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Coal ash blast is a potential hazard that causes serious disasters in coal mines. In explosion control, research work on coal ash
sensitivity prediction is of practical importance to improve accuracy, reduce blindness of explosion protection measures, and
strengthen targets. The potential and destructive characteristics of coal ash blast vary greatly from coal to coal, especially in
coal mines with complex and changing environments, where the characteristics of coal ash blast show great variability under
the influence of various factors. In addition, due to the lack of systematic and comprehensive understanding of the occurrence
mechanism of coal ash blast, it is necessary to conduct systematic research on the occurrence mechanism of coal ash blast.
Current coal ash blast sensitivity summarizes and concludes prediction methods to create reliable predictions for coal ash blast.
A new general learning method, support vector machine (SVM), has been developed, which provides a unified framework for
solving limited sample training problems and can better solve small sample training problems. With the purpose of
determining the coal mine problem and coal ash sensitivity prediction sensitivity indicators and thresholds, the SVM method
is used to set the sensitivity function of each prediction indicator, and the sensitivity of each prediction indicator for the
proposed study mine is expressed quantitatively. The experimental results show that the prediction accuracy of SVM for
positive and negative categories is 15.6% higher than that of BP neural network and 35.1% higher than that of Apriori
algorithm. Therefore, the prediction effectiveness of the SVM algorithm is proved. Therefore, it is practical to adopt SVM
method for prediction on sensitivity to coal ash blast and apply the latest statistical learning theory SVM to predict the risk of

coal ash.

1. Introduction

Coal ash accidents are mainly coal and coal ash protrusion,
coal ash blast, and coal ash asphyxiation injuries [1]. When
such events occur, they not only cause significant losses to
local mines and affect the normal process of coal production
but also often cause incalculable economic and psychological
damage to the employees of the enterprise, miners, and their
families [2]. The frequency and intensity of coal mine acci-
dents are alarming, and the level of safety management is
still far from that of developed countries, especially because
of insufficient safety investment [3]. It causes extremely
bad social impacts and huge economic losses [4]. Coal ash
itself is a hazard that not only has the potential to cause sec-
ondary or chain explosions but also can easily explode
together with flammable and explosive gases [5]. This will

further increase the potential and fatal hazards of coal ash
blast accidents [6]. Therefore, there is a very complex non-
linear relationship between the degree of coal ash blast and
the gas product, and the state of coal ash blast can be deter-
mined by monitoring.

Prediction on sensitivity to coal ash blast is the first link
in the comprehensive measures of gas disaster prevention
and control, and it is also a decisive link to ensure safe and
efficient production in hazardous coal seams [7]. The degree
of blast damage varies from large to small, and the intensity
of the explosion varies [8]. This is related to the dust content
and particle size of the coal ash involved in the explosion
and the quality of the coal in that mine [9]. All current mon-
itoring systems for coal ash focus on coal ash monitoring,
which truly records data and provides, but does not provide,
early warning of coal ash concentration exceedances [10]. As
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a result, much historical data from coal ash concentrations
are not reasonably available [11]. Data-driven machine
learning is an important aspect of modern intelligence tech-
nology, which begins with the study of finding patterns in
observed data samples and using these patterns to predict
future or unobservable data [12].

The SVM method is a specialized method to achieve the
structural risk minimization criterion, which has the advan-
tages of global optimality, simple structure, and high gener-
alization ability, and has been widely studied in recent years
[13]. At present, the fugacity of coal ash is controlled by local
structures because the cause of explosion is unknown.
Therefore, coal mines with different geological units cur-
rently exist in different regions or within the same region
[14]. The traditional statistical study is an asymptotic theory
in which the number of samples is infinite, but in practical
problems, the number of samples is limited [15]. Therefore,
some theoretically good learning methods may perform
poorly in practical applications. Therefore, the SVM method
can be used to conduct prediction studies of coal ash blast
coal ash to determine the risk level of exploding coal ash
and take action to prevent the disaster.

The innovations of this paper are.

