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In asphalt pavement detection, the defect scale changes greatly, mainly including mesh cracks, patches, and potholes. In the
case of large scale, the texture feature is not clear, and the information is easily lost in the feature extraction process.
Correspondingly, the number of small-scale holes is often very large, which also puts forward higher requirements for the
detection model. In view of the above problems, this paper proposed a model for common asphalt pavement defects
detection called YOLOv5-PD. In order to reduce the loss of information and expand the receptive field of the model, Big
Kernel convolution was used to replace a part of the convolution in the original CSPDarknet. The texture feature
information of the cracks is retained to the greatest extent. In order to enhance the detection performance of small
defects, convolution channel attention mechanism was added after each feature fusion layer, and performs attention
processing on the feature map after concat to find the defect location. This study used a public pavement defect dataset
from Brazil. In this work, ablation experiments were carried out according to the task scenario, and the improved effects
were compared and analyzed. The proposed model is compared with other versions of models and advanced models,
which proves the superiority of the proposed model. The mAP of proposed model reached 73.3% and the model inference
speed reached 41FPS, which can meet real time engineering application requirements.

1. Introduction

In recent years, the road traffic has been in a state of rapid
development, and the safety inspection in the field of road
traffic has become increasingly important. It is put on the
agenda to complete some specific tasks with efficient AI
algorithms. Road maintenance is very important in the
field of road traffic. With the increasing scale and number
of highway projects, road maintenance tasks are also
increasing, which brings about the problem of rapid rise
in labor costs. Pavement defect detection is a necessary
step for road maintenance and management [1]. Using
deep learning algorithm to predetect the road surface can
save a lot of costs for manual inspection and repair.
Through the predetection of pavement defects, the road
damage can be detected in advance on a large scale, and
the defects can be screened in advance for the subsequent
manual inspection. This makes it easier for road managers
to understand road damage.

The focus of this study is to detect the common defects
of asphalt pavement. There are many different subdirections
in road safety inspection, including inspection of safe dis-
tance for multiple vehicles, and inspection of damage to
bridges, tunnels, and roads. Workers use various sensors to
collect distance data and image data, and use machine learn-
ing methods to process the data to obtain prediction or
detection results, so as to reduce the risk of accidents. Com-
pared with bridges and tunnels, the number of roads is very
large. For example, the total mileage of roads in China has
reached 5.28 million kilometers. If the defects of the bridge
are not found in time, it may cause serious traffic accidents
and major economic losses. The defects of tunnel may cause
the loss of life and property safety of drivers. Therefore, the
defect detection of bridges and tunnels needs more detection
accuracy and recognition accuracy. On the contrary, it is the
detection of road defects. The number of road defects is very
large. Common road defects include mesh cracks and pot-
holes. Considering that the patches of roads is often done
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on significant defects, the repaired roads are more uneven
and more prone to produce more defects, so the patches
were added as the third type of pavement defects. Mesh
racks, potholes, and patches are very common, and will
not directly threaten the safety of personnel and vehicles.
However, with the increase of time, the safety risks are also
increasing, so the detection of road defects is also important.

The speed and accuracy of defect detection should be
considered in the detection of three types of road defects
in this study. Therefore, there are great differences in the
selection of detection models between road defect detection
and bridge and tunnel defect detection. The one-stage net-
work in the deep learning model is more suitable for such
tasks. The one-stage network gives consideration to both
accuracy and speed, regards detection as a regression prob-
lem, and uses only one neural network to simultaneously
predict the location and category of the boundary box.
YOLO series has always been one of the representative algo-
rithms of the one-stage network. In recent years, the algo-
rithm has developed to YOLOv7 version. However,
considering the robustness of the model, this study did not
use the latest version of the model, but rather conservatively
used YOLOv5, which has been verified by many people, and
made corresponding improvements to the model for prob-
lems related to road defect detection task scenarios. While
ensuring the detection speed, improve the detection accu-
racy of various types of defects as much as possible.

