

40 42.56% 93.19% 294.11
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the final deployment locations ofmobile sensor nodes in terms
of the ratio of coverage rate increment and moving distance
Δη0j/dðSjÞ. Specifically, in the case that Δη0j/dðSjÞ of Sj is
smaller than the threshold Δηt , the initial location of Sj is set
as its final deployment location, i.e., Sj is without movement.
The process is repeated to obtain the final deployment loca-
tions of all n mobile sensor nodes until the minimum Δη0j/d
ðSjÞ is greater than Δηt . Finally, the corresponding mobile sen-
sor nodes are scheduled to the obtained final deployment
locations.

Since the different initial distribution of nodes may have
an impact on the final coverage optimization of WSN. To
demonstrate the robustness of IPSO-IRCD proposed in this
paper, we firstly compare the final coverage effect of WSN
with different number of sensor nodes under random initial
distribution and Gaussian initial distribution.

Figure 5 shows the node deployment status when n = 20.
Note that “∗” denotes the sensor node, and the circle area is
the node sensing area. As can be seen in Figures 5(a) and
5(c), the coverage holes and overlaps are both in random ini-
tial distribution and Gaussian initial distribution, and the
initial coverage rates are 43.87% and 26.84%, respectively.
Figures 5(b) and 5(d) present the final deployment of sensor
nodes with random distribution and Gaussian distribution,
and the final coverage rates are 60.9% and 60.82%, respec-
tively. It is observed that some mobile sensor nodes are set
as sleep mode, i.e., keeping static status. Moreover, the num-
ber of mobile sensor nodes is reduced to 16 and 18, and the
final nodes moving distances are 89.22m and 190.27m,
respectively, for random distribution and Gaussian distribu-
tion. By comparing the initial deployment and final deploy-
ment of nodes under the two distributions, it can be seen

that IPSO-IRCD algorithm can improve the coverage rates
of 17.03% and 33.98%, respectively, while reducing the num-
ber and moving distance of mobile sensor nodes.

In Figure 6, we plot the node deployment status when
n = 30. Specifically, Figures 6(a) and 6(c) show the initial
deployment of random distribution and Gaussian distribu-
tion when the number of nodes is 30, and the initial coverage
rates are 58.13% and 34.64%, respectively. Figures 6(b) and
6(d) provide the final deployment of sensor nodes under
the two distributions, and the final coverage rates are
81.32% and 81.89%, respectively. Moreover, there are some
mobile sensor nodes with no movement for both two distri-
butions, and the number of nodes with no movement under
Gaussian distribution is lower than random distribution.
This stems from the fact that the initial node deployment
of Gaussian distribution is more concentrated in a limited
area, and more sensor nodes are scheduled to improve net-
work coverage rate. The number of mobile sensor nodes
under the two distributions is reduced to 24 and 28, and
the final moving distances are 156.58m and 251.17m,
respectively. By comparing the initial deployment and final
deployment of nodes under the two distributions, IPSO-
IRCD can improve the network coverage rates by 23.19%
and 47.25%, respectively. Meanwhile, the number and mov-
ing distance of mobile sensor nodes are reduced.

Figure 7 depicts the node deployment under the two dis-
tributions when the number of nodes is 40. Among them,
Figures 7(a) and 7(c) are, respectively, the initial deployment
of sensor nodes under random distribution and Gaussian
distribution. The initial coverage rates are 66.47% and
42.56% for the two distributions. Obviously, the problem
of nodes redundancy and coverage holes are both in two dis-
tributions. Figures 7(b) and 7(d) give the final deployment of
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sensor nodes under the two distributions, and the final cov-
erage rates are 92.85% and 93.19%, respectively. It is worth
noting that the sensor nodes with no movement under ran-
dom distribution are relatively scattered in the monitoring
area, and more concentrated in the center of the monitoring
area under Gaussian distribution. The number of mobile
sensor nodes is reduced to 32 for both two distributions,
while the final moving distances are 185.96m and

294.11m, respectively. By comparing the initial deployment
and final deployment of nodes under the two distributions,
IPSO-IRCD can improve the network coverage rates by
26.38% and 50.63%, respectively, and reduce the number
and moving distance of mobile sensor nodes.

The comparison of WSN performance under different
number of nodes and different initial distribution is pre-
sented in Table 2. As can be seen from Table 2, the final

0 10 20 30 40 50 60 70 80

Number of iterations

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Co
ve

ra
ge

 ra
te

IPSO-IRCD
ESSA
HPSBA

PSO-DAC
SPSO
SSA

(a) Random distribution

0 10 20 30 40 50 60 70 80

Number of iterations

0.4

0.6

0.7

0.8

0.9

1

Co
ve

ra
ge

 ra
te

IPSO-IRCD
ESSA
HPSBA

PSO-DAC
SPSO
SSA

(b) Gaussian distribution

Figure 9: Network coverage rate versus iteration times.