(1) Basic research on domestic and international coal
mine disasters and comprehensive research on the
causal mechanisms and epidemiological evolution
of major coal mine disasters using support vector
mechanics in the context of continuous improve-
ment. The construction of coal mine energy and
momentum conservation prediction on sensitivity
to coal ash blast model

(2) Study the explosion characteristics of coal ash with
different degrees of denaturation and establish the
relationship between coal quality index and coal
ash blast characteristics according to the influence
of coal quality on coal ash blast characteristics

(3) Applying SVM theory, an SVM identification system
for coal mine sensitivity prediction is established for
online prediction of whether coal ash will explode

The research framework of this paper consists of five
parts, which are structured in detail as follows.

The first part of the paper introduces the background
and significance of the study and describes the main tasks
of the paper. The second part introduces the prediction on
sensitivity to coal ash blast and related works related to the
support vector mechanics technique. The third part summa-
rizes the relationship between coal quality index and coal ash
blast characteristics, establishes the SVM-based prediction
on sensitivity to coal ash blast model, and gives a more com-
prehensive understanding of the idea of sensitivity predic-
tion. The fourth part is the core of the paper, from the
analysis of the construction of the sample data in SVM
and the analysis of the learning training of SVM, to complete
the description of the application of SVM in the prediction
on sensitivity to coal ash blast. The last part of the paper is
the summary of the work.
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2. Related Work

2.1. Prediction on Sensitivity to Coal Ash Blast. Coal ash blast
not only wastes resources but also burns equipment, affects
production, and causes gas and coal ash blast, resulting in
casualties. In recent years, the state has actively promoted
coal ash prevention and control, established a coal ash pre-
vention and control work system, increased investment in
technological innovation in coal mine safety, and organized
scientific and technological work. And despite the consistent
results of national-focused coal ash remediation actions, coal
mine accidents still pose a major threat to coal safety pro-
duction in China. Therefore, coal ash accidents in mines
are the great enemy of coal mine production and such acci-
dents must be eliminated.

Shi et al. proposed that one of the important means to
prevent dust explosion and reduce the risk of explosion is
to master the explosive thermodynamic parameters and
explosion mechanism model of such dust through theoreti-
cal analysis or experimental studies of explosion strength,
maximum explosion pressure, and explosion [16]. Li et al.
used fuzzy mathematical comprehensive evaluation tech-
nique to analyze and improve the coal ash blast criterion,
and then the coal ash blast was analyzed and improved
[17]. Szkudlarek and Janas studied the pressure and flame
propagation velocity during detonation against an obstacle
and found that the addition of an obstacle could increase
the instantaneous velocity of the flame in front of the obsta-
cle by up to 24 times compared to the unobstructed flame
velocity [18]. The mechanism of explosion-induced coal
ash blast was investigated experimentally and numerically
by Ban et al. The rise of deposited coal ash due to external
forces was simulated [19]. Tan et al. coal ash studied the
effect of obstacles on flame propagation patterns in explo-
sions and found that the flame propagation velocity
increased significantly with the increase in the number of
obstacles [20].

According to China’s current coal ash control capability
and technical level, it should realize modern management,
manage coal ash in mines by scientific methods, and make
scientific prediction of coal ash disaster in mines, so as to
grasp the dynamics of coal ash in mines, correctly identify
coal ash blast or not, and propose anti-disaster countermea-
sures in time.

2.2. Support Vector Machine Technology. Although SVMs
have been proposed for many years, they have matured to
develop very rapidly and have been evaluated more widely,
especially in applied research. SVM-based prediction on sen-
sitivity to coal ash blast can provide dynamic information on
environmental safety parameters for production managers
and business units at all levels. The comparative analysis of
the measured parameters provides data for disaster and acci-
dent prevention. Therefore, it will be of great practical
importance for accident prevention and mine production if
continuous and accurate advance prediction of coal ash
can be made by using SVM.

Sumaya et al. applied the classification method of SVM
to prediction on sensitivity to coal ash blast and showed by
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the results that the SVM-based prediction on sensitivity to
coal ash blast method has high accuracy and the method is
scientifically feasible and has wide application prospects
[21]. Liu et al. proposed a chunking algorithm to solve the
large training sample SVM problem, and the chunking algo-
rithm is efficient when the number of support vectors is
much smaller than the number of training samples, but the
algorithm is still complex when the number of support vec-
tors is large [22]. Luo et al. mathematically calculated the
deformability of the coal seam, the kinetic energy of the sur-
rounding rock, the expansion effect of the explosion sensitiv-
ity, and the work required to cause coal ash based on
laboratory simulations. However, it is not yet possible to
explain the asymptotic damage process and damage condi-
tions of coal-bearing explosions [23]. Harris and Sapko pro-
posed a training algorithm for SVM called sequence
minimization, which is a special case of decomposition
methods [24]. Qian et al. argued that fuzzy mathematical
theory is an important tool for representing and dealing with
imprecise data and conditions of fuzzy information. Incre-
mental training consists of SVM and new samples, and all
unsupported vectors are discarded [25].