The contribution of the model proposed in this study is:

(1) An improved asphalt pavement defect detection sys-
tem based on YOLOv5 model is proposed. Its accu-
racy and reasoning speed can meet the needs of
actual pavement maintenance tasks

(2) Big Kernel convolution is used to replace the first
layer convolution in CSPDarknet-53, which
improves the detection accuracy of network crack
defects and verifies the feasibility of large core
convolution

(3) CBAM is added after each feature fusion layer to
comprehensively improve the model detection effect
and compensate the detection accuracy of path
defects

(4) The results are compared with the commonly used
advanced models such as Faster-RCNN and
YOLOX, highlighting the performance enhancement
of the proposed model

(5) Experiments prove that the proposed detection
model is superior to other popular detection models,
thus verifying the positive impact of the combination
of Big Kernel convolution and CBAM

2. Literature Review

In this paper, the research background and existing work in
this field have been extensively investigated. Relevant
research is referred as the background support of this study.

Jhaveri et al. [2] discusses and summarizes the applica-
bility and applications of machine learning to various prob-
lems in the real world. This study can be used as a
benchmark for machine learning in a variety of applications
and real-world situations.

Reddy et al. [3] studied the dimension reduction tech-
nology of big data applied to machine learning. This
research has studied two outstanding dimension reduction
techniques on the current popular machine learning algo-
rithm, linear discriminant analysis and principal component
analysis, and compared the dimension reduction selection
and results of high-dimensional data and low-dimensional
data.

Sagar et al. [4] elaborated the importance of machine
learning technology from the perspective of data security,
and reviewed the latest methods for more effective applica-
tion of machine learning technology to meet the current
world security requirements. And the vulnerabilities in the
machine learning model are also evaluated.

Lakshmanna et al. [5] studied the application of deep
learning technology in machine learning in various fields
of the Internet of Things. This study discussed various deep
learning methods and processes, and summarized the main
report work of deep learning in the Internet of Things field.

Gadekallu et al. [6] proposed a deep learning model
based on crow search for gesture recognition tasks in the
field of human-computer interaction. The research uses
open data sets and crow search algorithm to search the best
super parameters of the convolutional neural network,
which makes the model achieve 100% training and testing
accuracy, and verifies the superiority of the deep learning
model over the traditional machine learning model.

Kaluri et al. [7] conducted a series of studies on battery
life prediction in the Internet of Things framework in the
marine environment. In this study, data preprocessing is
carried out first, then rough set theory is used to extract fea-
tures, and the results are inputted into the depth neural net-
work to obtain optimal prediction results. This research
expands the research boundary of the Internet of Things.

In the field of road traffic in the Internet of Things, many
researchers have applied the deep learning model to the
detection of road defects.

Feng et al. [8] proposed a structure that uses information
contained in feature maps at different levels so that all infor-
mation can contribute to classification, avoiding the problem
of losing original information during downsampling in tra-
ditional CNNs. However, the rationality of the structure still
needs to be further proved, and the research did not give the
reasoning speed of the proposed model.

Park et al. [9] proposed a deep learning model for auto-
matic crack detection in car black box images using convolu-
tional neural networks, which divides pavement features
into cracks, pavement markings, and intact areas, and the
architecture achieves an accuracy of 90.45%. However, this
study did not make a further detailed division of road
defects.

Ju et al. [10] proposed a Fast-RCNN-based Crack Depth
Network (CrackDN), by embedding a sensitivity detection
network in parallel with a feature extraction Convolutional
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Neural Network (CNN), the two are then connected to a
region proposal refinement network (Region Case Refine-
ment Network, RPRN) for classification and regression, the
final detection average accuracy is higher than 90%. How-
ever, the study found that various road markings have a
great impact on the performance of the model.

Qu et al. [11] proposed a mixed-territory pavement
crack detection algorithm based on convolutional neural
network. Two different deep learning models are used in
the two tasks of crack classification and detection. The clas-
sification part modifies the output dimension of the FC2
layer of the LeNet-5 model. The accuracy in the CFD dataset
and Cracktree 200 dataset is higher than that of U-Net and
Percolation. However, this model is greatly affected by the
interference noise of the background, and its effect is poor
for images with more complex cracks.

Du et al. [12] adopted the deep learning-based target
detection framework YOLO network to detect pavement
damage, the comprehensive detection accuracy reached
73.64%, and the processing speed reached 0.0347 s/pic. This
study prepared a large PD dataset, but did not improve the
proposed model.