13Journal of Sensors



network coverage rates can achieve a balance for two differ-
ent initial distributions of sensor nodes, i.e., the coverage
performance of WSN is not affected by the initial distribu-
tion of sensor nodes. However, since the nodes follow the
Gaussian distribution are mainly concentrated in the limited
area, the nodes are required to move farther to maximize the
network coverage rate. Therefore, the moving distances of
nodes follow the Gaussian distribution are greater than that
of nodes with random distribution, while achieving the cov-
erage rate approximatively.

Figure 8 describes the impact of different initial node
distribution on WSN coverage rate for different algorithms.
From Figure 8, we can see that the coverage rate of other
algorithms will be affected by the initial distribution category
of nodes, while IPSO-IRCD can achieve the coverage rate
approximatively for the two distributions. This is due to
the fact that the location information of the node is updated
for each dimension in our proposed scheme, i.e., the node
with the highest coverage rate is selected for location update
repeatedly, until the movement of mobile sensor nodes can-
not improve the coverage rate. Therefore, IPSO-IRCD can
avoid the node losing the optimization solution, and reduce
the redundancy moving distance of the nodes simulta-
neously. Furthermore, IPSO-IRCD can achieve a compara-
ble coverage rate for different initial node distributions. In
addition, compared with the suboptimal algorithm ESSA,
IPSO-IRCD can yield 4.6% and 7.4% gains, respectively, in

terms of the coverage rate for random initial distribution
and Gaussian initial distribution.

The convergence speed is an important indicator to eval-
uate the performance of the algorithm. Figure 9 describes the
relationship between the network coverage rate and the
number of iterations for the six algorithms. As shown in
Figure 9, we find that the network coverage rate can con-
verge to a constant within 80 iterations based on IPSO-
IRCD for two initial node distributions, which demonstrates
the robustness of the proposed IPSO-IRCD node deploy-
ment algorithm. This is mainly attributed to the fact that
the coverage rate increment of each node in three location
updated methods is evaluated in IPSO-IRCD, which
increases the search space of optimization solutions, and
sensor nodes are faster closing to the optimal solution, thus
improving the convergence speed of the algorithm. For the
Gaussian initial distribution, the coverage rate of ESSA and
SSA increased rapidly in the first 10 iterations, whereas both
of them fall into the local optimal value quickly. Moreover,
the coverage rate achieved by IPSO-IRCD is significantly
better than the other five algorithms for two different initial
distributions.

In Figure 10, network coverage rate versus node sensing
radius is plotted for two different initial distributions.
According to Figure 10, we find that the coverage rates for
two initial distributions both increase as the sensing radius
of nodes increases. Then, the coverage rate gradually tends
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to be stable when the sensing radius of nodes reaches a cer-
tain value. The reason is that the coverage area of each node
is small with the smaller sensing radius, and there are large
coverage holes in the monitoring area; thus, the network
coverage rate can be effectively improved by increasing the
sensing radius of nodes. As the sensing radius of nodes
becomes larger, e.g., Rs = 7:5, the network coverage hole is
small, and increasing the sensing radius of nodes may gener-

ate coverage overlaps in the monitoring area. Therefore, the
growth of coverage rate tends to be stable gradually. In addi-
tion, compared with the other five algorithms, the IPSO-
IRCD algorithm proposed in this paper can achieve higher
network coverage rate with the same node sensing radius.

The moving distance of nodes and network coverage rate
are interrelated. Figures 11 and 12 illustrate the impact of the
number of unmoved nodes on nodes moving distance and
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coverage rate for two different initial distributions. Among
them, Figures 11(a) and 11(b) show the relationship between
the nodes moving distance and the number of unmoved nodes
for two different initial distributions. It can be observed that the
moving distances of nodes for all algorithms are decreased while
increasing the number of unmoved nodes. Meanwhile, the
nodes moving distances of IPSO-IRCD in two initial node dis-
tributions are lower than that of the other five algorithms. This
is due to the fact that IPSO-IRCD calculates the fitness function
value for any updated location of each node. In case that the fit-

ness value can be improved by updating the node location, the
node is scheduled to the updated location, which reduces the
redundancy moving distance of the node. However, the fitness
value is calculated only after all the node locations in a popula-
tion are updated in other five algorithms, which loses the opti-
mization solution and increases the redundancy moving
distance of nodes.

Figures 12(a) and 12(b) show the relationship between
coverage rate and the number of unmoved nodes for two dif-
ferent initial distributions. It can be seen from the figure that
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with the increase of the number of unmoved nodes, the cov-
erage rate decreases, and the reduction of speed is increased
gradually. The reason is that the coverage overlaps are gen-
erated among sensor nodes with the sufficient number of
mobile sensor nodes. And the impact on coverage rate is

small when the number of mobile sensor nodes is reduced,
i.e., the reduction rate of coverage rate is slow. In addition,
an increasing number of nodes are moving back from the
better deployment location to their initial deployment loca-
tion with the increase of the number of unmoved nodes,
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and the coverage holes become larger, thus resulting in the
reduction of coverage rate. Since the mobile sensor nodes
move back to their initial deployment location are according
to the increment of coverage rate in the ascending order, the
reduction rate of coverage rate increases gradually. More-
over, the coverage rate of IPSO-IRCD is better than the
other five algorithms regardless of the initial node distribu-
tion and the number of unmoved nodes.