SVM is the most successful implementation of statistical
learning theory to date and is still under development.
Therefore, the use of SVM to establish a sound and reason-
able index system for coal ash prediction and to improve the
accuracy of coal ash blast prediction is an urgent problem
for mines to solve.

3. SVM-Based Prediction on Sensitivity to Coal
Ash Blast with Different
Deterioration Degree

3.1. Relationship between Coal Quality Index and Coal Ash
Blast Characteristics. Coal ash blast intensity characteristics
mainly include flame, pressure, temperature, and impact air-
flow properties [26]. Since coal ash blast intensity character-
istics are influenced by different factors, in many cases,
changes in certain factors can greatly affect the blast inten-
sity and even change the nature of the blast [27]. In a dis-
crete time signal, if two very close samples have different
algebraic signs, they are called over-zero:

Z,= Y Jsgn [x(m)] - sgn [x(m— Djw(n-m), (1)

sgn [|—take symbols

m—window starting point

w(n)—window function

Get the corresponding decision function, namely, SVM:

f(x) =sgn [iyi“i*K(xi "x)+ b*] : )

i=1

Define the risk of each time window as the standard

3
deviation of logarithmic rate of return, namely:
1 ¢ =12
S= .y (Zin=2)"s (3)
j=1
_ 1
Z=- D Zim (4)

[
—_

J

By solving the control equations of discrete phase and
continuous phase alternately, the bi-directional coupling cal-
culation of discrete phase and continuous phase is realized
until both converge, as shown in Figure 1.

First of all, the pressure characteristics of coal ash blast
are an important parameter to characterize the strength of
coal ash blast [28]. The rheological properties of coal are
prediction on sensitivity to coal ash blast that occur on the
physical basis of the time lag, and its substance is just one
of the three main factors in the occurrence of the explosion
of the nature of coal. And some sampling algorithm is used
to select the most favorable samples in the training sample
set for the classifier performance, label its class, and add it
to the initial training sample set and retrain the classifier.
In this case, the computational complexity of the classifier is:

O(N,?+LN,*+dLN,), (5)

L—scale of training sample set

d,—enter the dimension of the sample

N,,—number of support vectors

The minimum empirical risk is found in each subset, and
then the subset that minimizes the sum of the minimum
empirical risk and the confidence range is selected. However,
this is more time-consuming, especially infeasible when the
number of subsets is large or even infinite [29]. Therefore,
for linearly divisible problems, we should choose a hyper-
plane that can completely and correctly partition the train-
ing set, which may lead to the nonexistence of a
hyperplane for linearly indivisible problems. The location
of the source of the explosion can be determined by techni-
cal means, and time sensors that can accurately measure the
movement time of the object as well as flame sensors can be
installed in the explosive section to obtain data on the far-
thest distance and propagation time of the flame propaga-
tion, which can be used for explosion energy estimation.

Secondly, due to the complex and variable environmen-
tal conditions and many influencing factors in underground
coal mine operations, the variability of coal ash blast flame
characteristics in its generation and propagation process is
great under the interference of different factors. According
to the law of mass conservation, the unidirectional flow of
coal ash in nonhomogeneous coal seam has:

OP 0q
5 + Ep =0. (6)
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FiGure 1: Coal ash blast simulation calculation flow.

So the coal ash emission calculation formula:

!

oP
CI:‘AW’ (7)

P'—coal ash pressure

The explosion destabilization theory considering time
effects illustrates that destabilization damage of the system
can occur only when creep causes the system to become
unstable under certain stresses and pore coal ash pressure,
i.e., explosion occurs. The training is performed using sam-
ples to determine the specific parameters of the SVM classi-
fication identifier. The SVM prediction system is shown in
Figure 2.