The objects of the above research are all in the field of
road surface detection, but their data sets are different,
which leads to a great difference in their accuracy. In general,
the model based on one-stage network has higher accuracy,
while the model based on two-stage network has faster
speed. As a representative of one-stage network, YOLO is
widely used in various fields. On the premise that YOLO
guarantees real-time, what researchers need to do is to mod-
ify the model according to the actual task scenario to meet
the accuracy requirements.

This paper proposed YOLOv5-PD model based on
YOLOv5 and is aiming at asphalt pavement defect scene to
detect pavement defects, which are divided into three cate-
gories: mesh cracks, patches, and potholes [13]. In the sys-
tem design of pavement detection, the improved YOLOv5
model was used to complete the identification and classifica-
tion of defect detection, and the deep learning framework
Pytorch was used to process a good dataset to train the
model.

3. Background

3.1. Convolutional Neural Network. Artificial neural network
is an algorithmic mathematical model that simulates the
structure and behavior of biological nervous system and per-
forms distributed parallel information processing. Early
research uses fully connected neural network to process
image data, but when fully connected neural network pro-
cesses images, spatial information will be lost when the
image is expanded into a vector. In addition, fully connected
neural network has too many parameters, making training
difficult, and too many parameters will also lead to loss of
spatial information, which causes the network to overfit
quickly. In order to solve the above problems of processing
images, some studies have proposed convolutional neural
networks [14].

Convolutional neural network is mainly composed of
input layer, convolution layer, ReLU layer, pooling layer,
and fully connected layer. The convolutional layer is the core
layer of the convolutional neural network, in which the con-
volution kernels play a role similar to filters. These convolu-
tion kernels downsample the image step by step to extract
the upper abstract information of the image. Generally, a
pooling layer is periodically inserted between consecutive
convolutional layers. The function of the pooling layer is to
gradually reduce the spatial size of the data, reduce the num-
ber of convolution kernel parameters, reduce the amount of
calculation, and control the overfitting of the model. The
commonly used pooling layer has max pooling, average
pooling, and L-2 normal pooling. The ReLU layer is a non-
linear activation function layer, which adds nonlinear
expression capabilities to the model. In addition to ReLU,
the commonly used activation functions include sigmoid,
Tanh, and LeakyReLU. Finally, the fully connected layer in
the convolutional neural network converts the two-
dimensional feature map image processed by the convolu-
tion layer, ReLU layer, and pooling layer into a one-
dimensional vector, multiplies this vector, reduces its dimen-
sion, and inputs it to softmax. The corresponding score of
each category is obtained in the layer, that is, the probability
of belonging to each category, and then the objects in the
image are classified. The above are the main steps of image
processing and image recognition by convolutional neural
network. The general convolutional neural network struc-
ture is shown in Figure 1.

By taking a two-dimensional image of the pavement
surface, inputting the image into the convolutional neural net-
work, and training the parameters, the automatic identification,
classification, and location of asphalt pavement defects can be
realized.

3.2. YOLOv5 Model. The YOLO series algorithm is a typical
one-staged target detection algorithm, which uses the anchor
box to combine the problems of classification and object
localization, taking into account both speed and accuracy
[15]. The YOLOv5 model selected in this article is the latest
version of the YOLO series. It inherits YOLOv3 and
YOLOv4 [16]. The network structure is still divided into
four parts: Input, Backbone, Neck, and Prediction. Com-
pared with YOLOv3 and YOLOv4, YOLOv5 has certain
innovations in different parts of the network.

On the data input side, YOLOv5 adopts the Mosaic data
enhancement method and uses four pictures to randomly
scale, randomly crop, and randomly arrange. Then, these
pictures are spliced. A lot of small targets are added during
the random scaling process to enrich the dataset and opti-
mize the detection effect. Each time YOLOv5 is trained, it
can adaptively calculate the best anchor box values in differ-
ent training sets. In addition, in order to process image data
faster, YOLOv5 uses adaptive image scaling, which adap-
tively adds the least black borders to the original image,
and at the same time scales to a standard size, minimizing
information redundancy.

In the Backbone part, YOLOv5 adopts the Focus struc-
ture to slice the input image. For example, YOLOv5s
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converts 608∗608∗3 image slices into 304∗304∗12 feature
maps, and then passes through a volume of 32 convolution
kernels product to obtain a feature map of 304∗304∗32.