Figure 13 depicts the relationship between the objective
function value of different weighting factors and the number
of unmoved nodes for two initial node distributions. As
shown in Figure 13, the value of the objective function gðxÞ
gradually decreases as the number of unmoved nodes
increases. However, with the weighting factors corresponding
to the coverage rate α decreases and the node moving distance
β increases gradually, the reduction rate of gðxÞ becomes slow.
For the random initial distribution with α = 0:4 and β = 0:6,
the value of gðxÞ first decreases as the number of unmoved
nodes grows, and then increases when the number of
unmoved nodes goes large. This is due to the fact that the
impact of the nodes moving distances on gðxÞ is greater than
that of the coverage rate, while the value of β is large enough.
Therefore, gðxÞ begins to increase as the moving distances of
mobile sensor nodes decrease. For Gaussian initial distribu-
tion, since the moving distance of nodes is higher than that
of random initial distribution, the reduction rate of gðxÞ is
obviously with the increase of the number of unmoved nodes.

Obviously, the numerical results are affected by some
important parameters (such as node sensing radius Rs, num-
ber of nodes with no movement, and weighting factors α, β,
etc.). To provide a more effective illustration, we elaborate
the impacts on numerical results under different values of
these parameters.

Specifically, in Figure 10, the numerical setup of the simula-
tions is given in Table 1 while the node sensing radius Rs is
ranging from 3 to 8. In the case that Rs = 3, the coverage area
of each node is small, and the network coverage rate is limited
no matter how the mobile sensor nodes move. Besides, due to
the coverage area is large enough of each node when Rs = 8,
the network coverage rate can be improved by moving the
mobile sensor nodes with lower moving distance. However, it
should be mentioned that coverage redundancy is induced by
the large Rs; thus, the appropriate Rs should be set to balance
the network coverage rate and coverage redundancy. It can be
observed that themoving distances of nodes increase as the cov-
erage rate increases, by comparing Figures 11(a), 11(b), 12(a),
and 12(b). Similarly, the coverage rate is also decreased when
the moving distances of nodes decrease. Therefore, a compro-
mise should be conducted between coverage rate and the mov-
ing distances of nodes by controlling the number of nodes with
no movement. Furthermore, the numerical setup of the simula-
tions in Table 1 is also utilized for Figure 13, while the weighting
factors α andβ are ranging from 0.4 to 0.8 and 0.2 to 0.6, respec-
tively. It is obvious that the value of the objective function gðxÞ
increases as α increases and decreases as β increases. Fortu-
nately, there is an optimal value of gðxÞ under each set of α
and β, which guides us to choose the applicable number of
nodes with no movement to maximize the value of gðxÞ.

7. Conclusions

Since the sensor nodes are generally adopted random deploy-
ment to cover the monitoring area, coverage redundancy and
hole are two urgent problems to be solved in WSN. In this
paper, we propose a node coverage optimization algorithm
based on IPSO-IRCD for WSN composed of multiple mobile
sensor nodes. The IPSO-IRCD algorithm is divided into two
stages, and the objective of the first stage is to improve the cov-
erage rate of the monitoring area. By improving the update
method of particle information in PSO, the search space of
the solution is increased, and the convergence of the algorithm
is improved. Meanwhile, the inertia weight and learning factor
are improved to enhance the global and local search ability of
the algorithm, so that the candidate deployment location of
the mobile sensor nodes to maximize the coverage rate of
the monitoring area can be determined. The objective of the
second stage is to reduce the number and moving distance
of mobile sensor nodes. Based on the IRCD of sensor nodes
from the initial location to the candidate deployment location,
the number and final deployment location of mobile sensor
nodes are determined. Therefore, IPSO-IRCD can reduce the
moving distances of nodes while ensuring the coverage rate
ofWSN. Simulation results indicate that the IPSO-IRCD algo-
rithm proposed in this paper can effectively solve the problems
of coverage redundancy and holes in WSN.

It should be mentioned that although the proposed IPSO-
IRCD algorithm can achieve the improvement of WSN cover-
age performance, there are some limitations of the proposed
work and can be extended to more general setups, e.g., the
sensing radius Rs of sensor nodes may be different, or via the
probability sensing model, which considers the uncertainty
of node sensing, to characterize the feature of sensor nodes
sensing. Furthermore, the energy of sensor nodes is limited,
and the fault of sensor nodes may affect the reliability of
WSN. For such general setups, sensor node coverage strategy
design becomes much more involved and will be pursued in
our future work by extending the results of this work.

Data Availability

The underlying data supporting the results can be found by
contacting us.
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