Design a certain structure of the function set so that each
subset can obtain the minimum empirical risk, and then
only need to choose the appropriate subset so that the con-
fidence range is minimum, then the subset so that the func-
tion of the minimum empirical risk is the optimal function.
Due to the complex and changing environmental conditions
of underground coal mine operations and the influence of
many factors, so in the interference of different factors, coal
ash blast flame characteristics in its generation and propaga-
tion process are of great variability. As long as the explosion
trace identification is to determine the farthest distance of
the flame propagation, you can deduce the explosion experi-
ence time, and then substituted into the energy prediction
model can also be derived from the results.

Finally, in the maximum pressure of coal ash blast in the
near spherical space, the maximum pressure rise rate and the
characteristics of the flame peak in the horizontal pipe space
are combined with the complex and variable characteristics
of the influence of coal ash blast. In full use of the experi-

mental device on the basis of short experimental cycle and
easy to repeat the advantages of the analysis of different test
parameters on the impact of explosion strength characteris-
tics. The occurrence of explosive hazards is extremely irreg-
ular, the system in which they are located is a constantly
changing system, a variety of mechanical effects with the
geological body is formed by these effects, and most are in
a complex nonlinear state. In order to ensure safety, the
emphasis is on predicting nonexplosive to complete accu-
racy, so the critical value of the explosion is set relatively
low, the result of many nonexplosive hazard sites. Due to
the need to use a uniform critical value, it is considered to
be an explosion hazard, and explosion-proof measures must
be taken. At the same time, make the calculation process
greatly simplified, eliminating the previous complex partial
differential equation of the arithmetic process and reducing
the high requirements for mastery of mathematical theory
in the model solution.

3.2. Establishment of Prediction on Sensitivity to Coal Ash
Blast Model Based on SVM. Prediction on sensitivity to coal
ash blast not only can guide the scientific application of
explosion-proof measures and reduce the amount of
explosion-proof measure works but also ensure the personal
safety of coal seam operators due to the uninterrupted
inspection of the explosion hazard at the working face
[30]. Therefore, the establishment of SVM-based prediction
on sensitivity to coal ash blast model is particularly
important.

First, the blast moment and stress drop are measured by
the microburst monitoring system for the original data, after
the software preprocessing and saved. Each day can be mea-
sured in multiple sets of blast moment and stress drop
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FIGURE 2: SVM prediction system.

values, by taking the average value of a value as a represen-
tative of the day. The SVM algorithm is shown in Figure 3.

Once the parameters are determined, they are not mod-
ified in subsequent SVM constructions. The simplest
method of parameter selection is to define a training set, a
confirmation set, and a test set. Then, several different sets
of parameters are selected, and the support vector values
are introduced from the training data in the training set,
and the set of parameters that minimizes the data errors in
the confirmation set is selected as the model parameters.
For this purpose, pre-weighting is performed in pre-
processing. For all functions in the indicator function set,
the probability between the empirical risk and the actual risk
satisfies:

hln (2U/h+1)—1n h/4

R(w) < Re mp(w) + \/

h—dimension of function set

n—sample number

Coal ash desorption in coal mines is a long process,
while the explosion process is a fast-moving process. Small
explosions last only a few seconds, and large explosions last

only a few tens of seconds, and the time for coal ash desorp-
tion during the explosion may be only milliseconds, relying
on the energy of the coal ash desorbed during this time to
throw the coal ash mass from its original location into the
roadway space. The prediction objective is based on the pur-
pose of this paper, i.e., to predict the propensity of coal ash
blast, and the parameter that can quantitatively assess the
propensity of coal ash blast, ie., the cumulative energy
release rate, is chosen as the target vector. By using the
squared term as the optimization index, only the equation
is constrained, so that the initial problem is no longer a qua-
dratic programming solution, and can be expressed as:

1 1
min —||w||2 + —rZE,-Z, (9)
2 2 5

r—error penalty component

Secondly, the corresponding SVM program was pre-
pared, and the corresponding prediction model of coal dust
explosion propensity was established, using a large number
of example data as training samples and prediction samples.
Then, an error rate was obtained for each test set, and finally
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FIGURE 3: SVM algorithm.