In the Neck part, YOLOv5 uses the FPN and PAN struc-
ture for feature fusion at different scales. FPN is used to solve
the multiscale problem in object detection [17]. It uses high-
level features for upsampling and low-level features for top-
down connections. Each layer is predicted, which greatly
improves the performance of small object detection. In addi-
tion, YOLOv5 also adds two PAN structures (from PANet)
[18]. Through the combination of FPN and PAN, different
detection layers are aggregated from different backbone
layers to improve the detection accuracy of objects of differ-
ent scales.

In the final Prediction part, YOLOv5 uses DIOU_Loss as
the loss function of bounding box, taking into account the
overlap area between the prediction frame and the target
frame, the distance between the center points, and the aspect
ratio, which is better than IOU_Loss and GIOU_Loss [19].
The original YOLOv5 network structure is shown in
Figure 2.

YOLOv5 has a series of model versions. Among them,
YOLOv5s has the smallest depth and the smallest feature
map width. m, l, and x are all deepened and widened on
the basis of s. After comparing the four models, it can be
found that from s to m, l, and x, the depth and width of
the model are increasing, the parameters are getting more
and more, the speed is getting slower and slower, but the
accuracy is getting higher and higher. In this paper,
YOLOv5l with moderate width and depth is used for pave-
ment defect detection.

4. Model Improvements

4.1. Big Kernel Convolution. In the past, Alex-Net used 11∗

11 convolution, but after the advent of VGG, Big Kernels
are gradually being phased out. Since then, the network
structure design of CNN has gradually changed from the
design of shallow and large convolution kernels to the design
of deep and small convolution kernels. The reason for this
phenomenon is that large kernels have been found to be less
efficient and sometimes even reduce model accuracy. But as
CNNs continue to develop, more and more training tech-
niques are proposed. This conclusion may be changing.

Big Kernel convolution and structural reparameteriza-
tion were recently proposed by Ding et al. [20]. During the
development of CNN, different network depths, widths,
and input resolutions were tried one by one, but the kernel
size parameter setting is always defaults to 3∗3 or 5∗5. Ding
et al. proposed that the large convolution was not used in the
past, but it does not mean that it cannot be used now. With
the blessing of modern CNN design, Big Kernel convolution
can improve the receptive field of the model without

Conv ReLU PoolingInput

Full connect
Feature map
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Figure 1: Convolutional neural network.
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Figure 2: YOLOv5 model. Large feature maps predict small scale targets, and small feature maps predict large scale targets.

Figure 3: Big kernel convolution.
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increasing too many parameters, and finally improve the
detection accuracy of the model.

At present, Transformer is very popular in academia,
and its basic component is self-attention [21]. The essence
of self-attention is to perform Query-Key-Value operation
in a full-scale or larger window. Ding et al. conjectured
that the full-scale or larger window is the key to such
powerful performance of transformer. Because the recep-
tive field of the detection model is increased. In CNN,
use of Big Kernel convolution is a way to increase the
receptive field and may inject new impetus into the cur-
rent CNN development.

Inspired by the large kernel convolution proposed by Ding
et al., this paper makes an attempt in the pavement defect
model based on YOLOv5. The first convolutional layer in
CSPDarknet of the original network is removed. A 31∗31 Big
Kernel convolution module is added. The effective receptive
field of Big Kernel convolution is larger than the receptive field
of original model receptive field, which can effectively reduce
the information loss caused by layer-by-layer convolution to
the image, and improve the precision of detecting large-scale
objects such as mesh cracks and patches. The effect of Big Ker-
nel Convolution is shown in Figure 3.

4.2. Convolutional Block Attention Module. Many different
attention mechanisms have been proposed. Among them,
CBAM (Convolutional Block Attention Module) is favored
by many researchers, because CBAM is a general-purpose
module that can be used in various models to improve the
accuracy of model detection [22]. CBAM is the convolu-
tional attention module, which consists of a spatial attention
mechanism and a channel attention mechanism. In this
paper, CBAM is added after the feature fusion layer to gen-
erate better attention maps.

CAM (Channel Attention Mechanism) takes the input
feature map, performs average pooling and max pooling
on it, then uses MLP (Multilayer Perceptron) for aggrega-
tion, and finally generates a channel attention map through
a nonlinear activation function. The CAM module structure
is shown in Figure 4.

SAM (spatial attention mechanism) is a supplement to
channel attention. First, average pooling and max pooling
are combined on the channel axis, and then the combined
feature map is convolved, and spatial attention map is finally
generated by a nonlinear activation function. The SAM
module structure is shown in Figure 5.

Feature map has been processed by CAM and SAM; it
has become a feature map that highlights the part of interest.
The CBAM module structure is shown in Figure 6.

4.3. YOLOv5-PD. This paper improved the original YOLOv5
model to make it more suitable for the task scene of asphalt
pavement defect detection. Finally, YOLOv5-PD was obtained.
The cracks are small but dense, and it is easy to lose image fea-
ture information in the process of layer-by-layer convolution.
In response to this problem, this paper considers improving
the receptive field in the shallow stage of the model, so as to
retain the shape characteristic information of the mesh crack
to the greatest extent, and achieve the purpose of improving
the crack detection accuracy. Inspired by RepLKNet, Big Ker-
nel convolution is replaced to the first layer of convolution in
CSPDarknet in the YOLOv5-PDmodel, increasing the effective
receptive field of the model, and enhancing the model’s
response to mesh cracks. The texture information is retained,
and the detection accuracy of the model for mesh cracks is
improved.

There are many small defects in the asphalt pavement in
the real scene. For these small defects, this paper considered
adding a smaller anchor box to improve the detection effect,
but the effect is not ideal. The reason for this phenomenon
may be that the scale of defect target changes too much. If
small anchor is added, the detection accuracy of large-scale
flaws will even be reduced. Considering the above problems,
this paper abandoned adding small-scale anchor box, but
added convolution channel attention mechanism after the
feature fusion layer, which comprehensively improves the
sensitivity of the model to defect at various scales, so that
the model can also take into account the small defects detec-
tion. Using CBAM can improve the detection accuracy of
small defects without affecting the detection accuracy of
large-scale defects.

The YOLOv5-PD model structure in this paper is shown
in Figure 7. The input image is first convolved by a Big Ker-
nel convolution, which preserves more information for the
subsequent convolution. Next, the feature map is trans-
formed into a tensor with 1024 channels through a series
of CBL blocks and CSP blocks. In the Neck part, the feature
map is concated with the feature map in the Backbone part
through upsampling, and then the feature map after atten-
tion processing is generated through a CBAM. In the Neck
part, four concats have been conducted. The purpose of con-
cat is to fuse the information of shallow features and deep

MaxPool

AvgPool

ReLU
OutputInput

MLP

Figure 4: CAM.
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features. The tensors of three sizes are processed by a C3
block (composed of three standard convolution layers and
several Bottleneck blocks), and the feature map for predict-
ing the corresponding size is obtained, which is the green
rectangular block in Figure 7.

5. Experiments

5.1. Hardware Platform. The experimental platform in this
experiment adopts Ubuntu18.04 operating system, CPU i9-
10900K@3.7Ghz, GPU NVIDIA RTX3090, 64GB memory,

B
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Neck: FPN + PAN Head: Feature map

Figure 7: YOLOv5-PD.
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Figure 5: SAM.

Feature map

CAM SAM

Figure 6: CBAM.
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and CUDA 11.6 and CUDNN 8.1.5 are installed to acceler-
ate GPU computing.

5.2. Datasets. In the identification and processing of pave-
ment surface defects, a large amount of data needs to be used
to train the model. In this experiment, the dataset was a pub-
lic dataset, and a total of 2235 pavement images were
selected as the dataset [23]. Most of the pavement images
with defects in the dataset needed to be marked, and a small
part of the images were flawless and did not need to be
marked, which was beneficial to the robustness of the data.
The defects in the dataset were mainly divided into three cat-
egories: mesh cracks, potholes, and patches. The classifica-
tion diagram is shown in Figure 8.

459 images from 2235 pavement defect maps were
selected as the test set of the experiment, and 176 images
from the remaining 1776 images were selected as the valida-
tion set to avoid model training falling into overfitting. The
remaining 1600 images were used as the training set to train
the model. The marking software used in this experiment
was YOLO_Mark, which performed box selection on the
pavement mesh cracks, potholes, and patches in the dataset.
YOLO_Mark is a labeling software of YOLO dataset, which
is easy to use and simple to operate. The image annotation
effect is shown in Figure 9. The annotations distribution is
shown in Figure 10.