the average of all error rates was taken as the final error rate.
The ground stress and coal ash pressure values within the
unloading zone are both greatly reduced from their original
values; the ground stress within the concentrated stress zone
is higher than the original value, and the coal seam perme-
ability is sharply reduced to prevent the discharge of coal
ash, so the high coal ash pressure gradient and gas pressure
values are maintained. The rock structure, when receiving
external stresses, causes different dynamic phenomena and
elastic waves in the coal mine due to inelastic deformation
and structural nonstability. In the absence of any informa-
tion at all, this discretized probability distribution should
satisfy the following “maximum entropy” problem:

maxH(A):—Z/\i In A, (10)
i=1

H(A)_Shannon entropy

Since the shape and frequency spectrum of the stress
waves emitted from the coal mine at different deformation
stages are different, and the generation of coal ash blast
requires a certain amount of energy, there will be a period
of energy accumulation before the occurrence of coal ash
blast, i.e., a period of smoothness. Then, we estimate the
upper limit of the error rate by using the result obtained,
and then adjust the parameters of the kernel function by
using the gradient descent method for the upper limit of
the error rate, and repeat the above steps until we get the
minimum upper limit of the error rate. The method of con-
verting analog signals to digital signals is based on regulari-

zation theory. The regularization problem can be obtained in
the following form:

l

min 1 YV (3 £(5) + AIFIR). (i

i=1

A_regularization factor

IfII%_reproducing kernel Hilbert space

V_loss function

Finally, we train the classifier with the normalized train-
ing data to obtain the diagnostic model and then use the
model to test on the test set. The maximum and minimum
values of the parameters to be selected are set, and the jump
step is also set for each parameter. Then, the parameters are
combined by the jump step separately, and finally the com-
bination with the highest accuracy is found by validation.
In particular, as the mining depth increases, the coal ash
pressure and ground stress increase, and the corresponding
gas internal energy and deformation potential of coal seam
also grow. It causes more and more coal ash containing coal
rock explosion induced disasters; prediction on sensitivity to
coal ash blast and prevention work are more and more diffi-
cult. Thus, for linear systems, when the estimated model
order is the same as the actual model order, the accuracy
of identification is high, and vice versa, the accuracy of iden-
tification is reduced. For the nonlinear system, the accuracy
of identification is related to the complexity of the kernel
function, and the accuracy decreases with the increase of
the complexity of the kernel function.
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FiGUure 4: Changes of SVM performance with kernel parameters.

4. Application Analysis of SVM in Prediction on
Sensitivity to Coal Ash Blast

4.1. Construction and Analysis of Sample Data in SVM. Dif-
ferent SVM models are handled in different ways. The sam-
ple data regulate the maximum step size of the flight
direction of the global optimal particle and the individual
best particle, respectively; if it is too large, it will lead to a
sudden flight towards or over the target region; if it is too
small, the particles are likely to be far away from the target
region. If it is possible to predict continuously whether an
explosion occurs in a coal mine or not based on the sample
data of previous explosion events in that mine, this is the
research of this chapter.

First, the factors affecting the predicted values are
grouped into three main indicators: effective base concentra-
tion, sulfation, and factor. For a given sample point that can-
not be separated or approximated by a hyperplane, a
transformation can be used to map it to a space of higher
dimensionality in order to improve the classification accu-
racy. In the following, a prediction on sensitivity to coal
ash blast with 100 training samples and 1000 test samples
is used in a one-to-many training mode to find the variation
of the performance of Gaussian kernel SVM with kernel
parameters and error penalty parameters. The results are
shown in Figures 4 and 5.

Fault is also an important factor affecting the explosion,
especially near the inverse fault. This is due to the strong
extrusion of the reverse fault, fault near the structure of coal
is generally very developed, and this strong structural dam-
age to the coal permeability is very poor, often become an
important barrier to prevent the transport of coal ash. Dif-
ferent degrees of coal ash volatile fraction of different
degrees of metamorphosis, the material composition of the
coal quality between the large differences, different degrees

of coal ash reaction reducing agent content has a large differ-
ence, resulting in a large difference in the maximum pressure
of the explosion. And coal ash concentration is low, coal ash
particles are less, the particle spacing is relatively large, the
particles absorb heat transfer, and reaction time will
increase, resulting in the total duration of combustion also
increased.