5.3. Performance Evaluation. mAP is calculated using preci-
sion and recall, and used as a criterion for evaluating net-
work model performance. mAP is the value of the average
detection accuracy across all classes and is used to evaluate
the overall performance of the detection model. Calculated
as follows:

precision =
TP

TP + FP
, ð1Þ

recall =
TP

TP + FN
, ð2Þ

mAP =
1
N
〠
N

i=1
APi: ð3Þ

Among them, true examples (TP) are positive exam-
ples that are correctly predicted, false positive examples
(FP) are negative examples that are wrongly predicted as
positive examples, false negative examples (FN) are posi-
tive examples that are wrongly predicted to be negative
examples, and N is the number of detection categories,
AP is the detection accuracy of various types, and the

(a) Mesh cracks (b) Potholes

(c) Patches

Figure 8: Pavement defects.

7Journal of Sensors



calculation formula is:

AP =
ð1
0
precision recallð Þd recallð Þ, ð4Þ

where AP can be expressed as the area of the curve

made with recall as the horizontal axis and precision as
the vertical axis, that is, the area of PR curve is calculated
using the integral formula.

5.4. Training of the Model. This experiment chose the pre-
training weight of YOLOv5 as the training weight of this
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experiment. The model and pretraining weights of YOLOv5
include YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x.
The training accuracy increases and the speed decreases. In
this experiment, the actual model detection scene was con-

sidered, and the YOLOv5l model that took into account
the accuracy and speed was used as the baseline comparison
model of the experiment. YOLOv5l.pt was used as the exper-
imental pretraining weight.
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This experiment first used the YOLOv5l baseline model
for experiments, the training parameter epoch was set to
300, the training optimizer selected SGD, and the initial
learning rate was 1e-2. The GPU memory is 24GB, so the
batch-size was set to 48. When the training reached 134th,
the accuracy of the YOLOv5l model did not decrease signif-
icantly, and the training reached saturation, and the final
best mAP was 68.5%.

The experiment was to detect potholes, cracks, and
patches. The scale of the target changes greatly. Therefore,
it is necessary to expand the effective receptive field of the
model to better identify large-area cracks and pavement
patches, so that the model can achieve higher accuracy.
This experiment used a large kernel convolution block to
replace the first layer of convolution in Backbone to
enhance the model’s ability to extract shallow semantics.
Training epoch, optimizer, and learning rate are
unchanged. After Big Kernel convolution is added, the
memory required to optimize the model increased, and
the batch-size was set to 12. At the 143rd round of train-
ing, the training of the model reaches saturation, and the
best mAP is 72.8%.

In order to take into account the detection of small
defects and further improve the accuracy of model detection,
this experiment added CBAM to the improved YOLOv5l
model. The added CBAM module enables the model to
select the region of interest, making the model more sensi-
tive to the defects to be detected, and improving the model
detection accuracy under the premise of adding a small
number of parameters. All hyperparameters remained
unchanged. The model reached saturation at the 142nd

round of training, and the best mAP was 73.3%.

5.5. Real-Time Operational Performance. Training loss func-
tion is shown in Figure 11. It can be seen from the figure that
with the increase of the number of iterations, the value of the
loss function of the four models gradually decreases and
tends to converge. In this experiment, the SGD optimizer
was used for gradient descent, and the training was stopped
after 100 rounds if there was no obvious decline. The train-
ing of the four models was stopped around the 130th and
140th round.

The Figure 12 shows the mAP iteration curves of the
four models with a smoothing rate of 0.6. It can be seen that
the combination of YOLOv5l, Big Kernel convolution and
CBAM can achieve the highest mAP. Both models with
Big Kernel convolution replaced have higher mAP than the
model without this module under the same number of
iterations.

5.6. Ablation Experiment. Next, this paper compared and
analyzed the modified parts of the model to prove whether
the improvements made in this experiment are effective.
The effects of each part are shown in Table 1.

The effect of Big Kernel Convolution. It can be seen from
the above table that after replacing the Big Kernel convolu-
tion, the detection accuracy of mesh cracks has been signif-
icantly improved by 4.4%, and the detection accuracy of
patches is also improved by 9.0%, but the accuracy of pot-
holes is slightly reduced by 0.2%.

The effect of CBAM. It can be seen from the above table
that after adding CBAM, compared with the original
YOLOv5l model, the improved model has improved detec-
tion accuracy of potholes and patches, the potholes accuracy
has increased by 3.6%, and the patches accuracy is improved
by 5.3%. CBAM makes the model more accurate and sensi-
tive to the positioning of small pavement defects, and
improves the detection accuracy of various types of defects.

With the addition of CBAM and big kernel modules, the
map of the model was increased to 73.3%. Compared with
the original model, YOLOv5-PD has a lower speed, but it

Table 1: Experiment results with different improvement methods.

mAP % MeshCracks AP% Potholes AP % Pacthes AP % FPS

YOLOv5l 68.5 (0) 69.7 (0) 65.3 (0) 70.4 (0) 105

YOLOv5l +CBAM 71.2 (+2.7) 69 (-0.7) 68.9 (+3.6) 75.7 (+5.3) 102

YOLOv5l + BigKernel 72.8 (+4.3) 74.1 (+4.4) 65.1 (-0.2) 79.4 (+9.0) 48

YOLOv5l + BigKernel +CBAM 73.3 (+4.8) 72.1 (+2.4) 67.7 (+2.4) 80.1 (+9.7) 41

Table 2: Experiment results with YOLO versions.

mAP % FPS

YOLOv3 69.7 111

YOLOv4 61.3 71.4

YOLOv5 68.5 116

YOLOv6 63.8 49

Table 3: Experiment results with YOLOv5 versions.

mAP % FPS

YOLOv5n 68.0 200

YOLOv5s 67.8 192

YOLOv5m 66.8 133

YOLOv5l 68.5 116

YOLOv5x 64.3 74

Table 4: Experiment results between YOLOv5-PD and advanced
model.

mAP % FPS

YOLOv5-PD 73.3 41

Faster-RCNN 60.1 26

YOLOX 58.0 13
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can still reach 41FPS, obviously meeting the real-time require-
ments of the actual project.

5.7. Comparison Experiment. In addition, this study also
made a comparison from YOLO versions, YOLOv5 versions
to advanced models on the same dataset to verify the superi-
ority of the model proposed in this experiment. The com-
parison results of different versions of YOLO are shown in
Table 2.

YOLO series has developed to v6 version. In the devel-
opment process, YOLO has been learning from the most
advanced training skills and network modules. After com-
parison, YOLOv5 is determined as the experimental bench-
mark model in this paper.

According to the size of the parameter quantity, YOLOv5
has several minor versions. From n to x, the parameter quan-
tity increases in turn and the speed decreases. This paper com-
pares different versions and decides to use YOLOv5l model.
The comparison results of different YOLOv5 are shown in
Table 3.

The paper compared the proposed model with the most
advanced model. It can be seen from Table 4 that YOLOv5-
PD has superiority in precision and speed. The comparison
between YOLOv5-PD and advanced model is shown in
Table 4.

6. Conclusion and Future Work

This research proposed targeted improvements to the origi-
nal YOLO model with reference to the defects in the actual
road detection scene. And this paper compared it with com-
mon detection models, and the results have reached a bal-
ance in detection accuracy and speed, which confirms its
advantages.

In the real pavement defect detection task, large-scale
defects and small-scale defects coexist. Considering this situ-
ation, this paper proposed YOLOv5-PD model based on
YOLOv5 and aiming at asphalt pavement defect scene.

YOLOv5-PD greatly improves the detection accuracy of
large-scale defects such as mesh cracks and patches, while
small-scale defects such as potholes are also considered.
The mAP of YOLOv5-PD reached 73.3%, and the detection
speed reached 41FPS. The actual detection effect is shown in
Figure 13. Thus, the model proposed in this study can meet
the needs of complex pavement defect detection in the real
situation.

In the process of improving the model, there are also
some problems. Big Kernel convolution enhances the detec-
tion accuracy of large scale defects and reduces the accuracy
of small scale defects, which seems to be unable to be satis-
fied at the same time. This research will continue to find
improved methods to improve the accuracy of both in the
future work, and add more kinds of road defects to improve
the deployability of the model.
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