Secondly, in order to eliminate the influence of each fac-
tor due to different magnitudes and units, the input and out-
put parameters of the samples are normalized separately. A
part of the samples is selected to form the working sample
set for training, the nonsupport vectors are removed, and
the training results are used to test the remaining samples.
The samples that do not meet the training results are gener-
ally those that violate the conditions or some of them are
combined with the support vectors of this result into a new
working sample set and then retrained. Assuming that all
categories contain the same number of samples, the core of
the algorithm complexity is still the solution of the con-
straint extreme value problem. The performance compari-
son of different multi-classification prediction methods is
shown in Table 1.

However, in the geological structure complex area or the
tunnel will be through the section, this cycle is often broken,
resulting in the superposition of the coal body stress in front
of the workings. The coal ash concentration where the max-
imum value of coal ash blast pressure and the minimum
value of burning duration are located is different for differ-
ent degrees of metamorphism. Therefore, coal samples
should be taken downhole and adsorption experiments
should be carried out in the laboratory to determine coal
ash basic parameters such as coal to coal ash adsorption con-
stants, moisture, and ash content at constant temperature.
The coal seam coal ash content is then calculated from the
measured original coal ash pressure of the coal seam.
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FiGUre 5: Changes of SVM performance with error penalty parameters.

TaBLE 1: Performance comparison of different multi-classification forecasting methods.

Multiple classification method One-to-one One-to-many Global optimization
Error rate 34.3 39.1 44.6

Total number of support vectors 32 44 36
Training time 65 78 93

Average sum function budget times 17 23 41

Finally, by mapping the data into the feature space and
trying to describe the data in the feature space with a hyper-
sphere, the majority of the data is to be included in this
hypersphere. The size of the working sample set is fixed
within the tolerable limit of the algorithm speed, and the
iterative process only swaps some of the worst-case samples
from the remaining samples with the samples in the working
sample set in equal amounts. Even if the number of mathe-
matical models and algorithms studied in support vector
data mining exceeds the size of the working sample set, the
size of the working sample set is not changed, and only a
part of the support vector is optimized. With the increase
of coal seam burial depth, the thickness of overburden rock
on coal seam gradually increases, and the ground stress
increases accordingly; with the increase of coal seam burial
depth, the permeability of coal seam and surrounding rock
will decrease, and the distance of coal ash transport to the
surface increases, which is favorable to the coal ash fugacity.
Close to the optimal concentration of coal ash blast, the
maximum explosion pressure is also larger, indicating that
the coal ash close to the optimal coal ash blast concentration
has a higher risk, in the actual production of coal ash con-
centration should be strictly controlled.

4.2. Analysis of Learning and Training Based on SVM. The
learning training of SVM adopts training sample sequence

input method instead of batch input method, which has
the advantages of generating fewer SVMs and strong gener-
alization performance. The increase in stress causes the elec-
tron clouds between molecules to overlap, the mobility of
electrons between molecules increases, and the electron con-
ductivity increases. Therefore, it is not possible to say quali-
tatively whether the electrical conductivity of coal increases
or decreases when it is subjected to stress, but it is necessary
to conduct specific experimental analysis for specific coal
samples.

First, the samples are sequentially fed into the SVM algo-
rithm in a sequential manner, and a forecast model contain-
ing a support vector is obtained after training. In the
optimization problem description, different penalty coeffi-
cients are applied to each sampling point data to obtain
more accurate classification. The plot of the simple step
response SVM algorithm using simulation, compared with
the Apriori algorithm, is shown in Figure 6.

While the optimization variables of the fixed working
sample set method contain only working samples, the objec-
tive function contains the whole training sample set, i.e., the
multipliers of the samples outside the working sample set are
fixed as the results of the previous iteration. Instead of being
set to two as in the block algorithm, the fixed working sam-
ple set method also involves a problem of determining the
change-out samples. With the increase of ignition energy,
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TaBLE 2: Prediction accuracy of three algorithms.

BP neural .

SVM network Apriori

- Test data  76.5% 56.7% 49.5%
Positive Train

category r;:tl;ng 98.5% 66.1% 34.6%

. Test data  87.1% 78.3% 63.1%
Negative Ttain

category r;;r;ng 93.4% 94.6% 87.1%

the maximum pressure of different degrees of deterioration
coal ash blast is generally on the rise and the overall duration
of combustion is on the decline. Since each coal ash particle
is subjected to different magnitude and direction of force,
these particles are in a chaotic turbulent state after mixing
with the gas. The prediction accuracies of the three algo-
rithms for each category are shown in Table 2.

From Table 2, the prediction accuracy of SVM on posi-
tive and negative categories improved by 15.6% over BP
neural network and 35.1% over Apriori algorithm. Thus,
the predictive effectiveness of the SVM algorithm was
proved.

Secondly, the data input is limited by the moving win-
dow method, i.e, the size of the training samples. The near-
est data are taken as the training set in turn. In the sample
space or feature space, the optimal hyperplane is constructed
to maximize the distance between the hyperplane and the
different classes of the sample set, so as to achieve the max-
imum generalization ability. Since there are only two vari-
ables, and one can be expressed in terms of the other by
applying the equation constraint, the optimal solution of
the subproblem at each step of the iterative process can be
found directly by analytical methods. After the coal ash par-

ticles are lifted up, coupled with the sweeping of the shock
wave, the internal energy of the coal ash particles increases,
the temperature rises, and some combustible gases are
decomposed by heat, which are ignited and oxidized result-
ing in the ignition of the coal ash cloud to participate in the
explosion. Since the number of training samples and test
samples are small, the test error can be regarded as a reflec-
tion of the true generalization ability of the SVM. Figures 7
and 8 show the training error and test error of the SVM with
the kernel and penalty parameters, respectively.

With the increase of ignition energy, the ambient tem-
perature and volatile precipitation are increased, the effective
ignition volume is increased, and the turbulence induced by
high ignition energy can enhance the combustion efficiency.
The air volume required at the coal mining face and the
rated air volume of the local ventilation fan. The so-called
optimal ventilation refers to seeking the minimum ventila-
tion of the mine while ensuring that the coal ash concentra-
tion and coal ash concentration in each working face and
return airway are not exceeded, forming an optimization
problem with the goal of minimizing the total ventilation.

Finally, several free parameters in the model, including
the bandwidth of the Gaussian basis kernel function, the reg-
ularization factor that balances the complexity and accuracy
of the model, and the effect of the magnitude of the error
coefficient on the generalization ability and complexity of
the model prediction referring to the number of generated
SVMs, are to be examined. In this way, a judgment function
can be established, and for new sample points, if the function
is calculated to be positive, it is a normal sample; otherwise,
it is a singular point. There are differences in the content of
volatile matter precipitated from coal ash with different
degrees of deterioration at the same ignition energy, result-
ing in different corresponding maximum explosion pres-
sures and burning durations. When a new individual
sample appears, how it relates to the original sample set or
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its subset, or to the training results of the original sample set,
e.g., what effect its addition has on the support vector set of
the original sample set, how to quickly determine the contri-
bution of bamboo to the new classifier function, etc.

5. Conclusions

The continuous development of communication technology,
automation technology, and artificial intelligence technology

has led to great progress in the research of coal ash blast sen-
sitivity prediction technology. Coal ash blast is a major hid-
den danger for coal mine safety in China, and the prediction
and prevention of explosion accidents in mines play a very
important role in ensuring the safety of mines. Sensitivity
forecasting is the core technology of coal mine excavation
and mining, and the reliability of its sensitivity forecasting
is related to the economic benefits of coal mines and the lives
and health of workers. For this reason, carrying out coal ash
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blast sensitivity forecasting and establishing a reasonable
coal ash blast sensitivity forecasting system can effectively
carry out coal ash blast disaster prevention and control
and reduce disaster losses. SVM regression is a new theory
and method, which has many issues worth further research
in both training algorithms and practical applications. Due
to its unparalleled advantages in many traditional machine
learning algorithms, it has become a popular research direc-
tion in the world at present and has been successfully
applied in many aspects. SVM is used for natural fire predic-
tion of coal seams, and the rationality and scientific validity
of the method are verified through experiments. According
to the prediction of different metamorphic degree coal ash
blast sensitivity of SVM, a stable and high safety factor
anti-seismic equipment can be designed according to the
special situation of the mine, so as to reduce the danger
caused by explosion.
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